浏览全部资源
扫码关注微信
1.天津大学,有机集成电路教育部重点实验室 天津市分子光电科学重点实验室 化学系,天津 300072
2.天津大学,化学化工协同创新中心,天津 300072
[ "王以轩,男,1988年生. 2010年毕业于南开大学化学学院化学系,2015年于南开大学获有机化学专业博士学位,师从刘育教授. 同年加入天津大学理学院化学系,现为化学系副主任、副教授. 期间于2018年赴美国斯坦福大学访学,合作导师为鲍哲南教授. 研究方向聚焦超分子/高分子可拉伸光电材料与人机交互功能器件. 以第一/通讯作者在Science,Nature等期刊发表多篇论文,主持科技部重点研发计划课题、基金委面上项目等科研项目,拥有授权发明专利7项." ]
[ "胡文平,男,1970年生. 1993年毕业于湖南大学化学化工系,1996年在中国科学院金属研究所(原金属腐蚀与防护研究所)获硕士学位,1999年在中国科学院化学研究所获得博士学位. 后赴日本、德国开展研究工作,2003年回到中国科学院化学研究所工作,2013年至天津大学工作. 主要研究方向为有机薄膜场效应晶体管及新型集成电路的研究. 编有《有机场效应晶体管》和Organic Optoelectronics等专著,现任SmartMat主编. 2007年获国家杰出青年科学基金资助,2014年获聘教育部“长江学者”特聘教授. 以第一获奖人获国家自然科学二等奖、全国创新争先奖、天津市自然科学特等奖、天津市自然科学一等奖等荣誉. 主持了国家重点研发计划、基金委重大研究计划集成项目、基金委重点项目、基金委创新研究群体等多项国家级重大科研项目." ]
纸质出版日期:2024-06-20,
网络出版日期:2024-03-29,
收稿日期:2024-01-08,
录用日期:2024-02-08
移动端阅览
李松壕, 孙明源, 魏子翔, 王以轩, 胡文平. 用于人机交互设备的本征可拉伸功能器件和高分子材料. 高分子学报, 2024, 55(6), 637-654
Li, S. H.; Sun, M. Y.; Wei, Z. X.; Wang, Y. X.; Hu, W. P. Intrinsically stretchable functional devices and polymer materials for human-machine interface. Acta Polymerica Sinica, 2024, 55(6), 637-654
李松壕, 孙明源, 魏子翔, 王以轩, 胡文平. 用于人机交互设备的本征可拉伸功能器件和高分子材料. 高分子学报, 2024, 55(6), 637-654 DOI: 10.11777/j.issn1000-3304.2024.24004.
Li, S. H.; Sun, M. Y.; Wei, Z. X.; Wang, Y. X.; Hu, W. P. Intrinsically stretchable functional devices and polymer materials for human-machine interface. Acta Polymerica Sinica, 2024, 55(6), 637-654 DOI: 10.11777/j.issn1000-3304.2024.24004.
在物联网飞速发展的智能时代,高分子光电材料具有更低的杨氏模量和更好的本征拉伸性,成为人机交互设备的理想选择. 本文从平衡高分子光电材料电学(载流子传输需求)和力学(可拉伸需求)性能这一难点出发,根据可拉伸器件在人机交互中的应用功能,总结了供能、传感、神经接口和显示等功能模块材料/器件方面的创新性成果,分析了各功能器件及多功能集成面临的共性问题,并展望了智能人机交互系统的发展前景. 介绍了本征可拉伸功能器件包括有机太阳能电池(OSCs)、有机热电器件(
o
TEGs)、离子电池、纳米发电机(NGs)和超级电容器(SCs),有机光电探测器(OPDs)、化学传感器和热传感器,多模态阵列电极(MEAs)和有机电化学晶体管(OECTs),有机电化学发光器件(OLECs)、有机电致变色显示器(OECDs)和有机发光二极管(OLEDs),有机场效应晶体管(OFETs)和多功能集成系统等. 分析表明,可拉伸高分子光电材料的光电性能进一步提升和各功能层间的动态稳定界面,是未来研究重点.
Today is an intelligent era with the rapid development of the Internet of Things (IoT)
and novel human-machine interface (HMI) devices will greatly change people's lives. Devices based on silicon/metal materials can hardly meet the requirements of seamless integration for the long-term and stable interface
while optoelectronic polymer materials are becoming an ideal choice due to their lower Young's modulus and better intrinsic tensile properties. However
there are still challenges to achieving both efficient carrier transport and sufficient ductility in material design. This feature article discusses the innovations in devices for power supply
sensing
neural interface
display
and integrated HMI systems. It then analyzes the bottlenecks faced in terms of materials
devices
and integration. We also provide an outlook on the applications and prospects for HMI technologies. These devices include intrinsically stretchable organic solar cells (OSCs)
organic thermoelectric generators (
o
TEGs)
ion batteries
nanogenerators (NGs) and supercapacitors (SCs). They are ideal off-grid power sources for human-machine interface devices. Additionally
there are intrinsically stretchable organic photodetectors (OPDs)
chemosensors
and thermosensors
which are ideal for light
chemical
and thermal sensing devices. Furthermore
there are intrinsically stretchable polymer multielectrodes arrays (MEAs) and organic electrochemical transistors (OECTs)
which are ideal for detecting and transmitting electrical and electrophysiolo
gical signals
respectively. Then there are integrated display devices with excellent performance
including organic light-emitting electrochemical cells (OLECs/OLEECs)
organic electrochromic displays (OECDs)
organic light-emitting diodes (OLEDs). Finaly
there are organic field effect transistors (OFETs)
which are the basic components of organic integrated circuits. It shows that enhancement of the optoelectronic performance of stretchable conjugated polymers
and reliable interfaces between functional layers are the focus of future studies.
