浏览全部资源
扫码关注微信
有机电子与信息显示国家重点实验室 南京邮电大学化学与生命科学学院 南京 210023
E-mail: iamwylai@njupt.edu.cn
纸质出版日期:2024-06-20,
网络出版日期:2024-04-08,
收稿日期:2024-01-14,
录用日期:2024-02-02
移动端阅览
万一, 李祥春, 薛倩, 赖文勇. 氢键侧链修饰共轭聚合物骨架的自愈合发光弹性体的设计合成与性能研究. 高分子学报, 2024, 55(6), 688-697
Wan, Y.; Li, X. C.; Xue, Q.; Lai, W. Y. Design, synthesis and properties of self-healing luminescent elastomers with hydrogen-bonded side-chain-modified conjugated polymer backbones. Acta Polymerica Sinica, 2024, 55(6), 688-697
万一, 李祥春, 薛倩, 赖文勇. 氢键侧链修饰共轭聚合物骨架的自愈合发光弹性体的设计合成与性能研究. 高分子学报, 2024, 55(6), 688-697 DOI: 10.11777/j.issn1000-3304.2024.24011.
Wan, Y.; Li, X. C.; Xue, Q.; Lai, W. Y. Design, synthesis and properties of self-healing luminescent elastomers with hydrogen-bonded side-chain-modified conjugated polymer backbones. Acta Polymerica Sinica, 2024, 55(6), 688-697 DOI: 10.11777/j.issn1000-3304.2024.24011.
基于共轭聚合物骨架的自愈合弹性体对于可拉伸电子至关重要. 本文工作通过氢键侧链来调控共轭聚合物的机械性能以及自愈性能,同时确保发光共轭聚合物保持固有的光物理特性. 设计并制备了高性能的可拉伸自愈合发光弹性体,其机械拉伸长度接近900%,常温下的自愈效率达到70%,且发光量子效率超过60%. 这种发光弹性体在经历400%的拉伸形变并回复后,不仅机械性能能够恢复,光物理性质也恢复如初. 利用该弹性体,制备了多功能的光电器件.
Traditional optoelectronic devices suffer from loss of performance due to prolonged use
unavoidable deformation and fracture. To address this issue
it is significant to develop optoelectronic functional materials with strong mechanical tensile properties and self-healing abilities. Herein
we propose a design strategy for self-healing luminescent elastomers based on conjugated polymer backbones. The mechanical tensile properties and self-healing properties of the conjugated polymer are modulated by flexible hydrogen-bonded side chains
while maintaining the intrinsic photophysical characteristics. The synthesized elastomers exhibit excellent mechanical tensile properties (breaking tensile length: 900%)
room-temperature self-healing properties (self-healing efficiency: 70%)
and high fluorescence quantum efficiency (66%). Importantly
the photophysical properties of the elastomer were essentially fully recovered after undergoing 400% tensile deformation. In addition
we developed multifunctional optoelectronic devices using the prepared elastomers. This study provides a potential design strategy for developing materials for elastic optoelectronic devices.
