浏览全部资源
扫码关注微信
1.东华大学材料科学与工程学院 纤维材料改性国家重点实验室 上海 201620
2.江南大学化学与材料工程学院 合成与生物胶体教育部重点实验室 无锡 214122
[ "缪月娥,女,1987 年生. 2010年本科毕业于东南大学化学化工学院;2015年于复旦大学高分子科学系获博士学位;2016年至今先后任东华大学材料科学与工程学院讲师/副研究员/研究员. 纤维材料改性国家重点实验室固定成员. 2023 年获国家自然科学基金优秀青年科学基金资助. 2022年入选上海市青年科技启明星计划,主持了国家自然科学基金青年科学基金、面上项目、优秀青年科学基金等项目. 主要研究领域为高分子纳米纤维功能复合材料、新型电化学储能复合材料与技术." ]
纸质出版日期:2024-05-20,
网络出版日期:2024-03-18,
收稿日期:2024-01-14,
录用日期:2024-02-22
移动端阅览
贾绪平, 李晓晓, 缪月娥, 刘天西. 纳米纤维复合材料的离子传输动力学调控及其电化学应用. 高分子学报, 2024, 55(5), 509-531
Jia, X. P.; Li, X. X.; Miao, Y. E.; Liu, T. X. Regulated ion transport dynamics and electrochemical applications of nanofiber composites. Acta Polymerica Sinica, 2024, 55(5), 509-531
贾绪平, 李晓晓, 缪月娥, 刘天西. 纳米纤维复合材料的离子传输动力学调控及其电化学应用. 高分子学报, 2024, 55(5), 509-531 DOI: 10.11777/j.issn1000-3304.2024.24012.
Jia, X. P.; Li, X. X.; Miao, Y. E.; Liu, T. X. Regulated ion transport dynamics and electrochemical applications of nanofiber composites. Acta Polymerica Sinica, 2024, 55(5), 509-531 DOI: 10.11777/j.issn1000-3304.2024.24012.
纳米纤维复合材料因具有高孔隙率、高比表面积以及多样化的组成和结构可设计性被广泛应用于锂硫电池、锂空电池等新型锂金属电池储能体系中. 电池的电化学性能主要依赖于充放电反应中的离子传输过程,而纳米纤维的结构形态以及表/界面性质对于离子传输动力学具有重要影响. 因此,本文针对新型储能电池应用中离子传输动力学缓慢、中间产物如多硫阴离子等易穿梭,以及负极枝晶生长等关键科学与技术问题,综述了纳米纤维复合材料的创新性设计和制备方法;进一步结合本课题组近期工作重点,阐述了纳米纤维复合材料的组成与结构调控对锂电池中离子传输动力学的优化作用;最后,总结了纳米纤维复合材料在锂电池正负极、隔膜、电解质等领域的应用进展,并讨论了其在新型储能设备领域的挑战和未来发展前景.
Nanofiber composites have been widely used in new energy storage systems like lithium-metal batteries (LMBs
including lithium-sulfur batteries
lithium-air batteries
etc
.) due to their high porosity
high specific surface area
diversified compositions and structural designability. The electrochemical performance of the batteries largely depends on the ion transfer process during charging and discharging
while the structural morphology and surface/interface properties of nanofiber composites have an important influence on the ion transport kinetics in batteries. Therefore
focusing on the key scientific and technical issues of sluggish ion transport dynamics and the shuttling of intermediate lithium polysulfides faced by LMBs
this review firstly introduces different new designs and preparation methods of nanofiber composites. Then
the effects of composition and structure of nanofiber composites on the regulation and optimization of ion transport kinetics in lithium batteries are discussed in d
etail by combining the recent works of our team. Following
the applications of nanofiber composites in different fields of lithium batteries are summarized
such as anodes
cathodes
separators
and solid-state electrolytes
etc
. The challenges and prospects of nanofiber composites are finally proposed in future applications of high-performance energy storage equipment.
纳米纤维纳米复合材料静电纺丝离子传输动力学电化学性能
NanofibersNanocompositesElectrospinningIon transport dynamicsElectrochemical performance
Liang H. M.; Wang L.; Wang A. P.; Song Y. Z.; Wu Y. Z.; Yang Y.; He X. M. Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nanomicro Lett., 2023, 15(1), 42. doi:10.1007/s40820-022-00996-1http://dx.doi.org/10.1007/s40820-022-00996-1
Yang Y.; Yang W. H.; Yang H. J.; Zhou H. S. Electrolyte design principles for low-temperature lithium-ion batteries. eScience, 2023, 3, 100170. doi:10.1016/j.esci.2023.100170http://dx.doi.org/10.1016/j.esci.2023.100170
Zhang K.; Lee G. H.; Park M.; Li W. J.; Kang Y. M. Recent developments of the lithium metal anode for rechargeable non-aqueous batteries. Adv. Energy Mater., 2016, 6(20), 1600811. doi:10.1002/aenm.201600811http://dx.doi.org/10.1002/aenm.201600811
Hu A. J.; Li F.; Chen W.; Lei T. Y.; Li Y. Y.; Fan Y. X.; He M.; Wang F.; Zhou M. J.; Hu Y.; Yan Y. C.; Chen B.; Zhu J.; Long J. P.; Wang X. F.; Xiong J. Ion transport kinetics in low-temperature lithium metal batteries. Adv. Energy Mater., 2022, 12(42), 2202432. doi:10.1002/aenm.202202432http://dx.doi.org/10.1002/aenm.202202432
Wang L.; Xu S. G.; Wang Z.; Yang E. N.; Jiang W. Y.; Zhang S. H.; Jian X. G.; Hu F. Y. A nano fiber-gel composite electrolyte with high Li+ transference number for application in quasi-solid batteries. eScience, 2023, 3, 100090. doi:10.1016/j.esci.2022.100090http://dx.doi.org/10.1016/j.esci.2022.100090
Cao X. W.; Ma C.; Luo L.; Chen L.; Cheng H.; Orenstein R. S.; Zhang X. W. Nanofiber materials for lithium-ion batteries. Adv. Fiber Mater., 2023, 5(4), 1141-1197. doi:10.1007/s42765-023-00278-4http://dx.doi.org/10.1007/s42765-023-00278-4
Zhu J. D.; Yan C. Y.; Li G. Q.; Cheng H.; Li Y.; Liu T. Y.; Mao Q.; Cho H.; Gao Q.; Gao C. X.; Jiang M. J.; Dong X.; Zhang X. W. Recent developments of electrospun nanofibers for electrochemical energy storage and conversion. Energy Storage Mater., 2024, 65, 103111. doi:10.1016/j.ensm.2023.103111http://dx.doi.org/10.1016/j.ensm.2023.103111