人机交互高分子光电材料光电器件本征可拉伸
Human-machine interfaceOptoelectronic polymer materialsOptoelectronic devicesIntrinsic stretchability
Zhang Y. Y.; Zhang T. Y.; Huang Z. D.; Yang J. A new class of electronic devices based on flexible porous substrates. Adv. Sci., 2022, 9(7), e2105084. doi:10.1002/advs.202105084http://dx.doi.org/10.1002/advs.202105084
Park S.; Heo S. W.; Lee W.; Inoue D.; Jiang Z.; Yu K.; Jinno H.; Hashizume D.; Sekino M.; Yokota T.; Fukuda K.; Tajima K.; Someya T. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature, 2018, 561(7724), 516-521. doi:10.1038/s41586-018-0536-xhttp://dx.doi.org/10.1038/s41586-018-0536-x
盛兴, 赵汶鑫, 李丽珠, 黄云翔, 丁贺. 脑机接口技术的基础研究: 神经元与二极管. 中国激光, 2023, 50(9), 181-192. doi:10.3788/CJL221562http://dx.doi.org/10.3788/CJL221562
Dai Y. H.; Hu H. W.; Wang M.; Xu J.; Wang S. H. Stretchable transistors and functional circuits for human-integrated electronics. Nat. Electron., 2021, 4, 17-29. doi:10.1038/s41928-020-00513-5http://dx.doi.org/10.1038/s41928-020-00513-5
Chen R.; Canales A.; Anikeeva P. Neural recording and modulation technologies. Nat. Rev. Mater., 2017, 2(2), 16093. doi:10.1038/natrevmats.2016.93http://dx.doi.org/10.1038/natrevmats.2016.93
Park J. S.; Kim G. U.; Lee S.; Lee J. W.; Li S.; Lee J. Y.; Kim B. J. Material design and device fabrication strategies for stretchable organic solar cells. Adv. Mater., 2022, 34(31), 2201623. doi:10.1002/adma.202270230http://dx.doi.org/10.1002/adma.202270230
Zheng X. J.; Zuo L. J.; Yan K. R.; Shan S. Q.; Chen T. Y.; Ding G. Y.; Xu B. W.; Yang X.; Hou J. H.; Shi M. M.; Chen H. Z. Versatile organic photovoltaics with a power density of nearly 40 W·g-1. Energy Environ. Sci., 2023, 16(5), 2284-2294. doi:10.1039/d3ee00087ghttp://dx.doi.org/10.1039/d3ee00087g
Qin F.; Wang W.; Sun L. L.; Jiang X. S.; Hu L.; Xiong S. X.; Liu T. F.; Dong X. Y.; Li J.; Jiang Y. Y.; Hou J. H.; Fukuda K.; Someya T.; Zhou Y. H. Robust metal ion-chelated polymer interfacial layer for ultraflexible non-fullerene organic solar cells. Nat. Commun., 2020, 11(1), 4508. doi:10.1038/s41467-020-18373-0http://dx.doi.org/10.1038/s41467-020-18373-0
Sun Y. N.; Chang M. J.; Meng L. X.; Wan X. J.; Gao H. H.; Zhang Y. M.; Zhao K.; Sun Z. H.; Li C. X.; Liu S. R.; Wang H. K.; Liang J. J.; Chen Y. S. Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat. Electron., 2019, 2, 513-520. doi:10.1038/s41928-019-0315-1http://dx.doi.org/10.1038/s41928-019-0315-1
Zeng G.; Chen W. J.; Chen X. B.; Hu Y.; Chen Y.; Zhang B.; Chen H. Y.; Sun W. W.; Shen Y. X.; Li Y. W.; Yan F.; Li Y. F. Realizing 17.5% efficiency flexible organic solar cells via atomic-level chemical welding of silver nanowire electrodes. J. Am. Chem. Soc., 2022, 144(19), 8658-8668. doi:10.1021/jacs.2c01503http://dx.doi.org/10.1021/jacs.2c01503
Chen Z. Y.; Zhu J. T.; Yang D. B.; Song W.; Shi J. Y.; Ge J. F.; Guo Y. T.; Tong X. Y.; Chen F.; Ge Z. Y. Isomerization strategy on a non-fullerene guest acceptor for stable organic solar cells with over 19% efficiency. Energy Environ. Sci., 2023, 16(7), 3119-3127. doi:10.1039/d3ee01164jhttp://dx.doi.org/10.1039/d3ee01164j
Li S. M.; Gao M. Y.; Zhou K. K.; Li X.; Xian K. H.; Zhao W. C.; Chen Y.; He C. Y.; Ye L. Achieving record-high stretchability and mechanical stability in organic photovoltaic blends with a dilute-absorber strategy. Adv. Mater., 2024, 36(8), e2307278. doi:10.1002/adma.202307278http://dx.doi.org/10.1002/adma.202307278
Lee S.; Jeon Y.; Lee S. Y.; Ma B. S.; Song M.; Jeong D.; Jo J.; Kim G. U.; Lee J.; Kim T. S.; Kim B. J.; Lee J. Y. Intrinsically stretchable organic solar cells without cracks under 40% strain. Adv. Energy Mater., 2023, 13(30), 2300533. doi:10.1002/aenm.202300533http://dx.doi.org/10.1002/aenm.202300533
Wan Q. P.; Seo S.; Lee S. W.; Lee J.; Jeon H.; Kim T. S.; Kim B. J.; Thompson B. C. High-performance intrinsically stretchable polymer solar cell with record efficiency and stretchability enabled by thymine-functionalized terpolymer. J. Am. Chem. Soc., 2023, 145(22), 11914-11920. doi:10.1021/jacs.3c02764http://dx.doi.org/10.1021/jacs.3c02764
