浏览全部资源
扫码关注微信
中国科学技术大学 化学与材料科学学院 合肥 230026
E-mail: zze320@ustc.edu.cn
yzyou@ustc.edu.cn
纸质出版日期:2024-05-20,
网络出版日期:2024-03-11,
收稿日期:2024-01-06,
录用日期:2024-01-31
移动端阅览
杨鹏, 熊雨, 卢宗斌, 洪春雁, 张泽, 尤业字. 乙烯基醚与七元环硫羰内酯阳离子杂化共聚研究. 高分子学报, 2024, 55(5), 594-603
Yang, P.; Xiong, Y.; Lu, Z. B.; Hong, C. Y. ; Zhang, Z.; You, Y. Z. Cationic hybrid copolymerization of vinyl ether and seven-membered thionolactone. Acta Polymerica Sinica, 2024, 55(5), 594-603
杨鹏, 熊雨, 卢宗斌, 洪春雁, 张泽, 尤业字. 乙烯基醚与七元环硫羰内酯阳离子杂化共聚研究. 高分子学报, 2024, 55(5), 594-603 DOI: 10.11777/j.issn1000-3304.2024.24001.
Yang, P.; Xiong, Y.; Lu, Z. B.; Hong, C. Y. ; Zhang, Z.; You, Y. Z. Cationic hybrid copolymerization of vinyl ether and seven-membered thionolactone. Acta Polymerica Sinica, 2024, 55(5), 594-603 DOI: 10.11777/j.issn1000-3304.2024.24001.
报道了七元环联苯连接的硫羰内酯(DOT)的阳离子开环聚合,得到了一种
T
g
达到98 ℃的新型聚硫酯高分子. 随后对DOT与乙烯基醚的阳离子共聚进行探索,系统研究了催化剂等对DOT与异丁基乙烯基醚共聚的影响. 并基于阳离子聚合型链转移试剂的调控,成功构建了DOT和异丁基乙烯基醚的可控阳离子杂化共聚,制备了一种新型聚乙烯基醚-聚硫酯嵌段共聚物(数均分子量7.6~8.0 kg/mol,PDI
<
1.40). 研究结果为发展杂化共聚新方法和制备新型共聚物材料提供了设计思路.
Designing novel copolymerization methods for preparing new copolymers is of significance to synthesize high-value polymer materials. Vinyl and heterocyclic compounds are the most important types of monomers in polymer chemistry
but the controlled copolymerization of the two is a great challenge due to the distinct polymerization mechanisms and reactive centers
which limits the development and application of new copolymer materials. Based on the thionolactone monomers which are studied widely
the cationic ring-opening polymerization of a seven-membered biphenyl-fused thionolactone (DOT)
via
using common cationic catalyst BF
3
·Et
2
O was studied. The structure of this newly synthesized polythioester was confirmed using
1
H nuclear magnetic resonance (
1
H-NMR) and
13
C-NMR. Differential scanning calorimeter method (DSC) and thermogravimetric analysis (TGA) indicated that the polythioester exhibits good thermal stability and a high
T
g
(98 ℃). Subsequently
cationic hybrid copolymerization of DOT and vinyl ether was explored. According to the effects of three types of cationic catalysts on the copolymerization of DOT and isobutyl vinyl ether (IBVE) without a chain transfer reagent (CTA)
trifluoromethanesulfonic acid (CF
3
SO
3
H) was selected for further investigation. Subsequently
with the use of a scalable and green cationic CTA and the catalyst CF
3
SO
3
H
the controlled cationic hybrid copolymerization of DOT and IBVE was developed
producing a new poly(vinyl ether)-block-poly(thioester) copolymer (
M
n
=7.6-8.0 kg/mol
PDI
<
1.40). The block structure of the polymer was further confirmed by diffusion ordered spectroscopy (DOSY) NMR. This study provides design ideas for the development of new methods of hybrid copolymerization and the preparation of new copolymer materials.