Banitaba S. N.; Ehrmann A. Application of electrospun nanofibers for fabrication of versatile and highly efficient electrochemical devices: a review. Polymers, 2021, 13(11), 1741. doi:10.3390/polym13111741http://dx.doi.org/10.3390/polym13111741
Chen A. L.; Gao M. Y.; Mo L. L.; Wang J.; Xu Z.; Miao Y. E.; Liu T. X. Homogeneous electric field and Li+ flux regulation in three-dimensional nanofibrous composite framework for ultra-long-life lithium metal anode. J. Colloid Interface Sci., 2022, 614, 138-146. doi:10.1016/j.jcis.2022.01.087http://dx.doi.org/10.1016/j.jcis.2022.01.087
Ouyang Y.; Zong W.; Zhu X. B.; Mo L. L.; Chao G. J.; Fan W.; Lai F. L.; Miao Y. E.; Liu T. X.; Yu Y. A universal spinning-coordinating strategy to construct continuous metal-nitrogen-carbon heterointerface with boosted lithium polysulfides immobilization for 3D-printed Li-S batteries. Adv. Sci., 2022, 9(26), e2203181. doi:10.1002/advs.202203181http://dx.doi.org/10.1002/advs.202203181
Zhou C. Y.; Zong W.; Zhou G. Y.; Fan X. S.; Miao Y. E. Radical-functionalized polymer nanofiber composite separator for ultra-stable dendritic-free lithium metal batteries. Compos. Commun., 2021, 25, 100696. doi:10.1016/j.coco.2021.100696http://dx.doi.org/10.1016/j.coco.2021.100696
Zhu X. B.; Ouyang Y.; Chen J. W.; Zhu X. G.; Luo X.; Lai F. L.; Zhang H.; Miao Y. E.; Liu T. X. In situ extracted poly(acrylic acid) contributing to electrospun nanofiber separators with precisely tuned pore structures for ultra-stable lithium-sulfur batteries. J. Mater. Chem. A, 2019, 7(7), 3253-3263. doi:10.1039/c8ta11397ahttp://dx.doi.org/10.1039/c8ta11397a
Rettenwander D.; Geiger C. A.; Tribus M.; Tropper P.; Wagner R.; Tippelt G.; Lottermoser W.; Amthauer G. The solubility and site preference of Fe3+ in Li7-3xFexLa3Zr2O12 garnets. J. Solid State Chem., 2015, 230, 266-271.
Li Z.; Li C. Y.; Liu X. W.; Cao L.; Li P. P.; Wei R. C.; Li X.; Guo D.; Huang K. W.; Lai Z. P. Continuous electrical pumping membrane process for seawater lithium mining. Energy Environ. Sci., 2021, 14(5), 3152-3159. doi:10.1039/d1ee00354bhttp://dx.doi.org/10.1039/d1ee00354b
Wang X. X.; Yu G. F.; Zhang J.; Yu M.; Ramakrishna S.; Long Y. Z. Conductive polymer ultrafine fibers via electrospinning: preparation, physical properties and applications. Prog. Mater. Sci., 2021, 115, 100704. doi:10.1016/j.pmatsci.2020.100704http://dx.doi.org/10.1016/j.pmatsci.2020.100704
Li C. H.; Zhou S.; Dai L. J.; Zhou X. Y.; Zhang B.; Chen L. W.; Zeng T.; Liu Y. T.; Tang Y. F.; Jiang J.; Huang J. Y. Porous polyamine/PEO composite solid electrolyte for high performance solid-state lithium metal batteries. J. Mater. Chem. A, 2021, 9(43), 24661-24669. doi:10.1039/d1ta04599ghttp://dx.doi.org/10.1039/d1ta04599g
Liu X.; Qin M. H.; Sun W.; Zhang D. L.; Jian B. B.; Sun Z. H.; Wang S. J.; Li X. Study on cellulose nanofibers/aramid fibers lithium-ion battery separators by the heterogeneous preparation method. Int. J. Biol. Macromol., 2023, 225, 1476-1486. doi:10.1016/j.ijbiomac.2022.11.204http://dx.doi.org/10.1016/j.ijbiomac.2022.11.204
Liu J. W.; Wang J. N.; Zhu L.; Chen X.; Ma Q. Y.; Wang L.; Wang X.; Yan W. A high-safety and multifunctional MOFs modified aramid nanofiber separator for lithium-sulfur batteries. Chem. Eng. J., 2021, 411, 128540. doi:10.1016/j.cej.2021.128540http://dx.doi.org/10.1016/j.cej.2021.128540
Xie X.; Sheng L.; Arbizzani C.; Gao B.; Gao X. X.; Yang L.; Bai Y. Z.; Dong H. Y.; Liu G. J.; Wang T.; Huang X. L.; He J. P. Multi-functional groups decorated composite nanofiber separator with excellent chemical stability in ester-based electrolyte for enhancing the lithium-ion transport. J. Power Sources, 2023, 555, 232431. doi:10.1016/j.jpowsour.2022.232431http://dx.doi.org/10.1016/j.jpowsour.2022.232431
Yao S. Y.; Ramakrishna S.; Chen G. Recent advances in metal-organic frameworks based on electrospinning for energy storage. Adv. Fiber Mater., 2023, 5(5), 1592-1617. doi:10.1007/s42765-023-00287-3http://dx.doi.org/10.1007/s42765-023-00287-3
Yu W.; Shen L.; Lu X.; Han J. M.; Geng N. K.; Lai C. Y.; Xu Q. J.; Peng Y. T.; Min Y. L.; Lu Y. F. Novel composite separators based on heterometallic metal-organic frameworks improve the performance of lithium-ion batteries. Adv. Energy Mater., 2023, 13(22), 2204055. doi:10.1002/aenm.202204055http://dx.doi.org/10.1002/aenm.202204055
Chen Y. L.; Luo J. P.; Xu H.; Hou X. R.; Gong M.; Yang C. S.; Liu H. C.; Wei X. Q.; Zhou L.; Yin C. Q.; Li X. M. Core-shell structured polyimide@γ-Al2O3 nanofiber separators for lithium-ion batteries. ACS Appl. Energy Mater., 2023, 6(3), 1692-1701. doi:10.1021/acsaem.2c03581http://dx.doi.org/10.1021/acsaem.2c03581