Zheng X. J.; Wu X. L.; Wu Q.; Han Y. F.; Ding G. Y.; Wang Y. M.; Kong Y. B.; Chen T. Y.; Wang M. T.; Zhang Y. Q.; Xue J. W.; Fu W. F.; Luo Q.; Ma C. Q.; Ma W.; Zuo L. J.; Shi M. M.; Chen H. Z. Thorough optimization for intrinsically stretchable organic photovoltaics. Adv. Mater., 2024, 36(11), 2307280. doi:10.1002/adma.202307280http://dx.doi.org/10.1002/adma.202307280
Kazem N.; Hellebrekers T.; Majidi C. Soft multifunctional composites and emulsions with liquid metals. Adv. Mater., 2017, 29(27), 1605985. doi:10.1002/adma.201605985http://dx.doi.org/10.1002/adma.201605985
Lipomi D. J.; Tee B. C. K.; Vosgueritchian M.; Bao Z. N. Stretchable organic solar cells. Adv. Mater., 2011, 23(15), 1771-1775. doi:10.1002/adma.201004426http://dx.doi.org/10.1002/adma.201004426
Ouyang J. Y. Application of intrinsically conducting polymers in flexible electronics. SmartMat, 2021, 2(3), 263-285. doi:10.1002/smm2.1059http://dx.doi.org/10.1002/smm2.1059
Yang Y.; Hu H. J.; Chen Z. Y.; Wang Z. Y.; Jiang L. M.; Lu G. X.; Li X. J.; Chen R. M.; Jin J.; Kang H. C.; Chen H. X.; Lin S.; Xiao S. Q.; Zhao H. Y.; Xiong R.; Shi J.; Zhou Q. F.; Xu S.; Chen Y. Stretchable nanolayered thermoelectric energy harvester on complex and dynamic surfaces. Nano Lett., 2020, 20(6), 4445-4453. doi:10.1021/acs.nanolett.0c01225http://dx.doi.org/10.1021/acs.nanolett.0c01225
Hao Y. N.; He X. Y.; Wang L. M.; Qin X. H.; Chen G. M.; Yu J. Y. Stretchable thermoelectrics: strategies, performances, and applications. Adv. Funct. Mater., 2022, 32(13), 2109790. doi:10.1002/adfm.202109790http://dx.doi.org/10.1002/adfm.202109790
Kim N.; Lienemann S.; Petsagkourakis I.; Alemu Mengistie D.; Kee S.; Ederth T.; Gueskine V.; Leclère P.; Lazzaroni R.; Crispin X.; Tybrandt K. Elastic conducting polymer composites in thermoelectric modules. Nat. Commun., 2020, 11, 1424. doi:10.1038/s41467-020-15135-whttp://dx.doi.org/10.1038/s41467-020-15135-w
Yao H. Y.; Fan Z.; Cheng H. L.; Guan X.; Wang C.; Sun K.; Ouyang J. Y. Recent development of thermoelectric polymers and composites. Macromol. Rapid Commun., 2018, 39(6), e1700727. doi:10.1002/marc.201700727http://dx.doi.org/10.1002/marc.201700727
Deng S. H.; Kuang Y. Z.; Liu L. Y.; Liu X. Y.; Liu J.; Li J. Y.; Meng B.; Di C. A.; Hu J. L.; Liu J. High-performance and ecofriendly organic thermoelectrics enabled by N-type polythiophene derivatives with doping-induced molecular order. Adv. Mater., 2024, 36(8), e2309679. doi:10.1002/adma.202309679http://dx.doi.org/10.1002/adma.202309679
Zhang X.; Ding J. M.; Wang D. Y.; Dai X. J.; Ma Y. Q.; Zhao Y.; Guan B.; Liu L. Y.; Zou Y.; Zhang F. J.; Di C. A. Waterborne paints based on polymeric semiconductor for attachable thermoelectric generators. Small Struct., 2023, 4(2), 2200278. doi:10.1002/sstr.202200278http://dx.doi.org/10.1002/sstr.202200278
Mackanic D. G.; Yan X. Z.; Zhang Q. H.; Matsuhisa N.; Yu Z. A.; Jiang Y. W.; Manika T.; Lopez J.; Yan H. P.; Liu K.; Chen X. D.; Cui Y.; Bao Z. N. Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nat. Commun., 2019, 10(1), 5384. doi:10.1038/s41467-019-13362-4http://dx.doi.org/10.1038/s41467-019-13362-4
Wang Z. L. On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today, 2017, 20(2), 74-82. doi:10.1016/j.mattod.2016.12.001http://dx.doi.org/10.1016/j.mattod.2016.12.001
Dong K.; Peng X.; Wang Z. L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater., 2020, 32(5), e1902549. doi:10.1002/adma.201902549http://dx.doi.org/10.1002/adma.201902549
Wang Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 2013, 7(11), 9533-9557. doi:10.1021/nn404614zhttp://dx.doi.org/10.1021/nn404614z
Wang Z. L.; Song J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312(5771), 242-246. doi:10.1126/science.1124005http://dx.doi.org/10.1126/science.1124005
Fan F. R.; Tian Z. Q.; Wang Z. L. Flexible triboelectric generator. Nano Energy, 2012, 1(2), 328-334. doi:10.1016/j.nanoen.2012.01.004http://dx.doi.org/10.1016/j.nanoen.2012.01.004
Lai Y. C.; Deng J. N.; Niu S. M.; Peng W. B.; Wu C. S.; Liu R. Y.; Wen Z.; Wang Z. L. Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator for deformable power source and fully autonomous conformable electronic-skin applications. Adv. Mater., 2016, 28(45), 10024-10032. doi:10.1002/adma.201603527http://dx.doi.org/10.1002/adma.201603527