阳离子杂化聚合硫羰内酯乙烯基醚
CationicHybrid polymerizationThionolactoneVinyl ether
Bates C. M.; Bates F. S. 50th Anniversary perspective: block polymers—pure potential. Macromolecules, 2017, 50(1), 3-22. doi:10.1021/acs.macromol.6b02355http://dx.doi.org/10.1021/acs.macromol.6b02355
Luckham S. L. J.; Nozaki K. Toward the copolymerization of propylene with polar comonomers. Acc. Chem. Res., 2021, 54(2), 344-355. doi:10.1021/acs.accounts.0c00628http://dx.doi.org/10.1021/acs.accounts.0c00628
Tan C.; Zou C.; Chen C. L. Material properties of functional polyethylenes from transition-metal-catalyzed ethylene-polar monomer copolymerization. Macromolecules, 2022, 55(6), 1910-1922. doi:10.1021/acs.macromol.2c00058http://dx.doi.org/10.1021/acs.macromol.2c00058
Chen J.; Wang Y. X.; Li H. F.; Han H. J.; Liao X. J.; Sun R. Y.; Huang X. Y.; Xie M. R. Rational design and modification of high-k bis(double-stranded) block copolymer for high electrical energy storage capability. Chem. Mater., 2018, 30(3), 1102-1112. doi:10.1021/acs.chemmater.7b05042http://dx.doi.org/10.1021/acs.chemmater.7b05042
Chen J.; Zhou Y.; Huang X. Y.; Yu C. Y.; Han D. L.; Wang A.; Zhu Y. K.; Shi K. M.; Kang Q.; Li P. L.; Jiang P. K.; Qian X. S.; Bao H.; Li S. T.; Wu G. N.; Zhu X. Y.; Wang Q. Ladderphane copolymers for high-temperature capacitive energy storage. Nature, 2023, 615(7950), 62-66. doi:10.1038/s41586-022-05671-4http://dx.doi.org/10.1038/s41586-022-05671-4
郭悦, 王佳佳, 王立媛, 孙雪梅, 彭慧胜. 柔性纤维生物电子复合材料与器件. 高分子学报, 2022, 53(7), 707-721. doi:10.11777/j.issn1000-3304.2022.22051http://dx.doi.org/10.11777/j.issn1000-3304.2022.22051
黄飞, 薄志山, 耿延候, 王献红, 王利祥, 马於光, 侯剑辉, 胡文平, 裴坚, 董焕丽, 王树, 李振, 帅志刚, 李永舫, 曹镛. 光电高分子材料的研究进展. 高分子学报, 2019, 50(10), 988-1046. doi:10.11777/j.issn1000-3304.2019.19110http://dx.doi.org/10.11777/j.issn1000-3304.2019.19110
Feng Q. K.; Zhong S. L.; Pei J. Y.; Zhao Y.; Zhang D. L.; Liu D. F.; Zhang Y. X.; Dang Z. M. Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors. Chem. Rev., 2022, 122(3), 3820-3878. doi:10.1021/acs.chemrev.1c00793http://dx.doi.org/10.1021/acs.chemrev.1c00793
Xu M. H.; Chen C. L. A disubstituted-norbornene-based comonomer strategy to address polar monomer problem. Sci. Bull., 2021, 66(14), 1429-1436. doi:10.1016/j.scib.2021.03.012http://dx.doi.org/10.1016/j.scib.2021.03.012
Ballard N.; Asua J. M. Radical polymerization of acrylic monomers: an overview. Prog. Polym. Sci., 2018, 79, 40-60. doi:10.1016/j.progpolymsci.2017.11.002http://dx.doi.org/10.1016/j.progpolymsci.2017.11.002
Ojika M.; Satoh K.; Kamigaito M. BAB-random-C monomer sequence via radical terpolymerization of limonene (A), maleimide (B), and methacrylate (C): terpene polymers with randomly distributed periodic sequences. Angew. Chem. Int. Ed., 2017, 56(7), 1789-1793. doi:10.1002/anie.201610768http://dx.doi.org/10.1002/anie.201610768
Whitfield R.; Anastasaki A.; Nikolaou V.; Jones G. R.; Engelis N. G.; Discekici E. H.; Fleischmann C.; Willenbacher J.; Hawker C. J.; Haddleton D. M. Universal conditions for the controlled polymerization of acrylates, methacrylates, and styrene via Cu(0)-RDRP. J. Am. Chem. Soc., 2017, 139(2), 1003-1010. doi:10.1021/jacs.6b11783http://dx.doi.org/10.1021/jacs.6b11783