Liu M. K.; Zhang P.; Qu Z. H.; Yan Y.; Lai C.; Liu T. X.; Zhang S. Q. Conductive carbon nanofiber interpenetrated graphene architecture for ultra-stable sodium ion battery. Nat. Commun., 2019, 10(1), 3917. doi:10.1038/s41467-019-11925-zhttp://dx.doi.org/10.1038/s41467-019-11925-z
Wu Q.; Xu Y. X.; Yao Z. Y.; Liu A. R.; Shi G. Q. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano, 2010, 4(4), 1963-1970. doi:10.1021/nn1000035http://dx.doi.org/10.1021/nn1000035
Yang S. N.; Cheng Y.; Xiao X.; Pang H. Development and application of carbon fiber in batteries. Chem. Eng. J., 2020, 384, 123294. doi:10.1016/j.cej.2019.123294http://dx.doi.org/10.1016/j.cej.2019.123294
Kim B. G.; Kang D. W.; Park G.; Park S. H.; Lee S. M.; Choi J. W. Electrospun Li-confinable hollow carbon fibers for highly stable Li-metal batteries. Chem. Eng. J., 2021, 422, 130017. doi:10.1016/j.cej.2021.130017http://dx.doi.org/10.1016/j.cej.2021.130017
Nakazawa S.; Matsuda Y.; Ochiai M.; Inafune Y.; Yamato M.; Tanaka M.; Kawakami H. Enhancing lithium ion conductivity and all-solid-state secondary battery performance in polymer composite electrolyte membranes with β-crystalline-rich poly(vinylidene fluoride) nanofibers. Electrochim. Acta, 2021, 394, 139114. doi:10.1016/j.electacta.2021.139114http://dx.doi.org/10.1016/j.electacta.2021.139114
Jiang J. M.; Nie G. D.; Nie P.; Li Z. W.; Pan Z. H.; Kou Z. K.; Dou H.; Zhang X. G.; Wang J. Nanohollow carbon for rechargeable batteries: Ongoing progresses and challenges. Nano Micro Lett., 2020, 12(1), 183. doi:10.1007/s40820-020-00521-2http://dx.doi.org/10.1007/s40820-020-00521-2
Zhou C. Y.; Wang J.; Zhu X. B.; Chen K.; Ouyang Y.; Wu Y.; Miao Y. E.; Liu T. X. A dual-functional poly(vinyl alcohol)/poly(lithium acrylate) composite nanofiber separator for ionic shielding of polysulfides enables high-rate and ultra-stable Li-S batteries. Nano Res., 2021, 14(5), 1541-1550. doi:10.1007/s12274-020-3213-yhttp://dx.doi.org/10.1007/s12274-020-3213-y
Belgibayeva A.; Berikbaikyzy S.; Sagynbay Y.; Turarova G.; Taniguchi I.; Bakenov Z. A review on electrospun polyvinylpyrrolidone-derived carbon composite nanofibers as advanced functional materials for energy storage applications and beyond. J. Mater. Chem. A, 2023, 11(23), 11964-11986. doi:10.1039/d3ta01198dhttp://dx.doi.org/10.1039/d3ta01198d
Zhang D. M.; Meng X. L.; Hou W. Y.; Hu W. H.; Mo J. S.; Yang T. R.; Zhang W. D.; Fan Q. X.; Liu L. H.; Jiang B.; Chu L. H.; Li M. C. Solid polymer electrolytes: ion conduction mechanisms and enhancement strategies. Nano Res. Energy, 2023, 2, e9120050. doi:10.26599/nre.2023.9120050http://dx.doi.org/10.26599/nre.2023.9120050
Sun C.; Han Z. Y.; Wang X.; Liu B.; Li Q.; Li H. S.; Xu J.; Cao J. M.; Wu X. L. Advanced carbons nanofibers-based electrodes for flexible energy storage devices. Adv. Funct. Mater., 2023, 33(52), 2305606. doi:10.1002/adfm.202305606http://dx.doi.org/10.1002/adfm.202305606
Mo L. L.; Zhou G. Y.; Ge P.; Miao Y. E.; Liu T. X. Flexible polytriphenylamine-based cathodes with reinforced energy-storage capacity for high-performance sodium-ion batteries. Sci. China Mater., 2022, 65(1), 32-42. doi:10.1007/s40843-021-1718-2http://dx.doi.org/10.1007/s40843-021-1718-2
Luo Z. G.; Liu S. N.; Cai Y. S.; Li S.; Pan A. Q.; Liang S. Q. Nitrogen/sulfur co-doped hollow carbon nanofiber anode obtained from polypyrrole with enhanced electrochemical performance for Na-ion batteries. Sci. Bull., 2018, 63(2), 126-132. doi:10.1016/j.scib.2017.12.024http://dx.doi.org/10.1016/j.scib.2017.12.024
Peng W.; Yang X. X.; Mao L. C.; Jin J. H.; Yang S. L.; Zhang J. J.; Li G. ZIF-67-derived Co nanoparticles anchored in N doped hollow carbon nanofibers as bifunctional oxygen electrocatalysts. Chem. Eng. J., 2021, 407, 127157. doi:10.1016/j.cej.2020.127157http://dx.doi.org/10.1016/j.cej.2020.127157
Hu X.; Zhong G. B.; Li J. W.; Liu Y. J.; Yuan J.; Chen J. X.; Zhan H. B.; Wen Z. H. Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ. Sci., 2020, 13(8), 2431-2440. doi:10.1039/d0ee00477dhttp://dx.doi.org/10.1039/d0ee00477d
Hao Y. N.; Hu F.; Chen Y.; Wang Y. H.; Xue J. J.; Yang S. Y.; Peng S. J. Recent progress of electrospun nanofibers for zinc-air batteries. Adv. Fiber Mater., 2022, 4(2), 185-202. doi:10.1007/s42765-021-00109-4http://dx.doi.org/10.1007/s42765-021-00109-4
Wu K. W.; He H.; Xue Q.; Zhang C. Q.; Qi X. Q.; Cabot A.; Hu X. B. CoSe2-decorated carbon nanofibers: a catalytic electrode for uniform Li2Se nucleation in lithium-selenium batteries. Chem. Eng. J., 2023, 466, 142988. doi:10.1016/j.cej.2023.142988http://dx.doi.org/10.1016/j.cej.2023.142988