Huang Y.; Zhong M.; Shi F. K.; Liu X. Y.; Tang Z. J.; Wang Y. K.; Huang Y.; Hou H. Q.; Xie X. M.; Zhi C. Y. An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte. Angew. Chem. Int. Ed., 2017, 56(31), 9141-9145. doi:10.1002/anie.201705212http://dx.doi.org/10.1002/anie.201705212
Zhao Y.; Chen S.; Hu J.; Yu J. L.; Feng G. C.; Yang B.; Li C. H.; Zhao N.; Zhu C. Z.; Xu J. Microgel-enhanced double network hydrogel electrode with high conductivity and stability for intrinsically stretchable and flexible all-gel-state supercapacitor. ACS Appl. Mater. Interfaces, 2018, 10(23), 19323-19330. doi:10.1021/acsami.8b05224http://dx.doi.org/10.1021/acsami.8b05224
Wang X.; Yang C. Y.; Jin J.; Li X. W.; Cheng Q. L.; Wang G. C. High-performance stretchable supercapacitors based on intrinsically stretchable acrylate rubber/MWCNTs@conductive polymer composite electrodes. J. Mater. Chem. A, 2018, 6(10), 4432-4442. doi:10.1039/c7ta11173hhttp://dx.doi.org/10.1039/c7ta11173h
Chen C. R.; Qin H. L.; Cong H. P.; Yu S. H. A highly stretchable and real-time healable supercapacitor. Adv. Mater., 2019, 31(19), e1900573. doi:10.1002/adma.201900573http://dx.doi.org/10.1002/adma.201900573
Chen F.; Li Y. M.; Chen Y.; Wang Y. X.; Hu W. P. Supramolecular interface decoration on a polymer conductor for an intrinsically stretchable near-infrared photodiode. Chem. Commun., 2023, 59(80), 11975-11978. doi:10.1039/d3cc04189ahttp://dx.doi.org/10.1039/d3cc04189a
Kang H.; Lee Y.; Lee G. H.; Chung J. W.; Kwon Y. N.; Kim J. Y.; Kuzumoto Y.; Gam S.; Kang S. G.; Jung J. Y.; Choi A.; Yun Y. Strain-tolerant, high-detectivity, and intrinsically stretchable all-polymer photodiodes. Adv. Funct. Mater., 2023, 33(13), 2212219. doi:10.1002/adfm.202212219http://dx.doi.org/10.1002/adfm.202212219
Park Y.; Fuentes-Hernandez C.; Kim K.; Chou W. F.; Larrain F. A.; Graham S.; Pierron O. N.; Kippelen B. Skin-like low-noise elastomeric organic photodiodes. Sci. Adv., 2021, 7(51), eabj6565. doi:10.1126/sciadv.abj6565http://dx.doi.org/10.1126/sciadv.abj6565
Li J. X.; Liu Y. X.; Yuan L.; Zhang B. B.; Bishop E. S.; Wang K. C.; Tang J.; Zheng Y. Q.; Xu W. H.; Niu S. M.; Beker L.; Li T. L.; Chen G.; Diyaolu M.; Thomas A. L.; Mottini V.; Tok J. B. H.; Dunn J. C. Y.; Cui B. X.; Pașca S. P.; Cui Y.; Habtezion A.; Chen X. K.; Bao Z. N. A tissue-like neurotransmitter sensor for the brain and gut. Nature, 2022, 606(7912), 94-101. doi:10.1038/s41586-022-04615-2http://dx.doi.org/10.1038/s41586-022-04615-2
Zhao G. D.; Sun J.; Zhang M. X.; Guo S. L.; Wang X.; Li J. T.; Tong Y. H.; Zhao X. L.; Tang Q. X.; Liu Y. C. Highly strain-stable intrinsically stretchable olfactory sensors for imperceptible health monitoring. Adv. Sci., 2023, 10(29), e2302974. doi:10.1002/advs.202302974http://dx.doi.org/10.1002/advs.202302974
Zhang F. J.; Zang Y. P.; Huang D. Z.; Di C. A.; Zhu D. B. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun., 2015, 6, 8356. doi:10.1038/ncomms9356http://dx.doi.org/10.1038/ncomms9356
Zhu C. X.; Chortos A.; Wang Y.; Pfattner R.; Lei T.; Hinckley A. C.; Pochorovski I.; Yan X. Z.; To J. W. F.; Oh J. Y.; Tok J. B. H.; Bao Z. N.; Murmann B. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron., 2018, 1, 183-190. doi:10.1038/s41928-018-0041-0http://dx.doi.org/10.1038/s41928-018-0041-0
Yan C. Y.; Wang J. X.; Lee P. S. Stretchable graphene thermistor with tunable thermal index. ACS Nano, 2015, 9(2), 2130-2137. doi:10.1021/nn507441chttp://dx.doi.org/10.1021/nn507441c
Trung T. Q.; Ramasundaram S.; Hwang B. U.; Lee N. E. An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater., 2016, 28(3), 502-509. doi:10.1002/adma.201504441http://dx.doi.org/10.1002/adma.201504441
Du X. J.; Yang L. Y.; Liu N. Recent progress on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) bioelectrodes. Small Sci., 2023, 3(7), 2300008. doi:10.1002/smsc.202300008http://dx.doi.org/10.1002/smsc.202300008
Yang S. J.; Cheng J. H.; Shang J.; Hang C.; Qi J.; Zhong L. N.; Rao Q. Y.; He L.; Liu C. Q.; Ding L.; Zhang M. M.; Chakrabarty S.; Jiang X. Y. Stretchable surface electromyography electrode array patch for tendon location and muscle injury prevention. Nat. Commun., 2023, 14(1), 6494. doi:10.1038/s41467-023-42149-xhttp://dx.doi.org/10.1038/s41467-023-42149-x
