浏览全部资源
扫码关注微信
西安交通大学化学学院 西安 710049
E-mail: yilongcheng@mail.xjtu.edu.cn
纸质出版日期:2024-05-20,
网络出版日期:2024-03-18,
收稿日期:2024-01-10,
录用日期:2024-01-31
移动端阅览
杜佳强, 张彦峰, 成一龙. 聚硫辛酸基多功能水凝胶的构建及在感染皮肤伤口修复中的应用. 高分子学报, 2024, 55(5), 624-636
Du, J. Q.; Zhang, Y. F.; Cheng, Y. L. Construction of poly(lipoic acid)-based functional hydrogels for infected skin wound healing. Acta Polymerica Sinica, 2024, 55(5), 624-636
杜佳强, 张彦峰, 成一龙. 聚硫辛酸基多功能水凝胶的构建及在感染皮肤伤口修复中的应用. 高分子学报, 2024, 55(5), 624-636 DOI: 10.11777/j.issn1000-3304.2024.24006.
Du, J. Q.; Zhang, Y. F.; Cheng, Y. L. Construction of poly(lipoic acid)-based functional hydrogels for infected skin wound healing. Acta Polymerica Sinica, 2024, 55(5), 624-636 DOI: 10.11777/j.issn1000-3304.2024.24006.
以
α
-硫辛酸(LA)为单体,借助其强还原性与浓度和温度诱导开环聚合,一步法制备了负载纳米银(AgNPs)的氢键交联高分子水凝胶,并对其可注射性、自修复性、粘接能力、光热效应、抗氧化能力以及生物相容性进行了详细地研究. 在细菌感染的大鼠全层皮肤损伤模型中,该高分子水凝胶敷料可以通过光热效应杀死细菌,同时有效降低伤口处的活性氧(ROS)水平,进而调控组织损伤的炎症反应,促进感染伤口的加速愈合.
Poly(lipoic acid)-based functional hydrogels incorporated with silver nanoparticles (AgNPs) are developed for bacteria-infected skin wound healing in this work. Owing to the reducibility of
α
-lipoic acid (LA)
AgNO
3
can be converted into AgNPs in the local hydrogel network (PLAS@AgNPs hydrogels)
which are synthesized by concentration- and thermo-induced ring-opening polymerization of LA in the presence of NaHCO
3
. Benefiting from the dynamic nature of hydrogen bonds formed by -COOH groups
PLAS@AgNPs hydrogels feature facile injectability and self-healing ability
and exhibit stable adhesion behavior with porcine skin tissues (36 kPa). The resulting hydrogels show promising photothermal efficiency due to the
in situ
formation of AgNPs
and the temperature of the hydrogels can be elevated by 38
o
C with the irradiation of near-infrared (NIR) light for 10 min
which can effectively inhibit the proliferation of
escherichia coli
and
staphylococcus aureus
. Moreover
the PLAS@AgNPs hydrogels can also clear the intracellular reactive oxygen species (ROS) inherited from the antioxidant nature of
LA. In a rat full-thickness skin injury model with bacterial infection
the PLAS@AgNPs hydrogel dressing can accelerate the skin wound healing with the assistance of NIR light irradiation through the synergistic effect of anti-bacteria and ROS scavenging.