Yang Y. B.; Wang S. X.; Zhang L. T.; Deng Y. F.; Xu H.; Qin X. S.; Chen G. H. CoS-interposed and Ketjen black-embedded carbon nanofiber framework as a separator modulation for high performance Li-S batteries. Chem. Eng. J., 2019, 369, 77-86. doi:10.1016/j.cej.2019.03.034http://dx.doi.org/10.1016/j.cej.2019.03.034
Wei C. B.; Han Y. L.; Liu H.; Gan R. H.; Li Q. Q.; Wang Y. L.; Hu P.; Ma C.; Shi J. L. Advanced lithium-sulfur batteries enabled by a SnS2-hollow carbon nanofibers flexible electrocatalytic membrane. Carbon, 2021, 184, 1-11. doi:10.1016/j.carbon.2021.08.004http://dx.doi.org/10.1016/j.carbon.2021.08.004
Xiao Z. C.; Zhou Y. N.; Wang X. W.; Cui J. W.; Yang M. Y.; Shu C. Y.; Han D. Z.; Zhou J. Q.; Peng C. X.; Tang W.; Wu Y. P. Dual-layered 3D composite skeleton enables spatially ordered lithium plating/stripping for lithium metal batteries with ultra-low N/P ratios. ACS Appl. Energy Mater., 2022, 5(11), 14071-14080. doi:10.1021/acsaem.2c02636http://dx.doi.org/10.1021/acsaem.2c02636
Huang Y. P.; Lai F. L.; Zhang L. S.; Lu H. Y.; Miao Y. E.; Liu T. X. Elastic carbon aerogels reconstructed from electrospun nanofibers and graphene as three-dimensional networked matrix for efficient energy storage/conversion. Sci. Rep., 2016, 6, 31541. doi:10.1038/srep31541http://dx.doi.org/10.1038/srep31541
Liu M. K.; Du Y. F.; Miao Y. E.; Ding Q. W.; He S. X.; Tjiu W. W.; Pan J. S.; Liu T. X. Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes. Nanoscale, 2015, 7(3), 1037-1046. doi:10.1039/c4nr06117ahttp://dx.doi.org/10.1039/c4nr06117a
Huang Y. P.; Zhang L. S.; Lu H. Y.; Lai F. L.; Miao Y. E.; Liu T. X. A highly flexible and conductive graphene-wrapped carbon nanofiber membrane for high-performance electrocatalytic applications. Inorg. Chem. Front., 2016, 3(7), 969-976. doi:10.1039/c6qi00101ghttp://dx.doi.org/10.1039/c6qi00101g
Xu W. W.; Liao X. B.; Xu W. N.; Zhao K. N.; Yao G.; Wu Q. L. Ion selective and water resistant cellulose nanofiber/MXene membrane enabled cycling Zn anode at high currents. Adv. Energy Mater., 2023, 13(14), 2300283. doi:10.1002/aenm.202300283http://dx.doi.org/10.1002/aenm.202300283
Li J. Y.; Song J. J.; Luo L. Q.; Zhang H. W.; Feng J. N.; Zhao X. X.; Guo X.; Dong H. H.; Chen S. Q.; Liu H.; Shao G. J.; Anthopoulos T. D.; Su Y. Q.; Wang F. Y.; Wang G. X. Synergy of MXene with Se infiltrated porous N-doped carbon nanofibers as Janus electrodes for high-performance sodium/lithium-selenium batteries. Adv. Energy Mater., 2022, 12(32), 2200894. doi:10.1002/aenm.202200894http://dx.doi.org/10.1002/aenm.202200894
Mercante L. A.; Andre R. S.; Facure M. H. M.; Correa D. S.; Mattoso L. H. C. Recent progress in conductive electrospun materials for flexible electronics: Energy, sensing, and electromagnetic shielding applications. Chem. Eng. J., 2023, 465, 142847. doi:10.1016/j.cej.2023.142847http://dx.doi.org/10.1016/j.cej.2023.142847
Liu J. T.; Xiao S. H.; Liu X. Q.; Wu R.; Niu X. B.; Xiang Y.; Chen J. S.; Yang C. H. Encapsulating Co9S8 nanocrystals into CNT-reinforced N-doped carbon nanofibers as a chainmail-like electrocatalyst for advanced Li-S batteries with high sulfur loading. Chem. Eng. J., 2021, 423, 130246. doi:10.1016/j.cej.2021.130246http://dx.doi.org/10.1016/j.cej.2021.130246
Jia C.; Xu Z.; Luo D. F.; Xiang H. X.; Zhu M. F. Flexible ceramic fibers: recent development in preparation and application. Adv. Fiber Mater., 2022, 4(4), 573-603. doi:10.1007/s42765-022-00133-yhttp://dx.doi.org/10.1007/s42765-022-00133-y
Yu X. W.; Manthiram A. A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater., 2021, 34, 282-300. doi:10.1016/j.ensm.2020.10.006http://dx.doi.org/10.1016/j.ensm.2020.10.006
Wu S. L.; Yu Z. F.; Nie X. L.; Wang Z. H.; Huang F. L.; Wei Q. F. Fast ion conduction nanofiber matrix composite electrolyte for dendrite-free solid-state sodium-ion batteries with wide temperature operation. Adv. Energy Mater., 2022, 12(48), 2202930. doi:10.1002/aenm.202202930http://dx.doi.org/10.1002/aenm.202202930
Chen S.; Chen Y. H.; Zhao Y.; Zhang L.; Zhu C.; Zhang Y. Y.; Liu S. J.; Xia S. H.; Yu J. Y.; Ding B.; Yan J. H. Status and strategies for fabricating flexible oxide ceramic micro-nanofiber materials. Mater. Today, 2022, 61, 139-168. doi:10.1016/j.mattod.2022.11.004http://dx.doi.org/10.1016/j.mattod.2022.11.004
Zhu P.; Yan C. Y.; Dirican M.; Zhu J. D.; Zang J.; Selvan R. K.; Chung C. C.; Jia H.; Li Y.; Kiyak Y.; Wu N. Q.; Zhang X. W. Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. J. Mater. Chem. A, 2018, 6(10), 4279-4285. doi:10.1039/c7ta10517ghttp://dx.doi.org/10.1039/c7ta10517g
