浏览全部资源
扫码关注微信
西南科技大学 环境友好能源材料国家重点实验室 材料与化学学院 绵阳 621010
E-mail: zhangqp@swust.edu.cn
纸质出版日期:2024-09-20,
网络出版日期:2024-04-23,
收稿日期:2024-01-15,
录用日期:2024-02-17
移动端阅览
罗非艳, 李岩潼, 何利, 张迦宇, 李佳乐, 孙囡, 张全平. 双原位合成超低填充硼酸钙/聚对苯二甲酸乙二醇酯纳米复合材料及其介电储能研究. 高分子学报, 2024, 55(9), 1207-1215
Luo, F. Y.; Li, Y. T.; He, L.; Zhang, J. Y.; Li, J. L; Sun, N.; Zhang, Q. P. Dual in situ synthesis of ultra-low filled calcium borate/polyethylene terephthalate nanocomposites for excellent capacitive properities. Acta Polymerica Sinica, 2024, 55(9), 1207-1215
罗非艳, 李岩潼, 何利, 张迦宇, 李佳乐, 孙囡, 张全平. 双原位合成超低填充硼酸钙/聚对苯二甲酸乙二醇酯纳米复合材料及其介电储能研究. 高分子学报, 2024, 55(9), 1207-1215 DOI: 10.11777/j.issn1000-3304.2024.24014.
Luo, F. Y.; Li, Y. T.; He, L.; Zhang, J. Y.; Li, J. L; Sun, N.; Zhang, Q. P. Dual in situ synthesis of ultra-low filled calcium borate/polyethylene terephthalate nanocomposites for excellent capacitive properities. Acta Polymerica Sinica, 2024, 55(9), 1207-1215 DOI: 10.11777/j.issn1000-3304.2024.24014.
引入超低含量纳米粒子至聚合物基体能够同时改善介电常数和击穿强度,从而显著提升聚合物薄膜电容储能密度,有助于器件小型化. 目前溶液共混策略中的有机溶剂回收及环境安全等诸多因素限制了超低填充聚合物纳米复合材料规模化制备及应用. 本文工作提出双原位合成策略:聚对苯二甲酸乙二醇酯(PET)聚合与硼酸钙纳米粒子生长同步,无需任何溶剂实现0.2 wt%硼酸钙纳米粒子均匀分散于PET基体,且界面良好相容. 聚酯纳米复合材料介电常数为4.91,最大储能密度为10.69 J/cm
3
,是纯PET 1.94倍. 这种双原位合成策略能潜在扩展其他聚酯纳米复合体系,且能批量化制备,为探索聚酯纳米复合材料电能存储和其他应用提供理论依据.
Incorporating ultra-low loading of nanoparticles into polymer matrices can simultaneously improve the dielectric constant and breakdown strength
thereby significantly increasing the capacitance energy storage density of polymer nanocomposites and miniaturing electronics and devices. However
there are still a series of tough issues to be dealt with
such as the use of organic solvents in the current solution blending
which face enormous challenges in scalable preparation and application of the polymer nanocomposites. Here
a dual
in situ
synthesis strategy is proposed
namely the polymerization of poly(ethylene terephthalate) (PET) synchronizes with the growth of calcium borate nanoparticles. In particular
0.2 wt% calcium borate nanoparticles are uniformly dispersed in the PET matrix without any solvent
and rich compatibility of the interfaces occurs. The dielectric constant reaches 4.91 and the maximum energy storage density is up to 10.69 J/cm
3
which is 1.94 times that of neat PET. The unique dual
in situ
synthesis strategy tends to be extended to the scalable fabrication of polyester nanocomposites filled with a variety of borates
which paves a way for exploring electrical energy storage and other applications of polyester nanocomposites.
双原位超低填充介电性能储能密度
Dual in situ synthesisUltra-low filledDielectric propertiesEnergy storage density
Feng Q. K.; Zhong S. L.; Pei J. Y.; Zhao Y.; Zhang D. L.; Liu D. F.; Zhang Y. X.; Dang Z. M. Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors. Chem. Rev., 2022, 122(3), 3820-3878. doi:10.1021/acs.chemrev.1c00793http://dx.doi.org/10.1021/acs.chemrev.1c00793
Chen Q.; Shen Y.; Zhang S. H.; Zhang Q. M. Polymer-based dielectrics with high energy storage density. Annu. Rev. Mater. Res., 2015, 45, 433-458. doi:10.1146/annurev-matsci-070214-021017http://dx.doi.org/10.1146/annurev-matsci-070214-021017
胡静文, 段广宇, 胡祖明, 于俊荣, 王彦, 诸静. 改性钛酸钡/聚间苯二甲酰间苯二胺复合薄膜的制备与介电性能. 高分子材料科学与工程, 2021, 37(5), 50-59.