水凝胶氢键硫辛酸光热效应皮肤损伤修复
HydrogelHydrogen bondα-Lipoic acidPhotothermal effectSkin wound healing
Kim Y. E.; Kim J. ROS-scavenging therapeutic hydrogels for modulation of the inflammatory response. ACS Appl. Mater. Interfaces, 2022, 14(20), 23002-23021. doi:10.1021/acsami.1c18261http://dx.doi.org/10.1021/acsami.1c18261
Gaharwar A. K.; Singh I.; Khademhosseini A. Engineered biomaterials for in situ tissue regeneration. Nat. Rev. Mater., 2020, 5, 686-705. doi:10.1038/s41578-020-0209-xhttp://dx.doi.org/10.1038/s41578-020-0209-x
Chouhan D.; Dey N.; Bhardwaj N.; Mandal B. B. Emerging and innovative approaches for wound healing and skin regeneration: current status and advances. Biomaterials, 2019, 216, 119267. doi:10.1016/j.biomaterials.2019.119267http://dx.doi.org/10.1016/j.biomaterials.2019.119267
Li W. Z.; Yu Y. R.; Huang R. K.; Wang X. C.; Lai P. X.; Chen K.; Shang L. R.; Zhao Y. J. Multi-bioinspired functional conductive hydrogel patches for wound healing management. Adv. Sci., 2023, 10(25), e2301479. doi:10.1002/advs.202301479http://dx.doi.org/10.1002/advs.202301479
Zheng J.; Fan R.; Wu H. Q.; Yao H. H.; Yan Y. J.; Liu J. M.; Ran L.; Sun Z. F.; Yi L. Z.; Dang L.; Gan P. P.; Zheng P.; Yang T. L.; Zhang Y.; Tang T.; Wang Y. Directed self-assembly of herbal small molecules into sustained release hydrogels for treating neural inflammation. Nat. Commun., 2019, 10(1), 1604. doi:10.1038/s41467-019-09601-3http://dx.doi.org/10.1038/s41467-019-09601-3
Li J. Y.; Kuang Y.; Gao Y.; Du X. W.; Shi J. F.; Xu B. D-amino acids boost the selectivity and confer supramolecular hydrogels of a nonsteroidal anti-inflammatory drug (NSAID). J. Am. Chem. Soc., 2013, 135(2), 542-545. doi:10.1021/ja310019xhttp://dx.doi.org/10.1021/ja310019x
Sun X. Y.; Jia P.; Zhang H.; Dong M. N.; Wang J.; Li L. H.; Bu T.; Wang X.; Wang L.; Lu Q. Y.; Wang J. H. Green regenerative hydrogel wound dressing functionalized by natural drug-food homologous small molecule self-assembled nanospheres. Adv. Funct. Mater., 2022, 32(7), 2106572. doi:10.1002/adfm.202106572http://dx.doi.org/10.1002/adfm.202106572
Packer L.; Witt E. H.; Tritschler H. J. Alpha-lipoic acid as a biological antioxidant. Biol. Med., 1995, 19(2), 227-250. doi:10.1016/0891-5849(95)00017-rhttp://dx.doi.org/10.1016/0891-5849(95)00017-r
Dang C.; Peng F.; Liu H. C.; Feng X.; Liu Y.; Hu S. N.; Qi H. S. Facile solvent-free synthesis of multifunctional and recyclable ionic conductive elastomers from small biomass molecules for green wearable electronics. J. Mater. Chem. A, 2021, 9(22), 13115-13124. doi:10.1039/d1ta01659hhttp://dx.doi.org/10.1039/d1ta01659h
Yang H. L.; Shen W.; Liu W. G.; Chen L.; Zhang P.; Xiao C. S.; Chen X. S. PEGylated poly(α-lipoic acid) loaded with doxorubicin as a ph and reduction dual responsive nanomedicine for breast cancer therapy. Biomacromolecules, 2018, 19(11), 4492-4503. doi:10.1021/acs.biomac.8b01394http://dx.doi.org/10.1021/acs.biomac.8b01394
Du J. Q.; Wang F.; Li J. X.; Yang Y. X.; Guo D.; Zhang Y. F.; Yang A. M.; He X. J.; Cheng Y. L. Green polymer hydrogels from a natural monomer with inherent antioxidative capability for efficient wound healing and spinal cord injury treatment. Biomater. Sci., 2023, 11(10), 3683-3694. doi:10.1039/d3bm00174ahttp://dx.doi.org/10.1039/d3bm00174a
Thomas R. C.; Reed L. J. Disulfide polymers of DL-α-lipoic acid. J. Am. Chem. Soc., 1956, 78(23), 6148-6149. doi:10.1021/ja01604a053http://dx.doi.org/10.1021/ja01604a053
Wagner A. F.; Walton E.; Boxer G. E.; Pruss M. P.; Holly F. W.; Folkers K. Properties and derivatives of α-lipoic acid. J. Am. Chem. Soc., 1956, 78(19), 5079-5081. doi:10.1021/ja01600a069http://dx.doi.org/10.1021/ja01600a069