Kim M. J.; Yu Y. G.; Chae C. G.; Seo H. B.; Bak I. G.; Mallela Y. L. N. K.; Lee J. S. ω-Norbornenyl macromonomers: in situ synthesis by end-capping of living anionic polymers using a norbornenyl-functionalized α-phenyl acrylate and their ring-opening metathesis polymerization. Macromolecules, 2019, 52(1), 103-112. doi:10.1021/acs.macromol.8b02223http://dx.doi.org/10.1021/acs.macromol.8b02223
Yang H. J.; Huang J. F.; Song Y. Y.; Yao H. X.; Huang W. Y.; Xue X. Q.; Jiang L.; Jiang Q. M.; Jiang B. B.; Zhang G. Z. Anionic hybrid copolymerization of sulfur with acrylate: strategy for synthesis of high-performance sulfur-based polymers. J. Am. Chem. Soc., 2023, 145(26), 14539-14547. doi:10.1021/jacs.3c04746http://dx.doi.org/10.1021/jacs.3c04746
Li C. J.; Wang L. Y.; Yan Q.; Liu F. S.; Shen Y.; Li Z. B. Rapid and controlled polymerization of bio-sourced δ-caprolactone toward fully recyclable polyesters and thermoplastic elastomers. Angew. Chem. Int. Ed., 2022, 61(16), e202201407. doi:10.1002/anie.202201407http://dx.doi.org/10.1002/anie.202201407
Chen G.; Xia L.; Wang F.; Zhang Z.; You Y. Z. Recent progress in the construction of polymers with advanced chain structures via hybrid, switchable, and cascade chain-growth polymerizations. Polym. Chem., 2021, 12(26), 3740-3752. doi:10.1039/d1py00274khttp://dx.doi.org/10.1039/d1py00274k
Moad G.; Rizzardo E.; Thang S. H. Living radical polymerization by the RAFT process-a second update. Aust. J. Chem., 2009, 62(11), 1402. doi:10.1071/ch09311http://dx.doi.org/10.1071/ch09311
袁鹏俊, 洪缪. "非张力环" γ-丁内酯及其衍生物开环聚合的研究进展. 高分子学报, 2019, 50(4), 327-337. doi:10.11777/j.issn1000-3304.2018.18232http://dx.doi.org/10.11777/j.issn1000-3304.2018.18232
Pietrangelo A.; Knight S. C.; Gupta A. K.; Yao L. J.; Hillmyer M. A.; Tolman W. B. Mechanistic study of the stereoselective polymerization of D, L-lactide using indium(III) halides. J. Am. Chem. Soc., 2010, 132(33), 11649-11657. doi:10.1021/ja103841hhttp://dx.doi.org/10.1021/ja103841h
Yu I.; Acosta-Ramírez A.; Mehrkhodavandi P. Mechanism of living lactide polymerization by dinuclear indium catalysts and its impact on isoselectivity. J. Am. Chem. Soc., 2012, 134(30), 12758-12773. doi:10.1021/ja3048046http://dx.doi.org/10.1021/ja3048046
Zhang X. Y.; Jones G. O.; Hedrick J. L.; Waymouth R. M. Fast and selective ring-opening polymerizations by alkoxides and thioureas. Nat. Chem., 2016, 8(11), 1047-1053. doi:10.1038/nchem.2574http://dx.doi.org/10.1038/nchem.2574
Theriot J. C.; Lim C. H.; Yang H. S.; Ryan M. D.; Musgrave C. B.; Miyake G. M. Organocatalyzed atom transfer radical polymerization driven by visible light. Science, 2016, 352(6289), 1082-1086. doi:10.1126/science.aaf3935http://dx.doi.org/10.1126/science.aaf3935
Sun L. F.; Zhuo R. X.; Liu Z. L. Synthesis and enzymatic degradation of 2-methylene-1,3-dioxepane and methyl acrylate copolymers. J. Polym. Sci. Poly. Chem., 2003, 41(18), 2898-2904. doi:10.1002/pola.10868http://dx.doi.org/10.1002/pola.10868