Yang H.; Abdullah M.; Bright J.; Hu W. G.; Kittilstved K.; Xu Y. B.; Wang C. M.; Zhang X. W.; Wu N. Q. Polymer-ceramic composite electrolytes for all-solid-state lithium batteries: ionic conductivity and chemical interaction enhanced by oxygen vacancy in ceramic nanofibers. J. Power Sources, 2021, 495, 229796. doi:10.1016/j.jpowsour.2021.229796http://dx.doi.org/10.1016/j.jpowsour.2021.229796
Huang Y.; Song J. N.; Yang C.; Long Y. Z.; Wu H. Scalable manufacturing and applications of nanofibers. Mater. Today, 2019, 28, 98-113. doi:10.1016/j.mattod.2019.04.018http://dx.doi.org/10.1016/j.mattod.2019.04.018
Zhang Y. S.; Zhang X. L.; Silva S. R. P.; Ding B.; Zhang P.; Shao G. S. Lithium-sulfur batteries meet electrospinning: recent advances and the key parameters for high gravimetric and volume energy density. Adv. Sci., 2022, 9(4), e2103879. doi:10.1002/advs.202103879http://dx.doi.org/10.1002/advs.202103879
Joshi B.; Samuel E.; Kim Y. I.; Yarin A. L.; Swihart M. T.; Yoon S. S. Progress and potential of electrospinning-derived substrate-free and binder-free lithium-ion battery electrodes. Chem. Eng. J., 2022, 430, 132876. doi:10.1016/j.cej.2021.132876http://dx.doi.org/10.1016/j.cej.2021.132876
Wang X.; Zhang X. Y.; Fu G. T.; Tang Y. W. Recent progress of electrospun porous carbon-based nanofibers for oxygen electrocatalysis. Mater. Today Energy, 2021, 22, 100850. doi:10.1016/j.mtener.2021.100850http://dx.doi.org/10.1016/j.mtener.2021.100850
Yang X. L.; Chen Y. M.; Zhang C. M.; Duan G. G.; Jiang S. H. Electrospun carbon nanofibers and their reinforced composites: Preparation, modification, applications, and perspectives. Compos. Part B Eng., 2023, 249, 110386. doi:10.1016/j.compositesb.2022.110386http://dx.doi.org/10.1016/j.compositesb.2022.110386
Liu R. R.; Hou L. L.; Yue G. C.; Li H. K.; Zhang J. S.; Liu J.; Miao B. B.; Wang N.; Bai J.; Cui Z. M.; Liu T. X.; Zhao Y. Progress of fabrication and applications of electrospun hierarchically porous nanofibers. Adv. Fiber Mater., 2022, 4(4), 604-630. doi:10.1007/s42765-022-00132-zhttp://dx.doi.org/10.1007/s42765-022-00132-z
Wang Y.; Liu Y. K.; Liu Y. C.; Shen Q. Y.; Chen C. C.; Qiu F. Y.; Li P.; Jiao L. F.; Qu X. H. Recent advances in electrospun electrode materials for sodium-ion batteries. J. Energy Chem., 2021, 54, 225-241. doi:10.1016/j.jechem.2020.05.065http://dx.doi.org/10.1016/j.jechem.2020.05.065
Wang J.; Wang Z. Z.; Ni J. F.; Li L. Electrospinning for flexible sodium-ion batteries. Energy Storage Mater., 2022, 45, 704-719. doi:10.1016/j.ensm.2021.12.022http://dx.doi.org/10.1016/j.ensm.2021.12.022
Li J. W.; Zhang X. N.; Lu Y. Y.; Linghu K. L.; Wang C.; Ma Z. L.; He X. H. Electrospun fluorinated polyimide/polyvinylidene fluoride composite membranes with high thermal stability for lithium ion battery separator. Adv. Fiber Mater., 2022, 4(1), 108-118. doi:10.1007/s42765-021-00093-9http://dx.doi.org/10.1007/s42765-021-00093-9
Zhao H. J.; Deng N. P.; Wang G.; Ren H. R.; Kang W. M.; Cheng B. W. A core@sheath nanofiber separator with combined hardness and softness for lithium-metal batteries. Chem. Eng. J., 2021, 404, 126542. doi:10.1016/j.cej.2020.126542http://dx.doi.org/10.1016/j.cej.2020.126542
Chen X. R.; Li B. Q.; Zhu C.; Zhang R.; Cheng X. B.; Huang J. Q.; Zhang Q. A coaxial-interweaved hybrid lithium metal anode for long-lifespan lithium metal batteries. Adv. Energy Mater., 2019, 9(39), 1901932. doi:10.1002/aenm.201901932http://dx.doi.org/10.1002/aenm.201901932
Rathore P.; Schiffman, J. D. Beyond the single-nozzle: coaxial electrospinning enables innovative nanofiber chemistries, geometries, and applications. ACS Appl. Mater. Interfaces, 2021, 13(1), 48-66. doi:10.1021/acsami.0c17706http://dx.doi.org/10.1021/acsami.0c17706
Gao X. X.; Sheng L.; Yang L.; Xie X.; Li D. T.; Gong Y.; Cao M.; Bai Y. Z.; Dong H. Y.; Liu G. J.; Wang T.; Huang X. L.; He J. P. High-stability core-shell structured PAN/PVDF nanofiber separator with excellent lithium-ion transport property for lithium-based battery. J. Colloid Interface Sci., 2023, 636, 317-327. doi:10.1016/j.jcis.2023.01.033http://dx.doi.org/10.1016/j.jcis.2023.01.033
Ma Y. N.; Tang S. R.; Wang H. M.; Liang Y. X.; Zhang D. Y.; Xu X. Y.; Wang Q.; Li W. Bimetallic ZIFs-derived electrospun carbon nanofiber membrane as bifunctional oxygen electrocatalyst for rechargeable zinc-air battery. J. Energy Chem., 2023, 83, 138-149. doi:10.1016/j.jechem.2023.03.054http://dx.doi.org/10.1016/j.jechem.2023.03.054
Cai M.; Zhu J. W.; Yang C. C.; Gao R. Y.; Shi C.; Zhao J. B. A parallel bicomponent TPU/PI membrane with mechanical strength enhanced isotropic interfaces used as polymer electrolyte for lithium-ion battery. Polymers, 2019, 11(1), 185. doi:10.3390/polym11010185http://dx.doi.org/10.3390/polym11010185