Jeffrey S.; Samraj P. I.; Raj B. S. The role of alpha-lipoic acid supplementation in the prevention of diabetes complications: a comprehensive review of clinical trials. Curr. Diabetes Rev., 2021, 17(9), e011821190404. doi:10.2174/1573399817666210118145550http://dx.doi.org/10.2174/1573399817666210118145550
Liu Z. L.; Shen N.; Tang Z. H.; Zhang D. W.; Ma L. L.; Yang C. G.; Chen X. S. An eximious and affordable GSH stimulus-responsive poly(α-lipoic acid) nanocarrier bonding combretastatin A4 for tumor therapy. Biomater. Sci., 2019, 7(7), 2803-2811. doi:10.1039/c9bm00002jhttp://dx.doi.org/10.1039/c9bm00002j
Cheng Y.; Zhou Y.; Wang R. R.; Chan K. H.; Liu Y.; Ding T. P.; Wang X. Q.; Li T. T.; Ho G. W. An elastic and damage-tolerant dry epidermal patch with robust skin adhesion for bioelectronic interfacing. ACS Nano, 2022, 16(11), 18608-18620. doi:10.1021/acsnano.2c07097http://dx.doi.org/10.1021/acsnano.2c07097
Hou K. X.; Zhao S. P.; Wang D. P.; Zhao P. C.; Li C. H.; Zuo J. L. A puncture-resistant and self-healing conductive gel for multifunctional electronic skin. Adv. Funct. Mater., 2021, 31(49), 2107006. doi:10.1002/adfm.202107006http://dx.doi.org/10.1002/adfm.202107006
Zhang Q.; Shi C. Y.; Qu D. H.; Long Y. T.; Feringa B. L.; Tian H. Exploring a naturally tailored small molecule for stretchable, self-healing, and adhesive supramolecular polymers. Sci. Adv., 2018, 4(7), eaat8192. doi:10.1126/sciadv.aat8192http://dx.doi.org/10.1126/sciadv.aat8192
Deng Y. X.; Zhang Q.; Feringa B. L.; Tian H.; Qu D. H. Toughening a self-healable supramolecular polymer by ionic cluster-enhanced iron-carboxylate complexes. Angew. Chem., 2020, 132(13), 5316-5321. doi:10.1002/ange.201913893http://dx.doi.org/10.1002/ange.201913893
Zhang Q.; Deng Y. X.; Luo H. X.; Shi C. Y.; Geise G. M.; Feringa B. L.; Tian H.; Qu D. H. Assembling a natural small molecule into a supramolecular network with high structural order and dynamic functions. J. Am. Chem. Soc., 2019, 141(32), 12804-12814. doi:10.1021/jacs.9b05740http://dx.doi.org/10.1021/jacs.9b05740
Wang Y. J.; Sun S. T.; Wu P. Y. Adaptive ionogel paint from room-temperature autonomous polymerization of α-thioctic acid for stretchable and healable electronics. Adv. Funct. Mater., 2021, 31(24), 2101494. doi:10.1002/adfm.202101494http://dx.doi.org/10.1002/adfm.202101494
Wang F.; Du J. Q.; Qiao H.; Liu D. F.; Guo D.; Chen J. J.; Zhang Y. F.; Cheng Y. L.; He X. J. Natural small molecule-induced polymer hydrogels with inherent antioxidative ability and conductivity for neurogenesis and functional recovery after spinal cord injury. Chem. Eng. J., 2023, 466, 143071. doi:10.1016/j.cej.2023.143071http://dx.doi.org/10.1016/j.cej.2023.143071
Jia B.; Li G. W.; Cao E. T.; Luo J. L.; Zhao X.; Huang H. Y. Recent progress of antibacterial hydrogels in wound dressings. Mater. Today Bio, 2023, 19, 100582. doi:10.1016/j.mtbio.2023.100582http://dx.doi.org/10.1016/j.mtbio.2023.100582
Nam K. T.; Lee Y. J.; Krauland E. M.; Kottmann S. T.; Belcher A. M. Peptide-mediated reduction of silver ions on engineered biological scaffolds. ACS Nano, 2008, 2(7), 1480-1486. doi:10.1021/nn800018nhttp://dx.doi.org/10.1021/nn800018n
Zhang H.; Sun X. Y.; Wang J.; Zhang Y. L.; Dong M. N.; Bu T.; Li L. H.; Liu Y. N.; Wang L. Multifunctional injectable hydrogel dressings for effectively accelerating wound healing: enhancing biomineralization strategy. Adv. Funct. Mater., 2021, 31(23), 2100093. doi:10.1002/adfm.202100093http://dx.doi.org/10.1002/adfm.202100093