成桑, 李雨抒, 梁家杰, 李琦. 介电高分子及其纳米复合材料的电容储能应用. 高分子学报, 2020, 51(5), 469-483. doi:10.11777/j.issn1000-3304.2020.20001http://dx.doi.org/10.11777/j.issn1000-3304.2020.20001
钟少龙, 郑明胜, 邢照亮, 陈新, 黄河, 张翔宇, 许振波, 党智敏. 无机颗粒形状对高储能密度有机复合材料介电性能的影响. 复合材料学报, 2020, 37(11), 2760-2768. doi:10.13801/j.cnki.fhclxb.20200728.001http://dx.doi.org/10.13801/j.cnki.fhclxb.20200728.001
Zhang T. D.; Sun H.; Yin C.; Jung Y. H.; Min S.; Zhang Y.; Zhang C. H.; Chen Q. G.; Lee K. J.; Chi Q. G. Recent progress in polymer dielectric energy storage: from film fabrication and modification to capacitor performance and application. Prog. Mater. Sci., 2023, 140, 101207. doi:10.1016/j.pmatsci.2023.101207http://dx.doi.org/10.1016/j.pmatsci.2023.101207
Wu X. D.; Chen X.; Zhang Q. M.; Tan D. Q. Advanced dielectric polymers for energy storage. Energy Storage Mater., 2022, 44, 29-47. doi:10.1016/j.ensm.2021.10.010http://dx.doi.org/10.1016/j.ensm.2021.10.010
Luo H.; Wang F.; Guo R.; Zhang D.; He G. H.; Chen S.; Wang Q. Progress on polymer dielectrics for electrostatic capacitors application. Adv. Sci., 2022, 9(29), 2202438. doi:10.1002/advs.202202438http://dx.doi.org/10.1002/advs.202202438
赵宇霄, 冯鑫, 冯晨曦, 王玉辉, 程金雪, 于晓亮, 郭敏杰. 微/纳米多孔低介电聚酰亚胺薄膜的研究进展. 高分子材料科学与工程, 2023, 39(5), 173-181.
Yang M. Z.; Guo M. F.; Xu E. X.; Ren W. B.; Wang D. Y.; Li S. A.; Zhang S. J.; Nan C. W.; Shen Y. Polymer nanocomposite dielectrics for capacitive energy storage. Nat. Nanotechnol., 2024, Doi: 10.1038/s41565-023-01541-w.http://dx.doi.org/10.1038/s41565-023-01541-w.
Zhang X.; Chen W. W.; Wang J. J.; Shen Y.; Gu L.; Lin Y. H.; Nan C. W. Hierarchical interfaces induce high dielectric permittivity in nanocomposites containing TiO2@BaTiO3 nanofibers. Nanoscale, 2014, 6(12), 6701-6709. doi:10.1039/c4nr00703dhttp://dx.doi.org/10.1039/c4nr00703d
张全平, 陈瑞超, 杜芳艳, 刘修, 李银涛, 杨文彬, 周元林. 高填充钛酸钡/氟硅橡胶纳米复合材料制备及介电性能调控. 高分子材料科学与工程, 2022, 38(2), 17-23. doi:10.16865/j.cnki.1000-7555.2022.0028http://dx.doi.org/10.16865/j.cnki.1000-7555.2022.0028
张慧, 衡婷婷, 房正刚, 胡欣, 方亮, 陆春华. 高储能陶瓷/聚偏氟乙烯复合电介质的研究进展. 复合材料学报, 2021, 38(7), 2107-2122. doi:10.13801/j.cnki.fhclxb.20201030.002http://dx.doi.org/10.13801/j.cnki.fhclxb.20201030.002
Hao Y. N.; Wang X. H.; Bi K.; Zhang J. M.; Huang Y. H.; Wu L. W.; Zhao P. Y.; Xu K.; Lei M.; Li L. T. Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films. Nano Energy, 2017, 31, 49-56. doi:10.1016/j.nanoen.2016.11.008http://dx.doi.org/10.1016/j.nanoen.2016.11.008
Shen Z. H.; Wang J. J.; Zhang X.; Lin Y. H.; Nan C. W.; Chen L. Q.; Shen Y. Space charge effects on the dielectric response of polymer nanocomposites. Appl. Phys. Lett., 2017, 111(9), 092901. doi:10.1063/1.4991079http://dx.doi.org/10.1063/1.4991079
Thakur Y.; Zhang T.; Iacob C.; Yang T. N.; Bernholc J.; Chen L. Q.; Runt J.; Zhang Q. M. Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers. Nanoscale, 2017, 9(31), 10992-10997. doi:10.1039/c7nr01932ghttp://dx.doi.org/10.1039/c7nr01932g
Zhang T.; Chen X.; Thakur Y.; Lu B.; Zhang Q. Y.; Runt J.; Zhang Q. M. A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature. Sci. Adv., 2020, 6(4), eaax6622. doi:10.1126/sciadv.aax6622http://dx.doi.org/10.1126/sciadv.aax6622
Che J. J.; Zakri C.; Ly I.; Neri W.; Laurichesse E.; Chapel J. P.; Poulin P.; Yuan J. K. High-energy-density waterborne dielectrics from polyelectrolyte-colloid complexes. Adv. Funct. Mater., 2023, 33(26), 2213804. doi:10.1002/adfm.202213804http://dx.doi.org/10.1002/adfm.202213804
