浏览全部资源
扫码关注微信
1.先进润滑与防护材料研究发展中心 中国科学院兰州化学物理研究所 兰州 730000
2.北京分子科学国家研究中心 中国科学院化学研究所 中国科学院有机固体重点实验室 北京 100190
3.中国科学院大学 北京 100049
E-mail: shaomingchao@licp.cas.cn
guoyunlong@iccas.ac.cn
纸质出版日期:2024-06-20,
网络出版日期:2024-04-30,
收稿日期:2024-01-20,
录用日期:2024-03-26
移动端阅览
徐静, 陈天泽, 邵明超, 郭云龙, 张新瑞, 王廷梅. 具有鲁棒性机械性能和高弹性的超长室温磷光共价有机框架弹性体. 高分子学报, 2024, 55(6), 709-717
Xu, J.; Chen, T. Z.; Shao, M. C.; Guo, Y. L.; Zhang, X. R; Wang, T. M. Ultralong room temperature phosphorescent covalent organic framework elastomers with robust mechanical properties and high elasticity. Acta Polymerica Sinica, 2024, 55(6), 709-717
徐静, 陈天泽, 邵明超, 郭云龙, 张新瑞, 王廷梅. 具有鲁棒性机械性能和高弹性的超长室温磷光共价有机框架弹性体. 高分子学报, 2024, 55(6), 709-717 DOI: 10.11777/j.issn1000-3304.2024.24024.
Xu, J.; Chen, T. Z.; Shao, M. C.; Guo, Y. L.; Zhang, X. R; Wang, T. M. Ultralong room temperature phosphorescent covalent organic framework elastomers with robust mechanical properties and high elasticity. Acta Polymerica Sinica, 2024, 55(6), 709-717 DOI: 10.11777/j.issn1000-3304.2024.24024.
开发具有持久稳定室温磷光的弹性体材料是柔性电子学和光子学领域的一大挑战. 本文报到了一种高度可拉伸、高机械强度且可持续发光的室温磷光共价有机框架弹性体(SPU-D230-UPy COF)材料. 该材料由烷基链软段与含多重氢键硬段限域共价有机框架而组成,展现出高的机械性能和高弹性. 在除去365 nm的激发后,具有明亮且持续的室温磷光发射特性(发光时间持续3.0 s). 力学研究表明,其具备约33.5 MPa的强度、约188.26 MJ/m
3
的优异韧性以及约76.6 MPa的杨氏模量. 同时该弹性体即使经历反复的机械变形也能保持优异的光学性能. 本研究为发光弹性体在可穿戴设备、柔性显示器和防伪设备等方面的应用奠定了基础.
Elastomer materials with long-lasting and stable room-temperature phosphorescence have great potential in the fields of flexible electronics and photonics. However
developing such materials remains a daunting challenge. Systems of small molecule doped polymers are limited by the tensile properties of the polymer matrix. Currently commonly used poly(methylmethacrylate) (PMMA) and poly(vinyl alcohol) (PVA) have poor tensile properties. However
the increased flexibility cannot provide rigid external conditions for phosphorescence emission. This trade-off parameter adjustment has always hindered its development. Here
we report a highly stretchable and mechanically strong sustainable lumine
scent room-temperature phosphorescent covalent organic framework elastomer (SPU-D230-UPy COF) material. The material is composed of an alkyl chain soft segment and a limited covalent organic framework containing multiple hydrogen bonding hard segments. This structural design of separated soft and hard segments provides the structural basis for high mechanical properties
high toughness
and phosphorescent emission. The soft segment structure can ensure its high stretchability
and the hard segment structure can provide high mechanical strength while also providing a rigid environment for phosphorescence emission. These prepared elastomers exhibit high mechanical properties and high elasticity
and exhibit bright and sustained luminescence after removal of 365 nm excitation (luminescence time lasts for 3.0 s). Mechanical studies show that the obtained material exhibits a strength of ∼33.5 MPa and excellent toughness of ∼188.26 MJ/m
3
with a Young's modulus of ∼76.6 MPa. The material can easily lift heavy objects without breaking. Impressively
these elastomers maintain strong optical properties even under repeated mechanical deformation
an unprecedented property. These outstanding properties make these long-lasting luminescent elastomers ideal for potential applications in wearables
flexible displays
and anti-counterfeiting devices. This separate structural design of soft and hard segments effectively breaks the trade-off between structural flexibility and phosphorescence emission. It can not only improve the mechanical properties
flexibility and stretchability of the material
but also effectively maintain the phosphorescence emission
which will provide a new path for the development of stretchable elastomer phosphorescent emissive materials.