Shi P. R.; Ma J. B.; Liu M.; Guo S. K.; Huang Y. F.; Wang S. W.; Zhang L. H.; Chen L. K.; Yang K.; Liu X. T.; Li Y. H.; An X. F.; Zhang D. F.; Cheng X.; Li Q. D.; Lv W.; Zhong G. M.; He Y. B.; Kang F. Y. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat. Nanotechnol., 2023, 18(6), 602-610. doi:10.1038/s41565-023-01341-2http://dx.doi.org/10.1038/s41565-023-01341-2
Lei W.; Li H.; Tang Y. X.; Shao H. Y. Progress and perspectives on electrospinning techniques for solid-state lithium batteries. Carbon Energy, 2022, 4(4), 539-575. doi:10.1002/cey2.180http://dx.doi.org/10.1002/cey2.180
Han Z. P.; Wang J. Q.; Liu S. P.; Zhang Q. H.; Liu Y. J.; Tan Y. Q.; Luo S. Y.; Guo F.; Ma J. Y.; Li P.; Ming X.; Gao C.; Xu Z. Electrospinning of neat graphene nanofibers. Adv. Fiber Mater., 2022, 4(2), 268-279. doi:10.1007/s42765-021-00105-8http://dx.doi.org/10.1007/s42765-021-00105-8
Fu L. W.; Feng Q.; Chen Y. J.; Fu J. Z.; Zhou X. J.; He C. L. Nanofibers for the immunoregulation in biomedical applications. Adv. Fiber Mater., 2022, 4(6), 1334-1356. doi:10.1007/s42765-022-00191-2http://dx.doi.org/10.1007/s42765-022-00191-2
Jung A.; Lee M. J.; Lee S. W.; Cho J.; Son J. G.; Yeom B. Phase separation-controlled assembly of hierarchically porous aramid nanofiber films for high-speed lithium-metal batteries. Small, 2022, 18(52), e2205355. doi:10.1002/smll.202205355http://dx.doi.org/10.1002/smll.202205355
Feng Z. X.; Mo L. L.; Chen K.; Qian Y. S.; Zhang L. Q.; Yang S. Y.; Bagherzadeh R.; Lai F. L.; Fan W.; Zhang C.; Miao Y. E.; Liu T. X. Nanofiber-interlocked holey graphene composite aerogel with self-adapting mechanical resilience for a highly reversible dendrite-free lithium metal anode. Sci. China Mater., 2023, 66(8), 3065-3074. doi:10.1007/s40843-022-2458-yhttp://dx.doi.org/10.1007/s40843-022-2458-y
Lai F. L.; Huang Y. P.; Zuo L. Z.; Gu H. H.; Miao Y. E.; Liu T. X. Electrospun nanofiber-supported carbon aerogel as a versatile platform toward asymmetric supercapacitors. J. Mater. Chem. A, 2016, 4(41), 15861-15869. doi:10.1039/c6ta04797ahttp://dx.doi.org/10.1039/c6ta04797a
Chen B. X.; Song Q. C.; Zhou Z. H.; Lu C. H. A novel sandwiched porous MXene/polyaniline nanofibers composite film for high capacitance supercapacitor electrode. Adv. Mater. Interfaces, 2021, 8(12), 2002168. doi:10.1002/admi.202002168http://dx.doi.org/10.1002/admi.202002168
Gleissner C.; Landsiedel J.; Bechtold T.; Pham T. Surface activation of high performance polymer fibers: a review. Polym. Rev., 2022, 62(4), 757-788. doi:10.1080/15583724.2022.2025601http://dx.doi.org/10.1080/15583724.2022.2025601
Jian Z.; Yang N. J.; Vogel M.; Leith S.; Schulte A.; Schönherr H.; Jiao T. P.; Zhang W. J.; Müller J.; Butz B.; Jiang X. Flexible diamond fibers for high-energy-density zinc-ion supercapacitors. Adv. Energy Mater., 2020, 10(44), 2002202. doi:10.1002/aenm.202070180http://dx.doi.org/10.1002/aenm.202070180
Dong N. X.; Wang J.; Chen N. J.; Liu B. X.; Tian G. F.; Qi S. L.; Sun G. H.; Wu D. Z. In situ reinforcing: ZrO2-armored hybrid polyimide separators for advanced and safe lithium-ion batteries. ACS Sustain. Chem. Eng., 2021, 9(18), 6250-6257. doi:10.1021/acssuschemeng.0c08818http://dx.doi.org/10.1021/acssuschemeng.0c08818
Zhu G. L.; Xia G. L.; Pan H. G.; Yu X. B. Size-controllable nickel sulfide nanoparticles embedded in carbon nanofibers as high-rate conversion cathodes for hybrid Mg-based battery. Adv. Sci., 2022, 9(13), e2106107. doi:10.1002/advs.202106107http://dx.doi.org/10.1002/advs.202106107
Miao Y. E.; Li F.; Lu H. Y.; Yan J. J.; Huang Y. P.; Liu T. X. Nanocubic-Co3O4 coupled with nitrogen-doped carbon nanofiber network: a synergistic binder-free catalyst toward oxygen reduction reactions. Compos. Commun., 2016, 1, 15-19. doi:10.1016/j.coco.2016.07.003http://dx.doi.org/10.1016/j.coco.2016.07.003
Niu B.; Hua T.; Xu B. G. Robust deposition of silver nanoparticles on paper assisted by polydopamine for green and flexible electrodes. ACS Sustainable Chem. Eng., 2020, 8(34), 12842-12851. doi:10.1021/acssuschemeng.0c03098http://dx.doi.org/10.1021/acssuschemeng.0c03098
Jia S. J.; Long J. T.; Li J. W.; Yang S. H.; Huang K. L.; Yang N.; Liang Y. H.; Xiao J. Biomineralized zircon-coated PVDF nanofiber separator for enhancing thermo- and electro-chemical properties of lithium ion batteries. J. Mater. Sci., 2020, 55(30), 14907-14921. doi:10.1007/s10853-020-05051-1http://dx.doi.org/10.1007/s10853-020-05051-1
