浏览全部资源
扫码关注微信
苏州大学 苏州市新型半导体光电材料与器件重点实验室 苏州 215123
E-mail: ywli@suda.edu.cn
纸质出版日期:2024-06-20,
网络出版日期:2024-04-10,
收稿日期:2024-01-15,
录用日期:2024-03-01
移动端阅览
曾光, 张奔, 李耀文. 液晶分子优化给体材料组装制备高性能有机太阳能电池. 高分子学报, 2024, 55(6), 698-708
Zeng, G.; Zhang, B.; Li, Y. W. Liquid-crystal-molecule assisted donor materials assembly for high-performance organic solar cells. Acta Polymerica Sinica, 2024, 55(6), 698-708
曾光, 张奔, 李耀文. 液晶分子优化给体材料组装制备高性能有机太阳能电池. 高分子学报, 2024, 55(6), 698-708 DOI: 10.11777/j.issn1000-3304.2024.24013.
Zeng, G.; Zhang, B.; Li, Y. W. Liquid-crystal-molecule assisted donor materials assembly for high-performance organic solar cells. Acta Polymerica Sinica, 2024, 55(6), 698-708 DOI: 10.11777/j.issn1000-3304.2024.24013.
活性层形貌优化是实现高效、稳定的体异质结有机太阳能电池(OSC)的关键,添加剂工程被广泛用于优化OSC活性层的膜形貌. 基于此,本文工作提出了一种利用具有简单结构的液晶分子4-氰基-4'-庚基联苯(7-CB)作为添加剂优化给体聚合物(PM6)在共混膜中聚集行为的策略. 通过掠入射广角X射线散射、原位吸收光谱及分子动力学模拟等表征发现,7-CB通过与PM6的烷基侧链之间的范德华力和CH/
π
相互作用诱导PM6规整排列
,增强了PM6之间的相互作用,提高了活性层薄膜的结晶度. 得益于此,无任何后处理的活性层薄膜中电荷传输得到改善,电荷重组被大幅抑制. 基于7-CB处理的PM6:L8-BO制备的硬质和柔性二元OSCs效率分别从15.41%和14.90%提高到18.01%和17.26%.
The optimization of the active layer morphology is the key to achieving efficient and stable bulk heterojunction organic solar cells (OSCs)
and additive engineering is widely used to optimize the film morphology of the active layer in OSCs. A strategy is proposed to optimize the aggregation behavior of donor polymer (PM6) in blended films by using a simple liquid crystal molecule 4-cyano-4'-heptylbiphenyl (7-CB) as an additive. Through wide-angle X-ray scattering
in situ
absorption spectroscopy and molecular dynamics simulation
it was found that 7-CB induced the regular arrangement of PM6 through the van der Waals force and CH/
π
interaction with the alkyl side chain of PM6
which enhanced the interaction between PM6 and PM6
and then enhanced the preaggregation of PM6 in solution
thus improving the crystallites of the active layer film. Benefit from this
charge transfer in the
active layer film without any post-treatment is improved
and charge recombination is greatly suppressed. The power conversion efficiency of rigid and flexible binary OSCs prepared by PM6:L8-BO based on 7-CB treatment was increased from 15.41% and 14.90% to 18.01% and 17.26%
respectively.
有机太阳能电池添加剂自组装
Organic solar cellsAdditiveSelf-assembly
李大伟, 马雪晴, 崔新悦, 陈亚男, 魏楠, 言行, 李翠红, 刘玉强, 刘亚辉, 薄志山. 含炔键的聚合物给体材料设计合成及在有机太阳能电池中的性能研究. 高分子学报, 2024, 55(1), 48-57.