Ding X. Y.; Li G.; Zhang P.; Jin E.; Xiao C. S.; Chen X. S. Injectable self-healing hydrogel wound dressing with cysteine-specific on-demand dissolution property based on tandem dynamic covalent bonds. Adv. Funct. Mater., 2021, 31(19), 2011230. doi:10.1002/adfm.202011230http://dx.doi.org/10.1002/adfm.202011230
Nam S.; Mooney D. Polymeric tissue adhesives. Chem. Rev., 2021, 121(18), 11336-11384. doi:10.1021/acs.chemrev.0c00798http://dx.doi.org/10.1021/acs.chemrev.0c00798
Srikhao N.; Theerakulpisut S.; Chindaprasirt P.; Okhawilai M.; Narain R.; Kasemsiri P. Green synthesis of nano silver-embedded carboxymethyl starch waste/poly vinyl alcohol hydrogel with photothermal sterilization and pH-responsive behavior. Int. J. Biol. Macromol., 2023, 242(Pt 3), 125118. doi:10.1016/j.ijbiomac.2023.125118http://dx.doi.org/10.1016/j.ijbiomac.2023.125118
Cui Y. Y.; Yang J.; Zhou Q. F.; Liang P.; Wang Y. L.; Gao X. Y.; Wang Y. T. Renal clearable Ag nanodots for in vivo computer tomography imaging and photothermal therapy. ACS Appl. Mater. Interfaces, 2017, 9(7), 5900-5906. doi:10.1021/acsami.6b16133http://dx.doi.org/10.1021/acsami.6b16133
Wang L.; Li A. F.; Zhang D.; Zhang M.; Ma L. Y.; Li Y.; Wang W. W.; Nan K. H.; Chen H.; Li L. L. Injectable double-network hydrogel for corneal repair. Chem. Eng. J., 2023, 455, 140698. doi:10.1016/j.cej.2022.140698http://dx.doi.org/10.1016/j.cej.2022.140698
Kwak G.; Cheng J.; Kim H.; Song S.; Lee S. J.; Yang Y.; Jeong J. H.; Lee J. E.; Messersmith P. B.; Kim S. H. Sustained exosome-guided macrophage polarization using hydrolytically degradable PEG hydrogels for cutaneous wound healing: Identification of key proteins and MiRNAs, and sustained release formulation. Small, 2022, 18(15), e2200060. doi:10.1002/smll.202200060http://dx.doi.org/10.1002/smll.202200060
Shi J. B.; Chang X. C.; Zou H.; Gu J. H.; Yuan Y.; Liu X. Z.; Liu Z. P.; Bian J. C. Protective effects of α-lipoic acid and chlorogenic acid on cadmium-induced liver injury in three-yellow chickens. Animals, 2021, 11(6), 1606. doi:10.3390/ani11061606http://dx.doi.org/10.3390/ani11061606
Cui L. L.; Li J. K.; Guan S. M.; Zhang K. X.; Zhang K.; Li J. G. Injectable multifunctional CMC/HA-DA hydrogel for repairing skin injury. Mater. Today Bio, 2022, 14, 100257. doi:10.1016/j.mtbio.2022.100257http://dx.doi.org/10.1016/j.mtbio.2022.100257
Xu M.; Ji X. H.; Huo J. J.; Chen J. J.; Liu N.; Li Z. Y.; Jia Q. Y.; Sun B.; Zhu M. F.; Li P. Nonreleasing AgNP colloids composite hydrogel with potent hemostatic, photodynamic bactericidal and wound healing-promoting properties. ACS Appl. Mater. Interfaces, 2023, 15(14), 17742-17756. doi:10.1021/acsami.3c03247http://dx.doi.org/10.1021/acsami.3c03247
Xu M.; Ji X. H.; Huo J. J.; Chen J. J.; Liu N.; Li Z. Y.; Jia Q. Y.; Sun B.; Zhu M. F.; Li P. Nonreleasing AgNP colloids composite hydrogel with potent hemostatic, photodynamic bactericidal and wound healing-promoting properties. ACS Appl. Mater. Interfaces, 2023, 15(14), 17742-17756. doi:10.1021/acsami.3c03247http://dx.doi.org/10.1021/acsami.3c03247
Yuan Y.; Shen S. H.; Fan D. D. A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: shape adaptability, injectable self-healing property and enhanced adhesion. Biomaterials, 2021, 276, 120838. doi:10.1016/j.biomaterials.2021.120838http://dx.doi.org/10.1016/j.biomaterials.2021.120838
Zeng Q. K.; Qi X. L.; Shi G. Y.; Zhang M.; Haick H. Wound dressing: from nanomaterials to diagnostic dressings and healing evaluations. ACS Nano, 2022, 16(2), 1708-1733. doi:10.1021/acsnano.1c08411http://dx.doi.org/10.1021/acsnano.1c08411
0
浏览量
525
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构