Li J.; Jing M. X.; Li R.; Li L. X.; Huang Z. H.; Yang H.; Liu M. Q.; Hussain S.; Xiang J.; Shen X. Q. Al2O3 fiber-reinforced polymer solid electrolyte films with excellent lithium-ion transport properties for high-voltage solid-state lithium batteries. ACS Appl. Polym. Mater., 2022, 4(10), 7144-7151. doi:10.1021/acsapm.2c01034http://dx.doi.org/10.1021/acsapm.2c01034
Wang Y. L.; Zheng Y. C.; Zhao J. P.; Li Y. Flexible fiber-shaped lithium and sodium-ion batteries with exclusive ion transport channels and superior pseudocapacitive charge storage. J. Mater. Chem. A, 2020, 8(22), 11155-11164. doi:10.1039/d0ta01908ahttp://dx.doi.org/10.1039/d0ta01908a
Zhao H. J.; Deng N. P.; Kang W. M.; Cheng B. W. Designing of multilevel-nanofibers-based organic-inorganic hybrid gel electrolyte enabling an innovative lithium-ion battery with superior ionic transport capability and advanced security. Chem. Eng. J., 2020, 390, 124571. doi:10.1016/j.cej.2020.124571http://dx.doi.org/10.1016/j.cej.2020.124571
Huang C.; Thomas N. L. Fabrication of porous fibers via electrospinning: strategies and applications. Polym. Rev., 2020, 60(4), 595-647. doi:10.1080/15583724.2019.1688830http://dx.doi.org/10.1080/15583724.2019.1688830
Wang J.; Xu Z.; Zhang Q. C.; Song X.; Lu X. K.; Zhang Z. Y.; Onyianta A. J.; Wang M. N.; Titirici M. M.; Eichhorn S. J. Stable sodium-metal batteries in carbonate electrolytes achieved by bifunctional, sustainable separators with tailored alignment. Adv. Mater., 2022, 34(49), e2206367. doi:10.1002/adma.202206367http://dx.doi.org/10.1002/adma.202206367
Zhang F.; Si Y.; Yu J. Y.; Ding B. Electrospun porous engineered nanofiber materials: a versatile medium for energy and environmental applications. Chem. Eng. J., 2023, 456, 140989. doi:10.1016/j.cej.2022.140989http://dx.doi.org/10.1016/j.cej.2022.140989
Ren Q. J.; Shi Z. Q.; Yan L.; Zhang F. M.; Fan L. L.; Zhang L. J.; Lv W. J. High-performance sodium-ion storage: multi-channel carbon nanofiber freestanding anode contrived via ingenious solvent-induced phase separation. J. Mater. Chem. A, 2020, 8(38), 19898-19907. doi:10.1039/d0ta04841khttp://dx.doi.org/10.1039/d0ta04841k
Shin H. J.; Abbas S.; Kim J.; Cho J.; Ha H. Y. Near-perfect suppression of Li dendrite growth by novel porous hollow carbon fibers embedded with ZnO nanoparticles as stable and efficient anode for Li metal batteries. Chem. Eng. J., 2023, 464, 142713. doi:10.1016/j.cej.2023.142713http://dx.doi.org/10.1016/j.cej.2023.142713
Qian Y. S.; Chen K.; Feng Z. X.; Ouyang Y.; Lan Q. Q.; Zhang C.; Feng W.; Miao Y. E.; Liu T. X. A fluorinated-polyimide-based composite nanofibrous separator with homogenized pore size for wide-temperature lithium metal batteries. Small Struct., 2023, 4(8), 2200383. doi:10.1002/sstr.202200383http://dx.doi.org/10.1002/sstr.202200383
Kang J. B.; Deng N. P.; Shi D. J.; Feng Y.; Wang Z. Y.; Gao L.; Song Y. X.; Zhao Y. X.; Cheng B. W.; Li G.; Kang W. M.; Zhang K. Heterojunction-accelerating lithium salt dissociation in polymer solid electrolytes. Adv. Funct. Mater., 2023, 33(50), 2307263. doi:10.1002/adfm.202307263http://dx.doi.org/10.1002/adfm.202307263
Ao X.; Wang X. T.; Tan J. W.; Zhang S. L.; Su C. L.; Dong L.; Tang M. X.; Wang Z. C.; Tian B. B.; Wang H. H. Nanocomposite with fast Li+ conducting percolation network: solid polymer electrolyte with Li+ non-conducting filler. Nano Energy, 2021, 79, 105475. doi:10.1016/j.nanoen.2020.105475http://dx.doi.org/10.1016/j.nanoen.2020.105475
Wang Z. Y.; Du Z. J.; Liu Y. Y.; Knapp C. E.; Dai Y. H.; Li J. W.; Zhang W.; Chen R. W.; Guo F.; Zong W.; Gao X.; Zhu J. X.; Wei C. L.; He G. J. Metal-organic frameworks and their derivatives for optimizing lithium metal anodes. eScience, 2023, 100189. doi:10.1016/j.esci.2023.100189http://dx.doi.org/10.1016/j.esci.2023.100189
Zheng S. J.; Zhu X. B.; Ouyang Y.; Chen K.; Chen A. L.; Fan X. S.; Miao Y. E.; Liu T. X.; Xie Y. Metal-organic framework decorated polymer nanofiber composite separator for physiochemically shielding polysulfides in stable lithium-sulfur batteries. Energy Fuels, 2021, 35(23), 19154-19163. doi:10.1021/acs.energyfuels.1c02081http://dx.doi.org/10.1021/acs.energyfuels.1c02081
Wang Q.; Li H. J.; Zhang R. X.; Liu Z. Z.; Deng H. Y.; Cen W. L.; Yan Y. G.; Chen Y. G. Oxygen vacancies boosted fast Mg2+ migration in solids at room temperature. Energy Storage Mater., 2022, 51, 630-637. doi:10.1016/j.ensm.2022.07.012http://dx.doi.org/10.1016/j.ensm.2022.07.012
Yang Q.; Deng N. P.; Zhao Y. X.; Gao L.; Liu W. C.; Liu Y. R.; Cheng B. W.; Kang W. M. Dendritic sulfonated polyethersulfone nanofiber membrane@LaCoO3 nanowire-based composite solid electrolytes with facilitated ion transport channels for high-performance all-solid-state lithium metal batteries. J. Mater. Chem. A, 2023, 11(6), 2780-2792. doi:10.1039/d2ta08680hhttp://dx.doi.org/10.1039/d2ta08680h