Kabiri Ameri S.; Ho R.; Jang H.; Tao L.; Wang Y. H.; Wang L.; Schnyer D. M.; Akinwande D.; Lu N. S. Graphene electronic tattoo sensors. ACS Nano, 2017, 11(8), 7634-7641. doi:10.1021/acsnano.7b02182http://dx.doi.org/10.1021/acsnano.7b02182
Wang Y.; Zhu C. X.; Pfattner R.; Yan H. P.; Jin L. H.; Chen S. C.; Molina-Lopez F.; Lissel F.; Liu J.; Rabiah N. I.; Chen Z.; Chung J. W.; Linder C.; Toney M. F.; Murmann B.; Bao Z. N. A highly stretchable, transparent, and conductive polymer. Sci. Adv., 2017, 3(3), e1602076. doi:10.1126/sciadv.1602076http://dx.doi.org/10.1126/sciadv.1602076
Gao D. C.; Parida K.; Lee P. S. Emerging soft conductors for bioelectronic interfaces. Adv. Funct. Mater., 2020, 30(29), 1907184. doi:10.1002/adfm.201907184http://dx.doi.org/10.1002/adfm.201907184
Cea C.; Spyropoulos G. D.; Jastrzebska-Perfect P.; Ferrero J. J.; Gelinas J. N.; Khodagholy D. Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nat. Mater., 2020, 19(6), 679-686. doi:10.1038/s41563-020-0638-3http://dx.doi.org/10.1038/s41563-020-0638-3
Guo L.; Ma M. M.; Zhang N.; Langer R.; Anderson D. G. Stretchable polymeric multielectrode array for conformal neural interfacing. Adv. Mater., 2014, 26(9), 1427-1433. doi:10.1002/adma.201304140http://dx.doi.org/10.1002/adma.201304140
Shi H.; Liu C. C.; Jiang Q. L.; Xu J. K. Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review. Adv. Electron. Mater., 2015, 1(4), 1500017. doi:10.1002/aelm.201500017http://dx.doi.org/10.1002/aelm.201500017
Fan X.; Nie W. Y.; Tsai H.; Wang N. X.; Huang H. H.; Cheng Y. J.; Wen R. J.; Ma L. J.; Yan F.; Xia Y. G. PEDOT: PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv. Sci., 2019, 6(19), 1900813. doi:10.1002/advs.201900813http://dx.doi.org/10.1002/advs.201900813
Wen Y. P.; Xu J. K. Scientific importance of water-processable PEDOT-PSS and preparation, challenge and new application in sensors of its film electrode: a review. J. Polym. Sci. Part A Polym. Chem., 2017, 55(7), 1121-1150. doi:10.1002/pola.28482http://dx.doi.org/10.1002/pola.28482
Jiang Y. W.; Zhang Z. T.; Wang Y. X.; Li D. L.; Coen C. T.; Hwaun E.; Chen G.; Wu H. C.; Zhong D. L.; Niu S. M.; Wang W. C.; Saberi A.; Lai J. C.; Wu Y. L.; Wang Y.; Trotsyuk A. A.; Loh K. Y.; Shih C. C.; Xu W. H.; Liang K.; Zhang K. L.; Bai Y. H.; Gurusankar G.; Hu W. P.; Jia W.; Cheng Z.; Dauskardt R. H.; Gurtner G. C.; Tok J. B. H.; Deisseroth K.; Soltesz I.; Bao Z. N. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science, 2022, 375(6587), 1411-1417. doi:10.1126/science.abj7564http://dx.doi.org/10.1126/science.abj7564
Zhou W.; Jiang Y. W.; Xu Q.; Chen L. P.; Qiao H.; Wang Y. X.; Lai J. C.; Zhong D. L.; Zhang Y.; Li W. N.; Du Y. R.; Wang X. C.; Lei J. X.; Dong G. H.; Guan X. D.; Ma S. C.; Kang P.; Yuan L. H.; Zhang M. L.; Tok J. B. H.; Li D. L.; Bao Z. N.; Jia W. Soft and stretchable organic bioelectronics for continuous intraoperative neurophysiological monitoring during microsurgery. Nat. Biomed. Eng., 2023, 7(10), 1270-1281. doi:10.1038/s41551-023-01069-3http://dx.doi.org/10.1038/s41551-023-01069-3
Chen Y.; Chen L. P.; Geng B. W.; Chen F.; Yuan Y.; Li D. L.; Wang Y. X.; Jia W.; Hu W. P. Triple-network-based conductive polymer hydrogel for soft and elastic bioelectronic interfaces. SmartMat, 2023, e1229. doi:10.1002/smm2.1229http://dx.doi.org/10.1002/smm2.1229
Yuk H.; Lu B. Y.; Lin S.; Qu K.; Xu J. K.; Luo J. H.; Zhao X. H. 3D printing of conducting polymers. Nat. Commun., 2020, 11(1), 1604. doi:10.1038/s41467-020-15316-7http://dx.doi.org/10.1038/s41467-020-15316-7
Lei Y. Q.; Li P. Y.; Zheng Y. T.; Lei T. Materials design and applications of n-type and ambipolar organic electrochemical transistors. Mater. Chem. Front., 2024, 8(1), 133-158. doi:10.1039/d3qm00828bhttp://dx.doi.org/10.1039/d3qm00828b
Yang A. N.; Song J. J.; Liu H.; Zhao Z. Y.; Li L.; Yan F. Wearable organic electrochemical transistor array for skin-surface electrocardiogram mapping above a human heart. Adv. Funct. Mater., 2023, 33(17), 2215037. doi:10.1002/adfm.202215037http://dx.doi.org/10.1002/adfm.202215037