Yang F.; Huang Y. T.; Li Y. W.; Li Y. F. Large-area flexible organic solar cells. NPJ Flex. Electron., 2021, 5, 30. doi:10.1038/s41528-021-00128-6http://dx.doi.org/10.1038/s41528-021-00128-6
Sun Y. N.; Chang M. J.; Meng L. X.; Wan X. J.; Gao H. H.; Zhang Y. M.; Zhao K.; Sun Z. H.; Li C. X.; Liu S. R.; Wang H. K.; Liang J. J.; Chen Y. S. Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat. Electron., 2019, 2, 513-520. doi:10.1038/s41928-019-0315-1http://dx.doi.org/10.1038/s41928-019-0315-1
Zeng G.; Chen W. J.; Chen X. B.; Hu Y.; Chen Y.; Zhang B.; Chen H. Y.; Sun W. W.; Shen Y. X.; Li Y. W.; Yan F.; Li Y. F. Realizing 17.5% efficiency flexible organic solar cells via atomic-level chemical welding of silver nanowire electrodes. J. Am. Chem. Soc., 2022, 144(19), 8658-8668. doi:10.1021/jacs.2c01503http://dx.doi.org/10.1021/jacs.2c01503
Zhao B.; Chung S.; Zhang M.; Wei W. N.; Zhu C. F.; Deng C. H.; Cho K.; Kan Z. P. 18.9% efficiency binary organic solar cells enabled by regulating the intrinsic properties of PEDOT: PSS. Adv. Funct. Mater., 2024, 34(7), 2309832. doi:10.1002/adfm.202309832http://dx.doi.org/10.1002/adfm.202309832
Wang J. Q.; Wang Y. F.; Bi P. Q.; Chen Z. H.; Qiao J. W.; Li J. Y.; Wang W. X.; Zheng Z.; Zhang S. Q.; Hao X. T.; Hou J. H. Binary organic solar cells with 19.2% efficiency enabled by solid additive. Adv. Mater., 2023, 35(25), e2301583. doi:10.1002/adma.202301583http://dx.doi.org/10.1002/adma.202301583
He X. Y.; Liu Z. X.; Chen H. Z.; Li C. Z. Selectively modulating componential morphologies of bulk heterojunction organic solar cells. Adv. Mater., 2024, 36(7), e2306681. doi:10.1002/adma.202306681http://dx.doi.org/10.1002/adma.202306681
Lv M.; Wang Q. Y.; Zhang J. Q.; Wang Y. H.; Zhang Z. G.; Wang T.; Zhang H.; Lu K.; Wei Z. X.; Deng D. Strengthening the hetero-molecular interactions in giant dimeric acceptors enables efficient organic solar cells. Adv. Mater., 2024, 36(4), 2310046. doi:10.1002/adma.202310046http://dx.doi.org/10.1002/adma.202310046
Chen L.; Ma R. J.; Yi J. C.; Dela Peña T. A.; Li H. X.; Wei Q.; Yan C. Q.; Wu J. Y.; Li M. J.; Cheng P.; Yan H.; Zhang G. Y.; Li G. Exploiting the donor-acceptor-additive interaction's morphological effect on the performance of organic solar cells. Aggregate, 2023, e455. doi:10.1002/agt2.455http://dx.doi.org/10.1002/agt2.455
Ran Y. Y.; Liang C. X.; Xu Z. H.; Jing W. W.; Xu X. P.; Duan Y. W.; Li R. P.; Yu L. Y.; Peng Q. Developing efficient benzene additives for 19.43% efficiency of organic solar cells by crossbreeding effect of fluorination and bromination. Adv. Funct. Mater., 2024, 34(8), 2311512. doi:10.1002/adfm.202311512http://dx.doi.org/10.1002/adfm.202311512
Gokulnath T.; Kim J.; Kim H.; Park J.; Song D.; Park H. Y.; Kumaresan R.; Kim Y. Y.; Yoon J.; Jin S. H. Finely tuned molecular packing realized by a new rhodanine-based acceptor enabling excellent additive-free small- and large-area organic photovoltaic devices approaching 19 and 12.20% efficiencies. ACS Appl. Mater. Interfaces, 2023, 15(15), 19307-19318. doi:10.1021/acsami.3c01121http://dx.doi.org/10.1021/acsami.3c01121
Wang Y. F.; Liang Z. Z.; Liang X. F.; Wen X. M.; Cai Z. Z.; Shao Z. M.; Zhang J. B.; Ran Y. X.; Yan L. H.; Lu G. H.; Huang F.; Hou L. T. Easy isomerization strategy for additives enables high-efficiency organic solar cells. Adv. Energy Mater., 2023, 13(22), 2300524. doi:10.1002/aenm.202300524http://dx.doi.org/10.1002/aenm.202300524
Song X.; Zhang K.; Guo R. J.; Sun K.; Zhou Z. X.; Huang S. L.; Huber L.; Reus M.; Zhou J. G.; Schwartzkopf M.; Roth S. V.; Liu W. Z.; Liu Y.; Zhu W. G.; Müller-Buschbaum P. Process-aid solid engineering triggers delicately modulation of Y-series non-fullerene acceptor for efficient organic solar cells. Adv. Mater., 2022, 34(20), 2200907. doi:10.1002/adma.202200907http://dx.doi.org/10.1002/adma.202200907