Ye X.; Ruan J. F.; Pang Y. P.; Yang J. H.; Liu Y. F.; Huang Y. Z.; Zheng S. Y. Enabling a stable room-temperature sodium-sulfur battery cathode by building heterostructures in multichannel carbon fibers. ACS Nano, 2021, 15(3), 5639-5648. doi:10.1021/acsnano.1c00804http://dx.doi.org/10.1021/acsnano.1c00804
Li Z.; Zhang J. T.; Lou X. W. D. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed, 2015, 54(44), 12886-12890. doi:10.1002/anie.201506972http://dx.doi.org/10.1002/anie.201506972
Zhao C. C.; Yao X.; Yang H.; Jiao X. X.; Wang L. N. Hierarchical porous carbon nanofibers with lithiophilic metal oxide crystalline grains for long-life Li metal anodes. Compos. Commun., 2021, 26, 100789. doi:10.1016/j.coco.2021.100789http://dx.doi.org/10.1016/j.coco.2021.100789
Ouyang Y.; Zong W.; Wang J.; Xu Z.; Mo L. L.; Lai F. L.; Xu Z. L.; Miao Y. E.; Liu T. X. Multi-scale uniform Li regulation triggered by tunable electric field distribution on oxygen-functionalized porous framework for flexible Li-S full batteries. Energy Storage Mater., 2021, 42, 68-77. doi:10.1016/j.ensm.2021.07.009http://dx.doi.org/10.1016/j.ensm.2021.07.009
Mo L. L.; Chen A. L.; Ouyang Y.; Zong W.; Miao Y. E.; Liu T. X. Asymmetric sodiophilic host based on a Ag-modified carbon fiber framework for dendrite-free sodium metal anodes. ACS Appl. Mater. Interfaces, 2021, 13(41), 48634-48642. doi:10.1021/acsami.1c13018http://dx.doi.org/10.1021/acsami.1c13018
Su M. M.; Huang G.; Wang S. Q.; Wang Y. J.; Wang H. H. High safety separators for rechargeable lithium batteries. Sci. China Chem., 2021, 64(7), 1131-1156. doi:10.1007/s11426-021-1011-9http://dx.doi.org/10.1007/s11426-021-1011-9
Liu J. H.; Wang P.; Gao Z. H.; Li X. H.; Cui W. B.; Li R.; Ramakrishna S.; Zhang J.; Long Y. Z. Review on electrospinning anode and separators for lithium ion batteries. Renew. Sustain. Energy Rev., 2024, 189, 113939. doi:10.1016/j.rser.2023.113939http://dx.doi.org/10.1016/j.rser.2023.113939
Lin W. X.; Wang F.; Wang H. B.; Li H.; Fan Y.; Chan D.; Chen S. W.; Tang Y. X.; Zhang Y. Y. Thermal-stable separators: design principles and strategies towards safe lithium-ion battery operations. ChemSusChem, 2022, 15(24), e202201464. doi:10.1002/cssc.202201464http://dx.doi.org/10.1002/cssc.202201464
Lee D.; Jung A.; Liu P.; Yeom B. Coordinated self-assembly of ultraporous 3D aramid nanofibrous separators with a poly(vinyl alcohol) sheath for lithium-metal batteries. Energy Storage Mater., 2024, 65, 103107. doi:10.1016/j.ensm.2023.103107http://dx.doi.org/10.1016/j.ensm.2023.103107
Wang L. L.; Liu F.; Shao W. L.; Cui S. Z.; Zhao Y. M.; Zhou Y. M.; He J. X. Graphite oxide dopping polyimide nanofiber membrane via electrospinning for high performance lithium-ion batteries. Compos. Commun., 2019, 16, 150-157. doi:10.1016/j.coco.2019.09.004http://dx.doi.org/10.1016/j.coco.2019.09.004
Wang Y. Q.; Zhang Z. Q.; Dong L. T.; Jin Y. C. Reduced shuttle effect by dual synergism of lithium-sulfur batteries with polydopamine-modified polyimide separators. J. Membr. Sci., 2020, 595, 117581. doi:10.1016/j.memsci.2019.117581http://dx.doi.org/10.1016/j.memsci.2019.117581
Dirican M.; Yan C. Y.; Zhu P.; Zhang X. W. Composite solid electrolytes for all-solid-state lithium batteries. Mater. Sci. Eng. R Rep., 2019, 136, 27-46. doi:10.1016/j.mser.2018.10.004http://dx.doi.org/10.1016/j.mser.2018.10.004
Zhang Z.; Huang Y.; Zhang G. Z.; Chao L. Three-dimensional fiber network reinforced polymer electrolyte for dendrite-free all-solid-state lithium metal batteries. Energy Storage Mater., 2021, 41, 631-641. doi:10.1016/j.ensm.2021.06.030http://dx.doi.org/10.1016/j.ensm.2021.06.030
Ren Y. X.; Hatzell K. B. Elasticity-oriented design of solid-state batteries: challenges and perspectives. J. Mater. Chem. A, 2021, 9(24), 13804-13821. doi:10.1039/d1ta01545ahttp://dx.doi.org/10.1039/d1ta01545a
Zhang M. M.; Pan P.; Cheng Z. L.; Mao J. T.; Jiang L. Y.; Ni C. K.; Park S.; Deng K. Y.; Hu Y.; Fu K. K. Flexible, mechanically robust, solid-state electrolyte membrane with conducting oxide-enhanced 3D nanofiber networks for lithium batteries. Nano Lett., 2021, 21(16), 7070-7078. doi:10.1021/acs.nanolett.1c01704http://dx.doi.org/10.1021/acs.nanolett.1c01704
Zheng S. J.; Chen Y. Y.; Chen K.; Yang S. Y.; Bagherzadeh R.; Miao Y. E.; Liu T. X. In situ construction of polyether-based composite electrolyte with bi-phase ion conductivity and stable electrolyte/electrode interphase for solid-state lithium metal batteries. J. Mater. Chem. A, 2022, 10(37), 19641-19648. doi:10.1039/d2ta02229jhttp://dx.doi.org/10.1039/d2ta02229j
0
浏览量
276
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构