Lee W.; Kobayashi S.; Nagase M.; Jimbo Y.; Saito I.; Inoue Y.; Yambe T.; Sekino M.; Malliaras G. G.; Yokota T.; Tanaka M.; Someya T. Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Sci. Adv., 2018, 4(10), eaau2426. doi:10.1126/sciadv.aau2426http://dx.doi.org/10.1126/sciadv.aau2426
Chen J. H.; Huang W.; Zheng D.; Xie Z. Q.; Zhuang X. M.; Zhao D.; Chen Y.; Su N.; Chen H. M.; Pankow R. M.; Gao Z.; Yu J. S.; Guo X. G.; Cheng Y. H.; Strzalka J.; Yu X. G.; Marks T. J.; Facchetti A. Highly stretchable organic electrochemical transistors with strain-resistant performance. Nat. Mater., 2022, 21(5), 564-571. doi:10.1038/s41563-022-01239-9http://dx.doi.org/10.1038/s41563-022-01239-9
Dai Y. H.; Dai S. L.; Li N.; Li Y.; Moser M.; Strzalka J.; Prominski A.; Liu Y. D.; Zhang Q. T.; Li S. S.; Hu H. W.; Liu W.; Chatterji S.; Cheng P.; Tian B. Z.; McCulloch I.; Xu J.; Wang S. H. Stretchable redox-active semiconducting polymers for high-performance organic electrochemical transistors. Adv. Mater., 2022, 34(23), e2201178. doi:10.1002/adma.202201178http://dx.doi.org/10.1002/adma.202201178
Liu D. Y.; Tian X. Y.; Bai J.; Wang Y.; Cheng Y. X.; Ning W. J.; Chan P. K. L.; Wu K.; Sun J. Q.; Zhang S. M. Intrinsically stretchable organic electrochemical transistors with rigid-device-benchmarkable performance. Adv. Sci., 2022, 9(29), 2203418. doi:10.1002/advs.202270189http://dx.doi.org/10.1002/advs.202270189
Liu Y. W.; Zhu M. L.; Sun J. Z.; Shi W. K.; Zhao Z. Y.; Wei X. F.; Huang X.; Guo Y. L.; Liu Y. Q. A self-assembled 3D penetrating nanonetwork for high-performance intrinsically stretchable polymer light-emitting diodes. Adv. Mater., 2022, 34(27), e2201844. doi:10.1002/adma.202201844http://dx.doi.org/10.1002/adma.202201844
Zhang Z. T.; Wang W. C.; Jiang Y. W.; Wang Y. X.; Wu Y. L.; Lai J. C.; Niu S. M.; Xu C. Y.; Shih C. C.; Wang C.; Yan H. P.; Galuska L.; Prine N.; Wu H. C.; Zhong D. L.; Chen G.; Matsuhisa N.; Zheng Y.; Yu Z. A.; Wang Y.; Dauskardt R.; Gu X. D.; Tok J. B. H.; Bao Z. N. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature, 2022, 603(7902), 624-630. doi:10.1038/s41586-022-04400-1http://dx.doi.org/10.1038/s41586-022-04400-1
Filiatrault H. L.; Porteous G. C.; Carmichael R. S.; Davidson G. J. E.; Carmichael T. B. Stretchable light-emitting electrochemical cells using an elastomeric emissive material. Adv. Mater., 2012, 24(20), 2673-2678. doi:10.1002/adma.201200448http://dx.doi.org/10.1002/adma.201200448
Pei Q.; Yu G.; Zhang C.; Yang Y.; Heeger A. J. Polymer light-emitting electrochemical cells. Science, 1995, 269(5227), 1086-1088. doi:10.1126/science.269.5227.1086http://dx.doi.org/10.1126/science.269.5227.1086
Yu Z. B.; Li L.; Gao H. E.; Pei Q. B. Polymer light-emitting electrochemical cells: Recent developments to stabilize the p-i-n junction and explore novel device applications. Sci. China Chem., 2013, 56(8), 1075-1086. doi:10.1007/s11426-013-4882-0http://dx.doi.org/10.1007/s11426-013-4882-0
Wang J. X.; Lee P. S. Progress and prospects in stretchable electroluminescent devices. Nanophotonics, 2017, 6(2), 435-451. doi:10.1515/nanoph-2016-0002http://dx.doi.org/10.1515/nanoph-2016-0002
Gao H. E.; Chen S.; Liang J. J.; Pei Q. B. Elastomeric light emitting polymer enhanced by interpenetrating networks. ACS Appl. Mater. Interfaces, 2016, 8(47), 32504-32511. doi:10.1021/acsami.6b10447http://dx.doi.org/10.1021/acsami.6b10447
Liu J.; Wang J. C.; Zhang Z. T.; Molina-Lopez F.; Wang G.J N.; Schroeder B. C.; Yan X. Z.; Zeng Y. T.; Zhao O.; Tran H.; Lei T.; Lu Y.; Wang Y. X.; Tok J. B. H.; Dauskardt R.; Chung J. W.; Yun Y.; Bao Z. N.Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat. Commun., 2020, 11(1), 3362. doi:10.1038/s41467-020-17084-whttp://dx.doi.org/10.1038/s41467-020-17084-w
Wang Z.; Wang X. Y.; Cong S.; Geng F. X.; Zhao Z. G. Fusing electrochromic technology with other advanced technologies: A new roadmap for future development. Mater. Sci. Eng. R Rep., 2020, 140, 100524. doi:10.1016/j.mser.2019.100524http://dx.doi.org/10.1016/j.mser.2019.100524
Gu C.; Jia A. B.; Zhang Y. M.; Zhang S. X. A. Emerging electrochromic materials and devices for future displays. Chem. Rev., 2022, 122(18), 14679-14721. doi:10.1021/acs.chemrev.1c01055http://dx.doi.org/10.1021/acs.chemrev.1c01055