柔性电子共轭聚合物氢键自愈合弹性体
Flexible electronicsConjugated polymersHydrogen bondsSelf-healing elastomer
Uoyama H.; Goushi K.; Shizu K.; Nomura H.; Adachi C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012, 492(7428), 234-238. doi:10.1038/nature11687http://dx.doi.org/10.1038/nature11687
Yang Z. Y.; Mao Z.; Xie Z. L.; Zhang Y.; Liu S. W.; Zhao J.; Xu J. R.; Chi Z. G.; Aldred M. P. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev., 2017, 46(3), 915-1016. doi:10.1039/c6cs00368khttp://dx.doi.org/10.1039/c6cs00368k
Jiang Y.; Liu Y. Y.; Liu X.; Lin H.; Gao K.; Lai W. Y.; Huang W. Organic solid-state lasers: a materials view and future development. Chem. Soc. Rev., 2020, 49(16), 5885-5944. doi:10.1039/d0cs00037jhttp://dx.doi.org/10.1039/d0cs00037j
Kuehne A. J. C.; Gather M. C. Organic lasers: recent developments on materials, device geometries, and fabrication techniques. Chem. Rev., 2016, 116(21), 12823-12864. doi:10.1021/acs.chemrev.6b00172http://dx.doi.org/10.1021/acs.chemrev.6b00172
Sun W.; Guo S. G.; Hu C.; Fan J. L.; Peng X. J. Recent development of chemosensors based on cyanine platforms. Chem. Rev., 2016, 116(14), 7768-7817. doi:10.1021/acs.chemrev.6b00001http://dx.doi.org/10.1021/acs.chemrev.6b00001
Fu Z. Y.; Wang K.; Zou B. Recent advances in organic pressure-responsive luminescent materials. Chin. Chem. Lett., 2019, 30(11), 1883-1894. doi:10.1016/j.cclet.2019.08.041http://dx.doi.org/10.1016/j.cclet.2019.08.041
Liang L.; Chen N.; Jia Y. Y.; Ma Q. Q.; Wang J.; Yuan Q.; Tan W. H. Recent progress in engineering near-infrared persistent luminescence nanoprobes for time-resolved biosensing/bioimaging. Nano Res., 2019, 12(6), 1279-1292. doi:10.1007/s12274-019-2343-6http://dx.doi.org/10.1007/s12274-019-2343-6
Asgher M.; Ahmad Qamar S.; Sadaf M.; Iqbal H. M. N. Multifunctional materials conjugated with near-infrared fluorescent organic molecules and their targeted cancer bioimaging potentialities. Biomed. Phys. Eng. Express, 2020, 6(1), 012003. doi:10.1088/2057-1976/ab6e1dhttp://dx.doi.org/10.1088/2057-1976/ab6e1d
Taniguchi R.; Yamada T.; Sada K.; Kokado K. Stimuli-responsive fluorescence of AIE elastomer based on PDMS and tetraphenylethene. Macromolecules, 2014, 47(18), 6382-6388. doi:10.1021/ma501198dhttp://dx.doi.org/10.1021/ma501198d
Yang J.; Zhang Z. H.; Yan Y. Q.; Liu S.; Li Z. Q.; Wang Y. G.; Li H. R. Highly stretchable and fast self-healing luminescent materials. ACS Appl. Mater. Interfaces, 2020, 12(11), 13239-13247. doi:10.1021/acsami.9b20582http://dx.doi.org/10.1021/acsami.9b20582
Wang X. Y.; Xu J.; Zhang Y. M.; Wang T. M.; Wang Q. H.; Li S.; Yang Z. H.; Zhang X. R. A stretchable, mechanically robust polymer exhibiting shape-memory-assisted self-healing and clustering-triggered emission. Nat. Commun., 2023, 14(1), 4712. doi:10.1038/s41467-023-40340-8http://dx.doi.org/10.1038/s41467-023-40340-8
Liu Y. C.; Chen T.; Jin Z. K.; Li M. X.; Zhang D. D.; Duan L.; Zhao Z. G.; Wang C. Tough, stable and self-healing luminescent perovskite-polymer matrix applicable to all harsh aquatic environments. Nat. Commun., 2022, 13(1), 1338. doi:10.1038/s41467-022-29084-zhttp://dx.doi.org/10.1038/s41467-022-29084-z