Xue W. Y.; Liang Z. Z.; Tang Y. B.; Zhao C.; Yan L. H.; Ma W.; Yan H. Solid solvation assisted electrical doping conserves high-performance in 500 nm active layer organic solar cells. Adv. Funct. Mater., 2023, 33(42), 2304960. doi:10.1002/adfm.202304960http://dx.doi.org/10.1002/adfm.202304960
Zhong Z. Y.; Chen S. H.; Zhao J.; Xie J. X.; Zhang K.; Jia T.; Zhu C.; Jing J. H.; Liang Y. C.; Hong L.; Zhu S. T.; Ma D. G.; Huang F. Non-halogen solvent processed binary organic solar cells with efficiency of 19% and module efficiency over 15% enabled by asymmetric alkyl chain engineering. Adv. Energy Mater., 2023, 13(39), 2302273. doi:10.1002/aenm.202302273http://dx.doi.org/10.1002/aenm.202302273
McDowell C.; Abdelsamie M.; Toney M. F.; Bazan G. C. Solvent additives: key morphology-directing agents for solution-processed organic solar cells. Adv. Mater., 2018, 30(33), 1707114. doi:10.1002/adma.201707114http://dx.doi.org/10.1002/adma.201707114
Xu X. M.; Fukuda K.; Karki A.; Park S.; Kimura H.; Jinno H.; Watanabe N.; Yamamoto S.; Shimomura S.; Kitazawa D.; Yokota T.; Umezu S.; Nguyen T. Q.; Someya T. Thermally stable, highly efficient, ultraflexible organic photovoltaics. Proc. Natl. Acad. Sci. USA, 2018, 115(18), 4589-4594. doi:10.1073/pnas.1801187115http://dx.doi.org/10.1073/pnas.1801187115
Xue J. W.; Zhao H.; Zhao C.; Tang L. X.; Wang Y. L.; Xin J. M.; Bi Z. Z.; Zhou K.; Ma W. Releasing acceptor from donor matrix to accelerate crystallization kinetics with a second donor toward high-efficiency green-printable organic photovoltaics. Adv. Funct. Mater., 2023, 33(36), 2303403. doi:10.1002/adfm.202303403http://dx.doi.org/10.1002/adfm.202303403
Kumar M.; Kumar S. Liquid crystals in photovoltaics: a new generation of organic photovoltaics. Polym. J., 2017, 49(1), 85-111. doi:10.1038/pj.2016.109http://dx.doi.org/10.1038/pj.2016.109
Liu C. H.; Fu Y. W.; Zhou J. P.; Wang L.; Guo C. H.; Cheng J. C.; Sun W.; Chen C.; Zhou J.; Liu D.; Li W.; Wang T. Alkoxythiophene-directed fibrillization of polymer donor for efficient organic solar cells. Adv. Mater., 2024, 36(6), 2308608. doi:10.1002/adma.202308608http://dx.doi.org/10.1002/adma.202308608
Khasbaatar A.; Xu Z.; Lee J. H.; Campillo-Alvarado G.; Hwang C.; Onusaitis B. N.; Diao Y. From solution to thin film: molecular assembly of π-conjugated systems and impact on (opto)electronic properties. Chem. Rev., 2023, 123(13), 8395-8487. doi:10.1021/acs.chemrev.2c00905http://dx.doi.org/10.1021/acs.chemrev.2c00905
Spano F. C.; Silva C. H- and J-aggregate behavior in polymeric semiconductors. Annu. Rev. Phys. Chem., 2014, 65, 477-500. doi:10.1146/annurev-physchem-040513-103639http://dx.doi.org/10.1146/annurev-physchem-040513-103639
Shen Z. C.; Yu J. D.; Lu G. Y.; Wu K. M.; Wang Q. Y.; Bu L. J.; Liu X. F.; Zhu Y. W.; Lu G. H. Surface crystallinity enhancement in organic solar cells induced by spinodal demixing of acceptors and additives. Energy Environ. Sci., 2023, 16(7), 2945-2956. doi:10.1039/d3ee00090ghttp://dx.doi.org/10.1039/d3ee00090g
Kang H.; Jing Y. N.; Zhang Y. Y.; Li Y. X.; Zhang H.; Zhou H. Q.; Zhang Y. 1,8,9-Trihydroxyanthracene as a green solid additive for operational stability in organic solar cells. Sol. RRL, 2023, 7(5), 2201084. doi:10.1002/solr.202201084http://dx.doi.org/10.1002/solr.202201084
Wang Y. L.; Xue J. W.; Zhong H. Y.; Everett C. R.; Jiang X. Y.; Reus M. A.; Chumakov A.; Roth S. V.; Adedeji M. A.; Jili N.; Zhou K.; Lu G. H.; Tang Z.; Mola G. T.; Müller-Buschbaum P.; Ma W. Control of the crystallization and phase separation kinetics in sequential blade-coated organic solar cells by optimizing the upper layer processing solvent. Adv. Energy Mater., 2023, 13(7), 2203496. doi:10.1002/aenm.202203496http://dx.doi.org/10.1002/aenm.202203496
Wang J.; Bi P.; Wang Y.; Zheng Z.; Chen Z.; Qiao J.; Wang W.; Li J.; An C.; Zhang S.; Hao X.; Hou J. Manipulating film formation kinetics enables organic photovoltaic cells with 19.5% efficiency. CCS Chem., 2023, Doi: 10.31635/ccschem. 023.202302907.http://dx.doi.org/10.31635/ccschem.023.202302907.
