浏览全部资源
扫码关注微信
聚合物分子工程国家重点实验室 复旦大学高分子科学系 纤维电子材料与器件研究院 先进材料实验室 上海 200438
E-mail: sunxm@fudan.edu.cn
纸质出版日期:2024-07-20,
网络出版日期:2024-04-10,
收稿日期:2024-01-13,
录用日期:2024-02-19
移动端阅览
李金妍, 唐成强, 李雯君, 黄滔, 孙雪梅, 彭慧胜. 基于直接电子转移的柔性纤维葡萄糖传感器. 2024, 55(7), 872-880
Li, J. Y.; Tang, C. Q.; Li, W. J.; Huang, T.; Sun, X. M.; Peng, H. S. Flexible fiber glucose sensor based on direct electron transfer. Acta Polymerica Sinica, 2024, 55(7), 872-880
李金妍, 唐成强, 李雯君, 黄滔, 孙雪梅, 彭慧胜. 基于直接电子转移的柔性纤维葡萄糖传感器. 2024, 55(7), 872-880 DOI: 10.11777/j.issn1000-3304.2024.24010.
Li, J. Y.; Tang, C. Q.; Li, W. J.; Huang, T.; Sun, X. M.; Peng, H. S. Flexible fiber glucose sensor based on direct electron transfer. Acta Polymerica Sinica, 2024, 55(7), 872-880 DOI: 10.11777/j.issn1000-3304.2024.24010.
酶基电化学葡萄糖传感器具有优异的选择性和灵敏度,基于直接电子转移原理的第三代传感器有望解决第一、二代传感器所面临的易受氧气浓度干扰、电子介体不稳定等问题. 因此,本研究基于聚3
4-乙烯二氧噻吩:聚苯乙烯磺酸盐(PEDOT:PSS)和葡萄糖脱氢酶(GDH)双组分开发了柔性纤维第三代葡萄糖传感器. 该纤维传感器在10~500 μmol/L范围内具有良好的线性(
R
2
=0.9968),灵敏度可达62.53 μA/(mmol·L
-1
·cm
2
),且不受氧气影响. 纤维传感器还具有良好的柔性和可编织性,将其集成到织物中,实现了人在运动时汗液中葡萄糖的连续实时监测,为制备满足可穿戴需求的第三代葡萄糖传感器提供了新思路.
Real-time monitor
ing of glucose concentration
in vivo
holds significant importance for disease diagnosis and treatment. The enzyme-based electrochemical glucose sensor has garnered considerable attention in the realm of real-time glucose monitoring due to its outstanding selectivity and sensitivity. Despite the development of first and second generation electrochemical glucose sensors
they encounter numerous challenges derived from their sensing principles
including interference from oxygen concentration
instability of electronic mediators
and leaching toxicity. The third generation of glucose sensor based on direct electron transfer between enzyme and electrode is anticipated to address these challenges. Here
we report an all-polymer-based flexible fiber glucose sensor (FGS) based on direct electron transfer
leveraging poly(3
4-vinyldioxythiophene):polystyrene sulfonate (PEDOT:PSS) and glucose dehydrogenase (GDH) as its constituents. The FGS exhibits commendable linearity (
R
2
=0.9968) within the range of 10-500 μmol/L and demonstrates a sensitivity of 62.53 μA/(mmol·L
-1
·cm
2
). The FGS is seamlessly integrated into fabric
enabling continuous real-time monitoring of glucose levels in human sweat during exercise. This work presents a novel approach for developing the third-generation glucose sensors to cater to the requirements of wearable technology.