Li L.; Cheng J. S.; Cheng Y. Y.; Han T.; Liu Y.; Zhou Y.; Zhao G. H.; Zhao Y.; Xiong C. X.; Dong L. J.; Wang Q. Significant improvements in dielectric constant and energy density of ferroelectric polymer nanocomposites enabled by ultralow contents of nanofillers. Adv. Mater., 2021, 33(35), 2102392. doi:10.1002/adma.202102392http://dx.doi.org/10.1002/adma.202102392
Luo H.; Zhou X. F.; Ellingford C.; Zhang Y.; Chen S.; Zhou K. C.; Zhang D.; Bowen C. R.; Wan C. Y. Interface design for high energy density polymer nanocomposites. Chem. Soc. Rev., 2019, 48(16), 4424-4465. doi:10.1039/c9cs00043ghttp://dx.doi.org/10.1039/c9cs00043g
Feng Y.; Li W. L.; Hou Y. F.; Yu Y.; Cao W. P.; Zhang T. D.; Fei W. D. Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape. J. Mater. Chem. C, 2015, 3(6), 1250-1260. doi:10.1039/c4tc02183ehttp://dx.doi.org/10.1039/c4tc02183e
Shen Z. H.; Wang J. J.; Lin Y. H.; Nan C. W.; Chen L. Q.; Shen Y. High-throughput phase-field design of high-energy-density polymer nanocomposites. Adv. Mater., 2018, 30(2), 1704380. doi:10.1002/adma.201704380http://dx.doi.org/10.1002/adma.201704380
Cacciari M.; Mazzanti G.; Montanari G. C. Weibull statistics in short-term dielectric breakdown of thin polyethylene films. IEEE Trans. Dielectr. Electr. Insul., 1994, 1(1), 153-159. doi:10.1109/94.300243http://dx.doi.org/10.1109/94.300243
Eaton, G. R. NMR of boron compounds. J. Chem. Educ., 1969, 46(9), 547. doi:10.1021/ed046p547http://dx.doi.org/10.1021/ed046p547
Bull S. D.; Davidson M. G.; van den Elsen J. M. H.; Fossey J. S.; Jenkins A. T. A.; Jiang Y. B.; Kubo Y. J.; Marken F.; Sakurai K.; Zhao J. Z.; James T. D. Exploiting the reversible covalent bonding of boronic acids: recognition, sensing, and assembly. Acc. Chem. Res., 2013, 46(2), 312-326. doi:10.1021/ar300130whttp://dx.doi.org/10.1021/ar300130w
Hubert A. J.; Hargitay B.; Dale J. The structure and relative stabilities of boric esters of 1,2- and 1,3-diols. J. Chem. Soc., 1961, 931. doi:10.1039/jr9610000931http://dx.doi.org/10.1039/jr9610000931
Bai C.; Wu Z. J.; Ye X. S.; Liu H. N.; Liu Z.; Zhang H. F.; Li Q.; Li J.; Wang X. M. Influence of the pH in reactions of boric acid/borax with simple hydroxyl compounds: investigation by Raman spectroscopy and DFT calculations. ChemistrySelect, 2019, 4(48), 14132-14139. doi:10.1002/slct.201903740http://dx.doi.org/10.1002/slct.201903740
Applegarth L. M. S. G. A.; Pye C. C.; Cox J. S.; Tremaine P. R. Raman spectroscopic and ab initio investigation of aqueous boric acid, borate, and polyborate speciation from 25 to 80 ℃. Ind. Eng. Chem. Res., 2017, 56(47), 13983-13996. doi:10.1021/acs.iecr.7b03316http://dx.doi.org/10.1021/acs.iecr.7b03316
Brooks W. L. A.; Sumerlin B. S. Synthesis and applications of boronic acid-containing polymers: from materials to medicine. Chem. Rev., 2016, 116(3), 1375-1397. doi:10.1021/acs.chemrev.5b00300http://dx.doi.org/10.1021/acs.chemrev.5b00300
柏春, 刘海宁, 刘忠, 叶秀深, 张慧芳, 李军, 吴志坚. 硼酸/硼砂与多羟基化合物在水溶液中的反应: pH、电导率、Raman光谱研究. 盐湖研究, 2020, 28(2), 56-64.
陈经涛. 硼酸与多羟基醇反应机理研究. 中国西部科技(学术), 2007, 6(11), 1-2. doi:10.3969/j.issn.1671-6396.2007.09.001http://dx.doi.org/10.3969/j.issn.1671-6396.2007.09.001
0
浏览量
244
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构