van Franeker J. J.; Turbiez M.; Li W. W.; Wienk M. M.; Janssen R. A. J. A real-time study of the benefits of co-solvents in polymer solar cell processing. Nat. Commun., 2015, 6, 6229. doi:10.1038/ncomms7229http://dx.doi.org/10.1038/ncomms7229
Naveed H. B.; Ma W. Miscibility-driven optimization of nanostructures in ternary organic solar cells using non-fullerene acceptors. Joule, 2018, 2(4), 621-641. doi:10.1016/j.joule.2018.02.010http://dx.doi.org/10.1016/j.joule.2018.02.010
Wei Y. N.; Cai Y. H.; Gu X. B.; Yao G.; Fu Z.; Zhu Y. X.; Yang J. F.; Dai J. P.; Zhang J. Q.; Zhang X.; Hao X. T.; Lu G. H.; Tang Z.; Peng Q.; Zhang C. F.; Huang H. Over 18% efficiency ternary organic solar cells with 300 nm thick active layer enabled by an oligomeric acceptor. Adv. Mater., 2024, 36(2), e2304225. doi:10.1002/adma.202304225http://dx.doi.org/10.1002/adma.202304225
Wang C. X.; Ma X. M.; Shen Y. F.; Deng D.; Zhang H.; Wang T.; Zhang J. Q.; Li J.; Wang R.; Zhang L. L.; Cheng Q.; Zhang Z. Q.; Zhou H. Q.; Tian C. Y.; Wei Z. X. Unique assembly of giant star-shaped trimer enables non-halogen solvent-fabricated, thermal stable, and efficient organic solar cells. Joule, 2023, 7(10), 2386-2401. doi:10.1016/j.joule.2023.09.001http://dx.doi.org/10.1016/j.joule.2023.09.001
Fu Y. W.; Wang L.; Guo C. H.; Li D. H.; Cai J. L.; Zhou B. J.; Chen C.; Liu C. H.; Liu D.; Li W.; Wang T. Side chain length and interaction mediated charge transport networks of non-fullerene acceptors for efficient organic solar cells. ACS Mater. Lett., 2022, 4(10), 2009-2018. doi:10.1021/acsmaterialslett.2c00764http://dx.doi.org/10.1021/acsmaterialslett.2c00764
Ren W. H.; Li S. Q.; Ren J. K.; Liu Y. F.; Wu Y. K.; Sun Q. J.; Cui Y. X.; Hao Y. Y. Cyano-4'-Pentylbipheny dopant strategy for P3HT-Based CsPbI3 perovskite solar cells with a record efficiency and preeminent stability. Chem. Eng. J., 2023, 455, 140831. doi:10.1016/j.cej.2022.140831http://dx.doi.org/10.1016/j.cej.2022.140831
Chen H. Y.; Zhang R.; Chen X. B.; Zeng G.; Kobera L.; Abbrent S.; Zhang B.; Chen W. J.; Xu G. Y.; Oh J.; Kang S. H.; Chen S. S.; Yang C.; Brus J.; Hou J. H.; Gao F.; Li Y. W.; Li Y. F. A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents. Nat. Energy, 2021, 6, 1045-1053. doi:10.1038/s41560-021-00923-5http://dx.doi.org/10.1038/s41560-021-00923-5
Sun W. W.; Chen H. Y.; Zhang B.; Cheng Q. R.; Yang H. Y.; Chen Z. Y.; Zeng G.; Ding J. Y.; Chen W. J.; Li Y. W. Host-guest active layer enabling annealing-free, nonhalogenated green solvent processing for high-performance organic solar cells. Chin. J. Chem., 2022, 40(24), 2963-2972. doi:10.1002/cjoc.202200437http://dx.doi.org/10.1002/cjoc.202200437
Huang Y.; Chen H.; Fan Q.; Chen Z.; Ding J.; Yang H.; Sun Z.; Zhang R.; Chen W.; Yang C.; Gao F.; Li Y. Host-guest strategy enabling nonhalogenated solvent processing for high-performance all-polymer hosted solar cells. Chin. J. Chem. 2023, 41, 1066-1074. doi:10.1002/cjoc.202200770http://dx.doi.org/10.1002/cjoc.202200770
0
浏览量
207
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构