柔性纤维葡萄糖传感器直接电子转移汗液监测聚34-乙烯二氧噻吩:聚苯乙烯磺酸盐
Flexible fiberGlucose sensorDirect electron transferSweat monitoringPoly(34-vinyldioxythiophene):polystyrene sulfonate
Chen C.; Xie Q. J.; Yang D. W.; Xiao H. L.; Fu Y. C.; Tan Y. M.; Yao S. Z. Recent advances in electrochemical glucose biosensors: a review. RSC Adv., 2013, 3(14), 4473-4491. doi:10.1039/c2ra22351ahttp://dx.doi.org/10.1039/c2ra22351a
Teymourian H.; Barfidokht A.; Wang J. Electrochemical glucose sensors in diabetes management: an updated review (2010-2020). Chem. Soc. Rev., 2020, 49(21), 7671-7709. doi:10.1039/d0cs00304bhttp://dx.doi.org/10.1039/d0cs00304b
Dey R. S.; Raj C. R. Redox-functionalized graphene oxide architecture for the development of amperometric biosensing platform. ACS Appl. Mater. Interfaces, 2013, 5(11), 4791-4798. doi:10.1021/am400280uhttp://dx.doi.org/10.1021/am400280u
Degani Y.; Heller A. Direct electrical communication between chemically modified enzymes and metal electrodes. I. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme. J. Phys. Chem., 1987, 91(6), 1285-1289. doi:10.1021/j100290a001http://dx.doi.org/10.1021/j100290a001
Wooten M.; Karra S.; Zhang M. G.; Gorski W. On the direct electron transfer, sensing, and enzyme activity in the glucose oxidase/carbon nanotubes system. Anal. Chem., 2014, 86(1), 752-757. doi:10.1021/ac403250whttp://dx.doi.org/10.1021/ac403250w
Bartlett P. N.; Al-Lolage F. A. There is no evidence to support literature claims of direct electron transfer (DET) for native glucose oxidase (GOx) at carbon nanotubes or graphene. J. Electroanal. Chem., 2018, 819, 26-37. doi:10.1016/j.jelechem.2017.06.021http://dx.doi.org/10.1016/j.jelechem.2017.06.021
Blazek T.; Gorski, W. Oxidases, carbon nanotubes, and direct electron transfer: a cautionary tale. Biosens. Bioelectron., 2020, 163, 112260. doi:10.1016/j.bios.2020.112260http://dx.doi.org/10.1016/j.bios.2020.112260
Holland J. T.; Lau C.; Brozik S.; Atanassov P.; Banta S. Engineering of glucose oxidase for direct electron transfer via site-specific gold nanoparticle conjugation. J. Am. Chem. Soc., 2011, 133(48), 19262-19265. doi:10.1021/ja2071237http://dx.doi.org/10.1021/ja2071237
Bai Y. F.; Xu T. B.; Luong J. H. T.; Cui H. F. Direct electron transfer of glucose oxidase-boron doped diamond interface: a new solution for a classical problem. Anal. Chem., 2014, 86(10), 4910-4918. doi:10.1021/ac501143ehttp://dx.doi.org/10.1021/ac501143e
Zeng X. P.; Zhang Y. Z.; Du X. L.; Li Y. F.; Tang W. W. A highly sensitive glucose sensor based on a gold nanoparticles/polyaniline/multi-walled carbon nanotubes composite modified glassy carbon electrode. New J. Chem., 2018, 42(14), 11944-11953. doi:10.1039/c7nj04327ahttp://dx.doi.org/10.1039/c7nj04327a
Jeon W. Y.; Kim H. S.; Jang H. W.; Lee Y. S.; Shin U. S.; Kim H. H.; Choi Y. B. A stable glucose sensor with direct electron transfer, based on glucose dehydrogenase and chitosan hydro bonded multi-walled carbon nanotubes. Biochem. Eng. J., 2022, 187, 108589. doi:10.1016/j.bej.2022.108589http://dx.doi.org/10.1016/j.bej.2022.108589
Lin M. H.; Gupta S.; Chang C.; Lee C. Y.; Tai N. H. Carbon nanotubes/polyethylenimine/glucose oxidase as a non-invasive electrochemical biosensor performs high sensitivity for detecting glucose in saliva. Microchem. J., 2022, 180, 107547. doi:10.1016/j.microc.2022.107547http://dx.doi.org/10.1016/j.microc.2022.107547
Lu B. Y.; Yuk H.; Lin S. T.; Jian N. N.; Qu K.; Xu J. K.; Zhao X. H. Pure PEDOT:PSS hydrogels. Nat. Commun., 2019, 10(1), 1043. doi:10.1038/s41467-019-09003-5http://dx.doi.org/10.1038/s41467-019-09003-5