Hill M. R.; Guégain E.; Tran J.; Figg C. A.; Turner A. C.; Nicolas J.; Sumerlin B. S. Radical ring-opening copolymerization of cyclic ketene acetals and maleimides affords homogeneous incorporation of degradable units. ACS Macro Lett., 2017, 6(10), 1071-1077. doi:10.1021/acsmacrolett.7b00572http://dx.doi.org/10.1021/acsmacrolett.7b00572
Tardy A.; Honoré J. C.; Tran J.; Siri D.; Delplace V.; Bataille I.; Letourneur D.; Perrier J.; Nicoletti C.; Maresca M.; Lefay C.; Gigmes D.; Nicolas J.; Guillaneuf Y. Radical copolymerization of vinyl ethers and cyclic ketene acetals as a versatile platform to design functional polyesters. Angew. Chem. Int. Ed., 2017, 56(52), 16515-16520. doi:10.1002/anie.201707043http://dx.doi.org/10.1002/anie.201707043
Yang H. J.; Xu J. B.; Pispas S.; Zhang G. Z. Hybrid copolymerization of ε-caprolactone and methyl methacrylate. Macromolecules, 2012, 45(8), 3312-3317. doi:10.1021/ma300291qhttp://dx.doi.org/10.1021/ma300291q
Yang H. J.; Xu J. B.; Zhang G. Z. Hybrid copolymerization of cyclic and vinyl monomers. Sci. China Chem., 2013, 56(8), 1101-1104. doi:10.1007/s11426-013-4868-yhttp://dx.doi.org/10.1007/s11426-013-4868-y
Kanazawa A.; Kanaoka S.; Aoshima S. Concurrent cationic vinyl-addition and ring-opening copolymerization using B(C6F5)3 catalystas a: copolymerization of vinyl ethers and isobutylene oxide via crossover propagation reactions. J. Am. Chem. Soc., 2013, 135(25), 9330-9333.
Shirouchi T.; Kanazawa A.; Kanaoka S.; Aoshima S. Controlled cationic copolymerization of vinyl monomers and cyclic acetals via concurrent vinyl-addition and ring-opening mechanisms. Macromolecules, 2016, 49(19), 7184-7195. doi:10.1021/acs.macromol.6b01565http://dx.doi.org/10.1021/acs.macromol.6b01565
Maruyama K.; Kanazawa A.; Aoshima S. Controlled cationic copolymerization of vinyl monomers and cyclic acetals via concurrent vinyl-addition and ring-opening mechanisms: the systematic study of structural effects on the copolymerization behavior. Polym. Chem., 2019, 10(39), 5304-5314. doi:10.1039/c9py01024fhttp://dx.doi.org/10.1039/c9py01024f
Takebayashi K.; Kanazawa A.; Aoshima S. Cationic ring-opening copolymerization of cyclic acetals and 1,3-dioxolan-4-ones via the activated monomer mechanism and transacetalization reaction. Macromolecules, 2023, 56(14), 5524-5533. doi:10.1021/acs.macromol.3c00938http://dx.doi.org/10.1021/acs.macromol.3c00938
Nara T.; Kanazawa A.; Aoshima S. Alternating-like cationic copolymerization of styrene derivatives and benzaldehyde: precise synthesis of selectively degradable copoly(styrenes). Macromolecules, 2022, 55(15), 6852-6859. doi:10.1021/acs.macromol.2c01147http://dx.doi.org/10.1021/acs.macromol.2c01147
Zhang Z.; Xia L.; Zeng T. Y.; Wu D. C.; Zhang W. J.; Hong C. Y.; You Y. Z. Hybrid copolymerization via mechanism interconversion between radical vinyl-addition and anion ring-opening polymerization. Polym. Chem., 2019, 10(17), 2117-2125. doi:10.1039/c9py00230hhttp://dx.doi.org/10.1039/c9py00230h
Smith R. A.; Fu G. Y.; McAteer O.; Xu M. Z.; Gutekunst W. R. Radical approach to thioester-containing polymers. J. Am. Chem. Soc., 2019, 141(4), 1446-1451. doi:10.1021/jacs.8b12154http://dx.doi.org/10.1021/jacs.8b12154