弹性体共价有机框架超长室温磷光多重氢键
ElastomerCovalent organic frameworkUltralong room temperature phosphorescenceMultiple hydrogen bonds
Zhao W. J.; He Z. K.; Tang B. Z. Room-temperature phosphorescence from organic aggregates. Nat. Rev. Mater., 2020, 5, 869-885. doi:10.1038/s41578-020-0223-zhttp://dx.doi.org/10.1038/s41578-020-0223-z
Zhang K. Y.; Yu Q.; Wei H. J.; Liu S. J.; Zhao Q.; Huang W. Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem. Rev., 2018, 118(4), 1770-1839. doi:10.1021/acs.chemrev.7b00425http://dx.doi.org/10.1021/acs.chemrev.7b00425
Zhou B.; Xiao G. W.; Yan D. P. Boosting wide-range tunable long-afterglow in 1D metal-organic halide micro/nanocrystals for space/time-resolved information photonics. Adv. Mater., 2021, 33(16), 2007571. doi:10.1002/adma.202007571http://dx.doi.org/10.1002/adma.202007571
Li F. Y.; Wang M. Z.; Liu S. J.; Zhao Q. Halide-containing organic persistent luminescent materials for environmental sensing applications. Chem. Sci., 2022, 13(8), 2184-2201. doi:10.1039/d1sc06586fhttp://dx.doi.org/10.1039/d1sc06586f
Li D.; Yang Y. J.; Yang J.; Fang M. M.; Tang B. Z.; Li Z. Completely aqueous processable stimulus responsive organic room temperature phosphorescence materials with tunable afterglow color. Nat. Commun., 2022, 13(1), 347. doi:10.1038/s41467-022-28011-6http://dx.doi.org/10.1038/s41467-022-28011-6
Peng H.; Xie G. Z.; Cao Y.; Zhang L. Y.; Yan X.; Zhang X.; Miao S. H.; Tao Y.; Li H. H.; Zheng C.; Huang W.; Chen R. F. On-demand modulating afterglow color of water-soluble polymers through phosphorescence FRET for multicolor security printing. Sci. Adv., 2022, 8(15), eabk2925. doi:10.1126/sciadv.abk2925http://dx.doi.org/10.1126/sciadv.abk2925
Li T. T.; Zheng Y.; Wu C. Q.; Yan C. Y.; Zhang C.; Gao H.; Chen Q.; Zhang K. Crosslink-enhanced strategy to achieve multicolor long-lived room temperature phosphorescent films with excellent photostability. Chin. Chem. Lett., 2022, 33(9), 4238-4242. doi:10.1016/j.cclet.2022.03.047http://dx.doi.org/10.1016/j.cclet.2022.03.047
Wang Z. H.; Qu L. J.; Gao L.; Zheng X.; Zheng Y.; Zhu Y. Y.; Xia J.; Zhang Y. F.; Wang C.; Li Y. B.; Yang C. L. Regulation of irradiation-dependent long-lived room temperature phosphorescence by controlling molecular structures of chromophores and matrix. Adv. Opt. Mater., 2022, 10(12), 2200481. doi:10.1002/adom.202200481http://dx.doi.org/10.1002/adom.202200481
Wu H. Z.; Wang D. L.; Zhao Z.; Wang D.; Xiong Y.; Tang B. Z. Tailoring noncovalent interactions to activate persistent room-temperature phosphorescence from doped polyacrylonitrile films. Adv. Funct. Mater., 2021, 31(32), 2101656. doi:10.1002/adfm.202101656http://dx.doi.org/10.1002/adfm.202101656
