浏览全部资源
扫码关注微信
1.哈尔滨工程大学材料科学与化学工程学院 哈尔滨 150001
2.北京科技大学土木与资源工程学院 北京 100083
E-mail: zhanglili1984@hrbeu.edu.cn
shenjun@hrbeu.edu.cn
纸质出版日期:2024-09-20,
网络出版日期:2024-05-17,
收稿日期:2024-01-17,
录用日期:2024-02-23
移动端阅览
赵崴, 代枭, 张丽丽, 沈军. 直链淀粉衍生物对聚甲基丙烯酸甲酯热性能的影响研究. 高分子学报, 2024, 55(9), 1191-1199
Zhao, W.; Dai, X.; Zhang, L. L.; Shen, J. Effect of amylose derivatives on thermal properties of poly(methyl methacrylate). Acta Polymerica Sinica, 2024, 55(9), 1191-1199
赵崴, 代枭, 张丽丽, 沈军. 直链淀粉衍生物对聚甲基丙烯酸甲酯热性能的影响研究. 高分子学报, 2024, 55(9), 1191-1199 DOI: 10.11777/j.issn1000-3304.2024.24018.
Zhao, W.; Dai, X.; Zhang, L. L.; Shen, J. Effect of amylose derivatives on thermal properties of poly(methyl methacrylate). Acta Polymerica Sinica, 2024, 55(9), 1191-1199 DOI: 10.11777/j.issn1000-3304.2024.24018.
为探索自由基聚合所得聚合物结构与热性能的可控方法,采用氨基甲酸酯化法合成4种具有规则螺旋结构的直链淀粉衍生物,即直链淀粉-三(4-氯苯基氨基甲酸酯)、直链淀粉-三(苯基氨基甲酸酯)、直链淀粉-三(4-甲基苯基氨基甲酸酯)和直链淀粉-三(
S
-(-)-
α
-甲基苄基氨基甲酸酯)衍生物,并将其作为手性添加剂诱导甲基丙烯酸甲酯(MMA)的自由基聚合,进一步探究直链淀粉衍生物对所得聚甲基丙烯酸甲酯(PMMA)热性能的影响. 通过核磁共振氢谱和圆二色光谱等确认直链淀粉衍生物的结构规整,取代完全,并具有规则的手性螺旋结构. 采用凝胶色谱法、动态光散射、X射线衍射和热失重分析等对所得PMMA的分子量及其分布、分子链聚集行为和热性能进行了详细表征. 结果表明,由直链淀粉衍生物诱导所得PMMA的热稳定性能获得明显改善,其中以对位甲基取代直链淀粉衍生物的诱导效果最好,可使PMMA的玻璃化转变温度和起始分解温度分别提高26和71 ℃,为甲基丙烯酸酯类单体的可控聚合方法提供了新思路.
To investigate the effective procedure for controlled polymer structure and thermal properties through radical polymerization
amylose derivatives were used as chiral additives to induce the radical polymerization of methyl methacrylate (MMA). The effect of amylose derivatives on the structure and thermal properties of poly(methyl methacrylate) (PMMA) was subsequently explored. Four kinds of amylose derivatives were synthesized through carbamoylation
including amylose tri(4-chlorophenyl carbamate) (ACPC)
amylose tri(phenylcarbamate) (ATPC)
amylose tri(4-methylphenylcarbamate) (AMPC) and amylose tri(
S
-(-)-
α
-methylbenzyl carbamate) (ASMBC). The structures and degree of substitution of the amylose derivatives were characterized by magnetic resonance spectroscopy (
1
H-NMR) and circular dichroism (CD) spectra
demonstrating complete substitution and regular chiral helical structure of the obtained derivatives. The thermal stability of PMMA was assessed using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)
revealing a significant enhancement in the thermal stability of PMMA induced by amylose derivatives. Furthermore
the substituents properties of the derivatives and the polarity of the polymerization solvent significantly influenced the radical polymerization behavior of MMA. Both bulk polymerization and solution polymerization were effective in improving the thermal properties of PMMA
with the solution polymerization system utilizing non-polar octane as the solvent achieving the most significa
nt improvement. Among the amylose derivatives
the para-methyl-substituted amylose derivatives (AMPC) demonstrated the most effective induction effect
which could increase the glass transition temperature (
T
g
) and the onset decomposition temperature (
T
0
) of PMMA by 26 and 71 ℃
respectively. The induction mechanism of amylose derivatives was investigated using gel permeation chromatography (GPC)
dynamic laser light scattering (DLS) and X-ray diffraction (XRD). The results indicated that MMA monomers could be arranged in order along the chiral helical cavity of the derivatives. This ordered arrangement can not only improve the structure order of polymer molecular chains
but also have a positive effect on its aggregation behavior
thereby achieving effective control of the thermal properties of PMMA. It suggests that the radical polymerization behavior and thermal properties of MMA can be effectively regulated by selecting appropriate helical polymers
offering a novel idea for exploring the controlled radical polymerization method of methacrylate monomers.