Bingham N. M.; Roth P. J. Degradable vinyl copolymers through thiocarbonyl additio-ring-opening (TARO) polymerization. Chem. Commun., 2019, 55(1), 55-58. doi:10.1039/c8cc08287ahttp://dx.doi.org/10.1039/c8cc08287a
Bingham N. M.; Nisa Q. U.; Chua S. H. L.; Fontugne L.; Spick M. P.; Roth P. J. Thioester-functional polyacrylamides: rapid selective backbone degradation triggers solubility switch based on aqueous lower critical solution temperature/upper critical solution temperature. ACS Appl. Polym. Mater., 2020, 2(8), 3440-3449. doi:10.1021/acsapm.0c00503http://dx.doi.org/10.1021/acsapm.0c00503
Spick M. P.; Bingham N. M.; Li Y. M.; de Jesus J.; Costa C.; Bailey M. J.; Roth P. J. Fully degradable thioester-functional homo- and alternating copolymers prepared through thiocarbonyl addition-ring-opening RAFT radical polymerization. Macromolecules, 2020, 53(2), 539-547. doi:10.1021/acs.macromol.9b02497http://dx.doi.org/10.1021/acs.macromol.9b02497
Gil N.; Caron B.; Siri D.; Roche J.; Hadiouch S.; Khedaioui D.; Ranque S.; Cassagne C.; Montarnal D.; Gigmes D.; Lefay C.; Guillaneuf Y. Degradable polystyrene via the cleavable comonomer approach. Macromolecules, 2022, 55(15), 6680-6694. doi:10.1021/acs.macromol.2c00651http://dx.doi.org/10.1021/acs.macromol.2c00651
Zhang Z.; Xiong Y.; Yang P.; Li Y.; Tang R.; Nie X.; Chen G.; Wang L. H.; Hong C. Y.; You Y. Z. Easy access to diverse multiblock copolymers with on-demand blocks via thioester-relayed In-chain cascade copolymerization. Angew. Chem. Int. Ed., 2023, 62(15), e202216685. doi:10.1002/anie.202216685http://dx.doi.org/10.1002/anie.202216685
Spring S. W.; Cerione C. S.; Hsu J. H.; Shankel S. L.; Fors B. P. Scalable, green chain transfer agent for cationic RAFT polymerizations. Chin. J. Chem., 2023, 41(4), 399-404. doi:10.1002/cjoc.202200557http://dx.doi.org/10.1002/cjoc.202200557
Uchiyama M.; Satoh K.; Kamigaito M. Cationic RAFT and DT polymerization. Prog. Polym. Sci., 2022, 124, 101485. doi:10.1016/j.progpolymsci.2021.101485http://dx.doi.org/10.1016/j.progpolymsci.2021.101485
Yuan P. J.; Sun Y. Y.; Xu X. W.; Luo Y.; Hong M. Towards high-performance sustainable polymers via isomerization-driven irreversible ring-opening polymerization of five-membered thionolactones. Nat. Chem., 2022, 14(3), 294-303. doi:10.1038/s41557-021-00817-9http://dx.doi.org/10.1038/s41557-021-00817-9
Xia Y. L.; Yuan P. J.; Zhang Y. P.; Sun Y. Y.; Hong M. Converting non-strained γ-valerolactone and derivatives into sustainable polythioesters via isomerization-driven cationic ring-opening polymerization of thionolactone intermediate. Angew. Chem. Int. Ed, 2023, 62(14), e202217812. doi:10.1002/anie.202217812http://dx.doi.org/10.1002/anie.202217812
Uchiyama M.; Satoh K.; Kamigaito M. Cationic RAFT polymerization using ppm concentrations of organic acid. Angew. Chem. Int. Ed., 2015, 54(6), 1924-1928. doi:10.1002/anie.201410858http://dx.doi.org/10.1002/anie.201410858
0
浏览量
228
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构