Bai Y. H.; Li W. Z.; Tie Y.; Kou Y.; Wang Y. X.; Hu W. P. A stretchable polymer conductor through the mutual plasticization effect. Adv. Mater., 2023, 35(38), e2303245. doi:10.1002/adma.202303245http://dx.doi.org/10.1002/adma.202303245
Yin L.; Cao M. Z.; Kim K. N.; Lin M. Y.; Moon J. M.; Sempionatto J. R.; Yu J. L.; Liu R. X.; Wicker C.; Trifonov A.; Zhang F. Y.; Hu H. J.; Moreto J. R.; Go J.; Xu S.; Wang J. A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nat. Electron., 2022, 5, 694-705. doi:10.1038/s41928-022-00843-6http://dx.doi.org/10.1038/s41928-022-00843-6
Bian Y. S.; Liu K.; Guo Y. L.; Liu Y. Q. Research progress in functional stretchable organic electronic devices. Acta Chim. Sinica, 2020, 78(9), 848. doi:10.6023/a20050197http://dx.doi.org/10.6023/a20050197
Jao C. C.; Chang J. R.; Ya C. Y.; Chen W. C.; Cho C. J.; Lin J. H.; Chiu Y. C.; Zhou Y.; Kuo C. C. Novel stretchable light-emitting diodes based on conjugated-rod block elastic-coil copolymers. Polym. Int., 2021, 70(4), 426-431. doi:10.1002/pi.6023http://dx.doi.org/10.1002/pi.6023
Au-Duong A. N.; Wu C. C.; Li Y. T.; Huang Y. S.; Cai H. Y.; Hai I. J.; Cheng Y. H.; Hu C. C.; Lai J. Y.; Kuo C. C.; Chiu Y. C. Synthetic concept of intrinsically elastic luminescent polyfluorene-based copolymers via RAFT polymerization. Macromolecules, 2020, 53(10), 4030-4037. doi:10.1021/acs.macromol.0c00428http://dx.doi.org/10.1021/acs.macromol.0c00428
Ni M. J.; An X.; Bai L. B.; Wang K.; Cai J. L.; Wang S. J.; He L. L.; Xu M.; Liu H. Y.; Lin J. Y.; Ding X. H.; Yin C. R.; Huang W. Intrinsically stretchable and stable ultra-deep-blue fluorene-based polymer with a high emission efficiency of ≈90% for polymer light-emitting devices with a CIEy = 0.06. Adv. Funct. Mater., 2022, 32(5), 2106564. doi:10.1002/adfm.202106564http://dx.doi.org/10.1002/adfm.202106564
Liu W.; Zhang C.; Alessandri R.; Diroll B. T.; Li Y.; Liang H. Y.; Fan X. C.; Wang K.; Cho H.; Liu Y. D.; Dai Y. H.; Su Q.; Li N.; Li S. S.; Wai S.; Li Q.; Shao S. Y.; Wang L. X.; Xu J.; Zhang X. H.; Talapin D. V.; de Pablo J. J.; Wang S. H. High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence. Nat. Mater., 2023, 22(6), 737-745. doi:10.1038/s41563-023-01529-whttp://dx.doi.org/10.1038/s41563-023-01529-w
Li H.; Shi W.; Song J.; Jang H. J.; Dailey J.; Yu J. S.; Katz H. E. Chemical and biomolecule sensing with organic field-effect transistors. Chem. Rev., 2019, 119(1), 3-35. doi:10.1021/acs.chemrev.8b00016http://dx.doi.org/10.1021/acs.chemrev.8b00016
Fu B. B.; Yang F. X.; Sun L. J.; Zhao Q.; Ji D. Y.; Sun Y. J.; Zhang X. T.; Hu W. P. Challenging bendable organic single crystal and transistor arrays with high mobility and durability toward flexible electronics. Adv. Mater., 2022, 34(39), e2203330. doi:10.1002/adma.202270274http://dx.doi.org/10.1002/adma.202270274
Bian Y. S.; Liu Y. Q.; Guo Y. L. Intrinsically stretchable organic optoelectronic devices and arrays: progress and perspective. Sci. Bull., 2023, 68(10), 975-980. doi:10.1016/j.scib.2023.04.035http://dx.doi.org/10.1016/j.scib.2023.04.035
Zheng Y.; Zhang S.; Tok J. B. H.; Bao Z. N. Molecular design of stretchable polymer semiconductors: current progress and future directions. J. Am. Chem. Soc., 2022, 144(11), 4699-4715. doi:10.1021/jacs.2c00072http://dx.doi.org/10.1021/jacs.2c00072
Tien H. C.; Huang Y. W.; Chiu Y. C.; Cheng Y. H.; Chueh C. C.; Lee W. Y. Intrinsically stretchable polymer semiconductors: molecular design, processing and device applications. J. Mater. Chem. C, 2021, 9(8), 2660-2684. doi:10.1039/d0tc06059chttp://dx.doi.org/10.1039/d0tc06059c
Dimov I. B.; Moser M.; Malliaras G. G.; McCulloch I. Semiconducting polymers for neural applications. Chem. Rev., 2022, 122(4), 4356-4396. doi:10.1021/acs.chemrev.1c00685http://dx.doi.org/10.1021/acs.chemrev.1c00685
Mei J. G. What’s next for semiconducting polymers. J. Polym. Sci., 2022, 60(3), 287-289. doi:10.1002/pol.20220014http://dx.doi.org/10.1002/pol.20220014
Qiu Y. C.; Zhang B.; Yang J. C.; Gao H. F.; Li S.; Wang L.; Wu P. H.; Su Y. W.; Zhao Y.; Feng J. G.; Jiang L.; Wu Y. C. Wafer-scale integration of stretchable semiconducting polymer microstructures via capillary gradient. Nat. Commun., 2021, 12(1), 7038. doi:10.1038/s41467-021-27370-whttp://dx.doi.org/10.1038/s41467-021-27370-w