直链淀粉衍生物聚甲基丙烯酸甲酯热稳定性自由基聚合
Amylose derivativesPoly(methyl methacrylate)Thermal stabilityFree radical polymerization
Ali U.; Karim K. J. B. A.; Buang N. A. A review of the properties and applications of poly(methyl methacrylate) (PMMA). Polym. Rev., 2015, 55(4), 678-705. doi:10.1080/15583724.2015.1031377http://dx.doi.org/10.1080/15583724.2015.1031377
Dalle-Ferrier C.; Kisliuk A.; Hong L.; Carini G. Jr, Carini, G.; D'Angelo, G.; Alba-Simionesco, C.; Novikov, V. N.; Sokolov, A. P. Why many polymers are so fragile: a new perspective. J. Chem. Phys., 2016, 145(15), 154901. doi:10.1063/1.4964362http://dx.doi.org/10.1063/1.4964362
Huang Y. C.; Liu W. S.; Tsao C. S.; Wang L. Mechanistic insights into the effect of polymer regioregularity on the thermal stability of polymer solar cells. ACS Appl. Mater. Interfaces, 2019, 11(43), 40310-40319. doi:10.1021/acsami.9b12482http://dx.doi.org/10.1021/acsami.9b12482
Torres J. M.; Wang C. Q.; Coughlin E. B.; Bishop J. P.; Register R. A.; Riggleman R. A.; Stafford C. M.; Vogt B. D. Influence of chain stiffness on thermal and mechanical properties of polymer thin films. Macromolecules, 2011, 44(22), 9040-9045. doi:10.1021/ma201482bhttp://dx.doi.org/10.1021/ma201482b
Yasmeen U.; Haq F.; Kiran M.; Farid A.; Ullah N.; Aziz T.; Haroon M.; Mehmood S.; Muzammal M.; Ghazanfar S.; Alhomrani M.; Alamri A. S.; Asdaq S. M. B.; Alghamdi S. A.; Ullah I. Synthesis of starch-grafted polymethyl methacrylate via free radical polymerization reaction and its application for the uptake of methylene blue. Molecules, 2022, 27(18), 5844. doi:10.3390/molecules27185844http://dx.doi.org/10.3390/molecules27185844
Choi Y. K.; Kim H. J.; Cho Y. M.; Ahn D. J. Enhanced thermal stability of polyaniline with polymerizable dopants. Macromolecules, 2017, 50(8), 3164-3170. doi:10.1021/acs.macromol.6b02586http://dx.doi.org/10.1021/acs.macromol.6b02586
Yildirim C.; Raty J. Y.; Micoulaut M. Revealing the role of molecular rigidity on the fragility evolution of glass-forming liquids. Nat. Commun., 2016, 7, 11086. doi:10.1038/ncomms11086http://dx.doi.org/10.1038/ncomms11086
Satoh K.; Kamigaito M. Stereospecific living radical polymerization: dual control of chain length and tacticity for precision polymer synthesis. Chem. Rev., 2009, 109(11), 5120-5156. doi:10.1021/cr900115uhttp://dx.doi.org/10.1021/cr900115u
Teator A. J.; Varner T. P.; Knutson P. C.; Sorensen C. C.; Leibfarth F. A. 100th Anniversary of macromolecular science viewpoint: the past, present, and future of stereocontrolled vinyl polymerization. ACS Macro Lett., 2020, 9(11), 1638-1654. doi:10.1021/acsmacrolett.0c00664http://dx.doi.org/10.1021/acsmacrolett.0c00664
John R. P.; Anisha G. S.; Nampoothiri K. M.; Pandey A. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol., 2011, 102(1), 186-193. doi:10.1016/j.biortech.2010.06.139http://dx.doi.org/10.1016/j.biortech.2010.06.139
Liu F. F.; Liu X.; Chen F.; Fu Q. Mussel-inspired chemistry: a promising strategy for natural polysaccharides in biomedical applications. Prog. Polym. Sci., 2021, 123, 101472. doi:10.1016/j.progpolymsci.2021.101472http://dx.doi.org/10.1016/j.progpolymsci.2021.101472
Yamamoto C.; Yashima E.; Okamoto Y. Structural analysis of amylose tris(3,5-dimethylphenylcarbamate) by NMR relevant to its chiral recognition mechanism in HPLC. J. Am. Chem. Soc., 2002, 124(42), 12583-12589. doi:10.1021/ja020828ghttp://dx.doi.org/10.1021/ja020828g
Shen J.; Okamoto Y. Efficient separation of enantiomers using stereoregular chiral polymers. Chem. Rev., 2016, 116(3), 1094-1138. doi:10.1021/acs.chemrev.5b00317http://dx.doi.org/10.1021/acs.chemrev.5b00317