Yang J.; Zhao D.; Yao D. C.; Wang Y. G.; Li H. R. Self-healable luminescent materials via a supramolecular self-assembly design. Chem. Eng. J., 2021, 426, 131595. doi:10.1016/j.cej.2021.131595http://dx.doi.org/10.1016/j.cej.2021.131595
Li X. C.; Yao L. Q.; Song W.; Liu F.; Wang Q.; Chen J.; Xue Q.; Lai W. Y. Intrinsically stretchable electroluminescent elastomers with self-confinement effect for highly efficient non-blended stretchable OLEDs. Angew. Chem. Int. Ed., 2023, 62(2), e202213749. doi:10.1002/anie.202213749http://dx.doi.org/10.1002/anie.202213749
Jeon K. H.; Park J. W. Light-emitting polymer blended with elastomers for stretchable polymer light-emitting diodes. Macromolecules, 2022, 55(18), 8311-8320. doi:10.1021/acs.macromol.2c01095http://dx.doi.org/10.1021/acs.macromol.2c01095
Wan Y.; Li X. C.; Chen J.; Wang Q.; Liu C.; Liu C. F.; Lai W. Y. Stretchable and self-healing elastomers with aggregation-induced emission based on hydrogen bonding cross-linked networks. Macromolecules, 2023, 56(9), 3345-3353. doi:10.1021/acs.macromol.3c00088http://dx.doi.org/10.1021/acs.macromol.3c00088
Jeong M. W.; Ma J. H.; Shin J. S.; Kim J. S.; Ma G. R.; Nam T. U.; Gu X. D.; Kang S. J.; Oh J. Y. Intrinsically stretchable three primary light-emitting films enabled by elastomer blend for polymer light-emitting diodes. Sci. Adv., 2023, 9(25), eadh1504. doi:10.1126/sciadv.adh1504http://dx.doi.org/10.1126/sciadv.adh1504
Li B. R.; Cao P. F.; Saito T.; Sokolov A. P. Intrinsically self-healing polymers: from mechanistic insight to current challenges. Chem. Rev., 2023, 123(2), 701-735. doi:10.1021/acs.chemrev.2c00575http://dx.doi.org/10.1021/acs.chemrev.2c00575
Wojtecki R. J.; Meador M. A.; Rowan S. J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat. Mater., 2011, 10(1), 14-27. doi:10.1038/nmat2891http://dx.doi.org/10.1038/nmat2891
Roy N.; Bruchmann B.; Lehn J. M. DYNAMERS: dynamic polymers as self-healing materials. Chem. Soc. Rev., 2015, 44(11), 3786-3807. doi:10.1039/c5cs00194chttp://dx.doi.org/10.1039/c5cs00194c
Guo H. S.; Han Y.; Zhao W. Q.; Yang J.; Zhang L. Universally autonomous self-healing elastomer with high stretchability. Nat. Commun., 2020, 11(1), 2037. doi:10.1038/s41467-020-15949-8http://dx.doi.org/10.1038/s41467-020-15949-8
Zheng Y.; Zhang S.; Tok J. B. H.; Bao Z. N. Molecular design of stretchable polymer semiconductors: current progress and future directions. J. Am. Chem. Soc., 2022, 144(11), 4699-4715. doi:10.1021/jacs.2c00072http://dx.doi.org/10.1021/jacs.2c00072
Wang L. P.; Guo L. F.; Zhang K. Q.; Xia Y. G.; Hao J. C.; Wang X. Development of tough thermoplastic elastomers by leveraging rigid-flexible supramolecular segment interplays. Angew. Chem. Int. Ed., 2023, 62(29), e202301762. doi:10.1002/anie.202301762http://dx.doi.org/10.1002/anie.202301762
Baek P.; Aydemir N.; An Y. R.; Chan E. W. C.; Sokolova A.; Nelson A.; Mata J. P.; McGillivray D.; Barker D.; Travas-Sejdic J. Molecularly engineered intrinsically healable and stretchable conducting polymers. Chem. Mater., 2017, 29(20), 8850-8858. doi:10.1021/acs.chemmater.7b03291http://dx.doi.org/10.1021/acs.chemmater.7b03291
Yu T. C.; Liu L. L.; Xie Z. Q.; Ma Y. G. Progress in small-molecule luminescent materials for organic light-emitting diodes. Sci. China Chem., 2015, 58(6), 907-915. doi:10.1007/s11426-015-5409-7http://dx.doi.org/10.1007/s11426-015-5409-7