Ding Y. F.; Yuan Y.; Wu N.; Wang X. H.; Zhang G. B.; Qiu L. Z. Intrinsically stretchable n-type polymer semiconductors through side chain engineering. Macromolecules, 2021, 54(18), 8849-8859. doi:10.1021/acs.macromol.1c00936http://dx.doi.org/10.1021/acs.macromol.1c00936
Xu J.; Wang S. H.; Wang G.J N.; Zhu C. X.; Luo S. C.; Jin L. H.; Gu X. D.; Chen S. C.; Feig V. R.; To J. W. F.; Rondeau-Gagné S.; Park J.; Schroeder B. C.; Lu C. E.; Oh J. Y.; Wang Y. M.; Kim Y. H.; Yan H.; Sinclair R.; Zhou D. S.; Xue G.; Murmann B.; Linder C.; Cai W.; Tok J. B. H.; Chung J. W.; Bao Z. N.Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science, 2017, 355(6320), 59-64. doi:10.1126/science.aah4496http://dx.doi.org/10.1126/science.aah4496
Shim H.; Sim K.; Wang B. H.; Zhang Y. C.; Patel S.; Jang S.; Marks T. J.; Facchetti A.; Yu C. J. Elastic integrated electronics based on a stretchable n-type elastomer-semiconductor-elastomer stack. Nat. Electron., 2023, 6, 349-359. doi:10.1038/s41928-023-00966-4http://dx.doi.org/10.1038/s41928-023-00966-4
Wang S. H.; Xu J.; Wang W. C.; Wang G.J N.; Rastak R.; Molina-Lopez F.; Chung J. W.; Niu S. M.; Feig V. R.; Lopez J.; Lei T.; Kwon S. K.; Kim Y.; Foudeh A. M.; Ehrlich A.; Gasperini A.; Yun Y.; Murmann B.; Tok J. B. H.; Bao Z. N.Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 2018, 555(7694), 83-88. doi:10.1038/nature25494http://dx.doi.org/10.1038/nature25494
Wang W. C.; Wang S. H.; Rastak R.; Ochiai Y.; Niu S. M.; Jiang Y. W.; Arunachala P. K.; Zheng Y.; Xu J.; Matsuhisa N.; Yan X. Z.; Kwon S. K.; Miyakawa M.; Zhang Z. T.; Ning R.; Foudeh A. M.; Yun Y.; Linder C.; Tok J. B. H.; Bao Z. N. Strain-insensitive intrinsically stretchable transistors and circuits. Nat. Electron., 2021, 4, 143-150. doi:10.1038/s41928-020-00525-1http://dx.doi.org/10.1038/s41928-020-00525-1
Zheng Y. Q.; Liu Y. X.; Zhong D. L.; Nikzad S.; Liu S. H.; Yu Z. A.; Liu D. Y.; Wu H. C.; Zhu C. X.; Li J. X.; Tran H.; Tok J. B. H.; Bao Z. N. Monolithic optical microlithography of high-density elastic circuits. Science, 2021, 373(6550), 88-94. doi:10.1126/science.abh3551http://dx.doi.org/10.1126/science.abh3551
Wang W. C.; Jiang Y. W.; Zhong D. L.; Zhang Z. T.; Choudhury S.; Lai J. C.; Gong H. X.; Niu S. M.; Yan X. Z.; Zheng Y.; Shih C. C.; Ning R.; Lin Q.; Li D. L.; Kim Y. H.; Kim J.; Wang Y. X.; Zhao C. Z.; Xu C. Y.; Ji X. Z.; Nishio Y.; Lyu H.; Tok J. B. H.; Bao Z. N. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science, 2023, 380(6646), 735-742. doi:10.1126/science.ade0086http://dx.doi.org/10.1126/science.ade0086
Niu S. M.; Matsuhisa N.; Beker L.; Li J. X.; Wang S. H.; Wang J. C.; Jiang Y. W.; Yan X. Z.; Yun Y.; Burnett W.; Poon A. S. Y.; Tok J. B. H.; Chen X. D.; Bao Z. N. A wireless body area sensor network based on stretchable passive tags. Nat. Electron., 2019, 2, 361-368. doi:10.1038/s41928-019-0286-2http://dx.doi.org/10.1038/s41928-019-0286-2
Jiang Y. W.; Trotsyuk A. A.; Niu S. M.; Henn D.; Chen K.; Shih C. C.; Larson M. R.; Mermin-Bunnell A. M.; Mittal S.; Lai J. C.; Saberi A.; Beard E.; Jing S.; Zhong D. L.; Steele S. R.; Sun K. F.; Jain T.; Zhao E.; Neimeth C. R.; Viana W. G.; Tang J.; Sivaraj D.; Padmanabhan J.; Rodrigues M.; Perrault D. P.; Chattopadhyay A.; Maan Z. N.; Leeolou M. C.; Bonham C. A.; Kwon S. H.; Kussie H. C.; Fischer K. S.; Gurusankar G.; Liang K.; Zhang K. L.; Nag R.; Snyder M. P.; Januszyk M.; Gurtner G. C.; Bao Z. N. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol., 2023, 41(5), 652-662. doi:10.1038/s41587-022-01528-3http://dx.doi.org/10.1038/s41587-022-01528-3
Oldroyd P.; Gurke J.; Malliaras G. G. Stability of thin film neuromodulation electrodes under accelerated aging conditions. Adv. Funct. Mater., 2023, 33(1), 2208881. doi:10.1002/adfm.202208881http://dx.doi.org/10.1002/adfm.202208881
He H.; Ouyang J. Y. Enhancements in the mechanical stretchability and thermoelectric properties of PEDOT:PSS for flexible electronics applications. Acc. Mater. Res., 2020, 1(2), 146-157. doi:10.1021/accountsmr.0c00021http://dx.doi.org/10.1021/accountsmr.0c00021
0
浏览量
387
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构