Ferri S.; Kojima K.; Sode K. Review of glucose oxidases and glucose dehydrogenases: a bird's eye view of glucose sensing enzymes. J. Diabetes Sci. Technol., 2011, 5(5), 1068-1076. doi:10.1177/193229681100500507http://dx.doi.org/10.1177/193229681100500507
Yoshida H.; Sakai G.; Mori K.; Kojima K.; Kamitori S.; Sode K. Structural analysis of fungus-derived FAD glucose dehydrogenase. Sci. Rep., 2015, 5, 13498. doi:10.1038/srep13498http://dx.doi.org/10.1038/srep13498
Sygmund C.; Klausberger M.; Felice A. K.; Ludwig R. Reduction of quinones and phenoxy radicals by extracellular glucose dehydrogenase from Glomerella Cingulata suggests a role in plant pathogenicity. Microbiology, 2011, 157(Pt 11), 3203-3212. doi:10.1099/mic.0.051904-0http://dx.doi.org/10.1099/mic.0.051904-0
Muguruma H.; Iwasa H.; Hidaka H.; Hiratsuka A.; Uzawa H. Mediatorless direct electron transfer between flavin adenine dinucleotide-dependent glucose dehydrogenase and single-walled carbon nanotubes. ACS Catal., 2017, 7(1), 725-734. doi:10.1021/acscatal.6b02470http://dx.doi.org/10.1021/acscatal.6b02470
Wang L. Y.; Xie S. L.; Wang Z. Y.; Liu F.; Yang Y. F.; Tang C. Q.; Wu X. Y.; Liu P.; Li Y. J.; Saiyin H.; Zheng S.; Sun X. M.; Xu F.; Yu H. B.; Peng H. S. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Biomed. Eng., 2020, 4(2), 159-171. doi:10.1038/s41551-019-0462-8http://dx.doi.org/10.1038/s41551-019-0462-8
Fang Y.; Feng J. Y.; Shi X.; Yang Y. Q.; Wang J. J.; Sun X.; Li W. J.; Sun X. M.; Peng H. S. Coaxial fiber organic electrochemical transistor with high transconductance. Nano Res., 2023, 16(9), 11885-11892. doi:10.1007/s12274-023-5722-yhttp://dx.doi.org/10.1007/s12274-023-5722-y
Feng J. Y.; Fang Y.; Wang C.; Chen C. R.; Tang C. Q.; Guo Y.; Wang L. Y.; Yang Y. Q.; Zhang K. L.; Wang J. J.; Chen J. W.; Sun X. M.; Peng H. S. All-polymer fiber organic electrochemical transistor for chronic chemical detection in the brain. Adv. Funct. Mater., 2023, 33(30), 2214945. doi:10.1002/adfm.202214945http://dx.doi.org/10.1002/adfm.202214945
郭悦, 王佳佳, 王立媛, 孙雪梅, 彭慧胜. 柔性纤维生物电子复合材料与器件. 高分子学报, 2022, 53(7), 707-721. doi:10.11777/j.issn1000-3304.2022.22051http://dx.doi.org/10.11777/j.issn1000-3304.2022.22051
Wang L.; Wang L. Y.; Zhang Y.; Pan J.; Li S. Y.; Sun X. M.; Zhang B.; Peng H. S. Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv. Funct. Mater., 2018, 28(42), 1804456. doi:10.1002/adfm.201804456http://dx.doi.org/10.1002/adfm.201804456
Moyer J.; Wilson D.; Finkelshtein I.; Wong B.; Potts R. Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol. Ther., 2012, 14(5), 398-402. doi:10.1089/dia.2011.0262http://dx.doi.org/10.1089/dia.2011.0262
Bandodkar A. J.; Jia W. Z.; Yardımcı C.; Wang X.; Ramirez J.; Wang J. Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal. Chem., 2015, 87(1), 394-398. doi:10.1021/ac504300nhttp://dx.doi.org/10.1021/ac504300n
Zafar H.; Channa A.; Jeoti V.; Stojanović G. M. Comprehensive review on wearable sweat-glucose sensors for continuous glucose monitoring. Sensors, 2022, 22(2), 638. doi:10.3390/s22020638http://dx.doi.org/10.3390/s22020638
Toi P. T.; Trung T. Q.; Dang T. M. L.; Bae C. W.; Lee N. E. Highly electrocatalytic, durable, and stretchable nanohybrid fiber for on-body sweat glucose detection. ACS Appl. Mater. Interfaces, 2019, 11(11), 10707-10717. doi:10.1021/acsami.8b20583http://dx.doi.org/10.1021/acsami.8b20583
0
浏览量
249
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构