Li X. P.; Shen S.; Zhang C. C.; Liu M. Q.; Lu J. J.; Zhu L. L. Small-molecule based thermally activated delayed fluorescence materials with dual-emission characteristics. Sci. China Chem., 2021, 64(4), 534-546. doi:10.1007/s11426-020-9908-5http://dx.doi.org/10.1007/s11426-020-9908-5
Wang T.; Su X. G.; Zhang X. P.; Huang W. H.; Huang L. K.; Zhang X. Y.; Sun X.; Luo Y.; Zhang G. Q. A combinatory approach towards the design of organic polymer luminescent materials. J. Mater. Chem. C, 2019, 7(32), 9917-9925. doi:10.1039/c9tc02266jhttp://dx.doi.org/10.1039/c9tc02266j
Su Y.; Zhang Y. F.; Wang Z. H.; Gao W. C.; Jia P.; Zhang D.; Yang C. L.; Li Y. B.; Zhao Y. L. Excitation-dependent long-life luminescent polymeric systems under ambient conditions. Angew. Chem. Int. Ed., 2020, 59(25), 9967-9971. doi:10.1002/anie.201912102http://dx.doi.org/10.1002/anie.201912102
Wang N.; Feng L.; Xu X. D.; Feng S. Y. Dynamic covalent bond cross-linked luminescent silicone elastomer with self-healing and recyclable properties. Macromol. Rapid Commun., 2022, 43(7), e2100885. doi:10.1002/marc.202100885http://dx.doi.org/10.1002/marc.202100885
Au-Duong A. N.; Wu C. C.; Li Y. T.; Huang Y. S.; Cai H. Y.; Hai I. J.; Cheng Y. H.; Hu C. C.; Lai J. Y.; Kuo C. C.; Chiu Y. C. Synthetic concept of intrinsically elastic luminescent polyfluorene-based copolymers via RAFT polymerization. Macromolecules, 2020, 53(10), 4030-4037. doi:10.1021/acs.macromol.0c00428http://dx.doi.org/10.1021/acs.macromol.0c00428
Xu J.; Wu H. C.; Mun J.; Ning R.; Wang W. C.; Wang G.J N.; Nikzad S.; Yan H. P.; Gu X. D.; Luo S. C.; Zhou D. S.; Tok J. B. H.; Bao Z. N.Tuning conjugated polymer chain packing for stretchable semiconductors. Adv. Mater., 2022, 34(22), e2104747. doi:10.1002/adma.202104747http://dx.doi.org/10.1002/adma.202104747
Oh J. Y.; Rondeau-Gagné S.; Chiu Y. C.; Chortos A.; Lissel F.; Wang G.J N.; Schroeder B. C.; Kurosawa T.; Lopez J.; Katsumata T.; Xu J.; Zhu C. X.; Gu X. D.; Bae W. G.; Kim Y.; Jin L. H.; Chung J. W.; Tok J. B. H.; Bao Z. N.Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature, 2016, 539(7629), 411-415. doi:10.1038/nature20102http://dx.doi.org/10.1038/nature20102
Lin Y. C.; Huang Y. W.; Hung C. C.; Chiang Y. C.; Chen C. K.; Hsu L. C.; Chueh C. C.; Chen W. C. Backbone engineering of diketopyrrolopyrrole-based conjugated polymers through random terpolymerization for improved mobility-stretchability property. ACS Appl. Mater. Interfaces, 2020, 12(45), 50648-50659. doi:10.1021/acsami.0c14592http://dx.doi.org/10.1021/acsami.0c14592
Xie Z. L.; Hu B. L.; Li R. W.; Zhang Q. C. Hydrogen bonding in self-healing elastomers. ACS Omega, 2021, 6(14), 9319-9333. doi:10.1021/acsomega.1c00462http://dx.doi.org/10.1021/acsomega.1c00462
王振宇, 牛文文, 张卓强, 刘小孔. 氢键交联超分子聚合物材料: 从结构性能到功能应用. 高分子学报, 2023, 54(9): 1272-1289.
Chen L.; Xu J. H.; Zhu M. M.; Zeng Z. Y.; Song Y. Y.; Zhang Y. Y.; Zhang X. L.; Deng Y. K.; Xiong R. H.; Huang C. B. Self-healing polymers through hydrogen-bond cross-linking: synthesis and electronic applications. Mater. Horiz., 2023, 10(10), 4000-4032. doi:10.1039/d3mh00236ehttp://dx.doi.org/10.1039/d3mh00236e
0
浏览量
221
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构