Wang F.; Wang W. Q.; Wang Y. Q.; Zheng W.; Zheng T.; Zhang L. L.; Okamoto Y.; Shen J. Synthesis of amylose and cellulose derivatives bearing bulky pendants for high-efficient chiral fluorescent sensing. Carbohydr. Polym., 2023, 311, 120769. doi:10.1016/j.carbpol.2023.120769http://dx.doi.org/10.1016/j.carbpol.2023.120769
Bi W. Y.; Wang F.; Han J. H.; Liu B.; Shen J.; Zhang L. L.; Okamoto Y. Influence of the substituents on phenyl groups on enantioseparation property of amylose phenylcarbamates. Carbohydr. Polym., 2020, 241, 116372. doi:10.1016/j.carbpol.2020.116372http://dx.doi.org/10.1016/j.carbpol.2020.116372
邓恩停, 毕婉莹, 刘博, 张丽丽, 沈军. 基于分子模拟对多糖类衍生物手性识别机理的探索. 高分子学报, 2020, 51(2), 214-220. doi:10.11777/j.issn1000-3304.2019.19116http://dx.doi.org/10.11777/j.issn1000-3304.2019.19116
Dai X.; Bi W. Y.; Sun M. C.; Wang F.; Shen J.; Okamoto Y. Chiral recognition ability of amylose derivatives bearing regioselectively different carbamate pendants at 2,3- and 6-positions. Carbohydr. Polym., 2019, 218, 30-36. doi:10.1016/j.carbpol.2019.03.052http://dx.doi.org/10.1016/j.carbpol.2019.03.052
Wang Z. Q.; Debuigne A. Radical polymerization of methylene heterocyclic compounds: functional polymer synthesis and applications. Polym. Rev., 2023, 63(4), 805-851. doi:10.1080/15583724.2023.2181819http://dx.doi.org/10.1080/15583724.2023.2181819
马琳, 秦亚伟, 董金勇. 极少量1, 5-己二烯改善聚丙烯树脂热稳定性研究. 高分子学报, 2014, (12), 1593-1599. doi:10.11777/j.issn1000-3304.2014.14111http://dx.doi.org/10.11777/j.issn1000-3304.2014.14111
Shen J. L.; Yildirim E.; Li S. S.; Caydamli Y.; Pasquinelli M. A.; Tonelli A. E. Role of local polymer conformations on the diverging glass transition temperatures and dynamic fragilities of isotactic-, syndiotactic-, and atactic-poly(methyl methacrylate)s. Macromolecules, 2019, 52(10), 3897-3908. doi:10.1021/acs.macromol.9b00434http://dx.doi.org/10.1021/acs.macromol.9b00434
相恒学, 王世超, 闻晓霜, 周哲, 朱美芳. 结晶/无定形PMMA-b-PHBV-b-PMMA三嵌段共聚物的合成及热稳定性表征. 高分子学报, 2014, (1), 40-48. doi:10.3724/SP.J.1105.2014.13147http://dx.doi.org/10.3724/SP.J.1105.2014.13147
Saxena P.; Shukla P. A comparative analysis of the basic properties and applications of poly(vinylidene fluoride) (PVDF) and poly(methyl methacrylate) (PMMA). Polym. Bull., 2022, 79(8), 5635-5665. doi:10.1007/s00289-021-03790-yhttp://dx.doi.org/10.1007/s00289-021-03790-y
Kashiwagi T.; Inaba A.; Brown J. E.; Hatada K.; Kitayama T.; Masuda E. Effects of weak linkages on the thermal and oxidative degradation of poly(methyl methacrylates). Macromolecules, 1986, 19(8), 2160-2168. doi:10.1021/ma00162a010http://dx.doi.org/10.1021/ma00162a010
郑萃, 刘芷君, 梁德海. 光散射技术在高分子表征研究中的应用. 高分子学报, 2022, 53(1), 90-106.
Zhu M.; Yang J. X.; Li L. Y.; Duan X. Z.; Li L. W. Chain conformation of hyperbranched polymers with uniform branching subchains in dilute solution near the θ point. Macromolecules, 2020, 53(18), 7980-7987. doi:10.1021/acs.macromol.0c01407http://dx.doi.org/10.1021/acs.macromol.0c01407
Matsuura K.; Kuboyama K.; Ougizawa T. Effect of tacticity of poly(methyl methacrylate) on interfacial region with silica in polymer nanocomposite. Polym. Eng. Sci., 2021, 61(1), 77-84. doi:10.1002/pen.25556http://dx.doi.org/10.1002/pen.25556
Ahmad S.; Ahmad S.; Agnihotry S. A. Synthesis and characterization of in situ prepared poly(methyl methacrylate) nanocomposites. Bull. Mater. Sci., 2007, 30(1), 31-35. doi:10.1007/s12034-007-0006-9http://dx.doi.org/10.1007/s12034-007-0006-9
0
浏览量
160
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构