Wang C.; Zhang Y. F.; Wang Z. H.; Zheng Y.; Zheng X.; Gao L.; Zhou Q.; Hao J. Q.; Pi B. X.; Li Q. K.; Yang C. L.; Li Y. B.; Wang K. T.; Zhao Y. L. Photo-induced dynamic room temperature phosphorescence based on triphenyl phosphonium containing polymers. Adv. Funct. Mater., 2022, 32(18), 2111941. doi:10.1002/adfm.202111941http://dx.doi.org/10.1002/adfm.202111941
Yang Y. J.; Wang J. Q.; Li D.; Yang J.; Fang M. M.; Li Z. Tunable photoresponsive behaviors based on triphenylamine derivatives: the pivotal role of π-conjugated structure and corresponding application. Adv. Mater., 2021, 33(43), 2104002. doi:10.1002/adma.202104002http://dx.doi.org/10.1002/adma.202104002
Matsuhisa N.; Niu S. M.; O'Neill S. J. K.; Kang J.; Ochiai Y.; Katsumata T.; Wu H. C.; Ashizawa M.; Wang G.J N.; Zhong D. L.; Wang X. L.; Gong X. W.; Ning R.; Gong H. X.; You I.; Zheng Y.; Zhang Z. T.; Tok J. B. H.; Chen X. D.; Bao Z. N.High-frequency and intrinsically stretchable polymer diodes. Nature, 2021, 600(7888), 246-252. doi:10.1038/s41586-021-04053-6http://dx.doi.org/10.1038/s41586-021-04053-6
Zhang Z. T.; Wang W. C.; Jiang Y. W.; Wang Y. X.; Wu Y. L.; Lai J. C.; Niu S. M.; Xu C. Y.; Shih C. C.; Wang C.; Yan H. P.; Galuska L.; Prine N.; Wu H. C.; Zhong D. L.; Chen G.; Matsuhisa N.; Zheng Y.; Yu Z. A.; Wang Y.; Dauskardt R.; Gu X. D.; Tok J. B. H.; Bao Z. N. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature, 2022, 603(7902), 624-630. doi:10.1038/s41586-022-04400-1http://dx.doi.org/10.1038/s41586-022-04400-1
Zheng Y. Q.; Liu Y. X.; Zhong D. L.; Nikzad S.; Liu S. H.; Yu Z. A.; Liu D. Y.; Wu H. C.; Zhu C. X.; Li J. X.; Tran H.; Tok J. B. H.; Bao Z. N. Monolithic optical microlithography of high-density elastic circuits. Science, 2021, 373(6550), 88-94. doi:10.1126/science.abh3551http://dx.doi.org/10.1126/science.abh3551
Wei J.; Zhu M. Y.; Du T. C.; Li J.; Dai P. L.; Liu C. Y.; Duan J. Y.; Liu S. J.; Zhou X. C.; Zhang S. D.; Guo L.; Wang H.; Ma Y.; Huang W.; Zhao Q. Full-color persistent room temperature phosphorescent elastomers with robust optical properties. Nat. Commun., 2023, 14(1), 4839. doi:10.1038/s41467-023-40193-1http://dx.doi.org/10.1038/s41467-023-40193-1
Wang S.; Ma L.; Wang Q. Y.; Shao P. P.; Ma D.; Yuan S.; Lei P.; Li P. F.; Feng X.; Wang B. Covalent organic frameworks: a platform for the experimental establishment of the influence of intermolecular distance on phosphorescence. J. Mater. Chem. C, 2018, 6(20), 5369-5374. doi:10.1039/c8tc01559ghttp://dx.doi.org/10.1039/c8tc01559g
Shao M. C.; Zhang Q. S.; Wei X. F.; Chen J. Y.; Gao W. Q.; Liu G. C.; Kuang J. H.; Bian Y. S.; Wang C. Y.; Liu Y. W.; Qin M. C.; Yue J. L.; Wang D.; Liu Y. Q.; Guo Y. L. Twisted node modulation of 2D-COFs for programmable long-afterglow luminescence. Cell Rep. Phys. Sci., 2023, 4(2), 101273. doi:10.1016/j.xcrp.2023.101273http://dx.doi.org/10.1016/j.xcrp.2023.101273
Xu J.; Wang X. Y.; Zhang X. R.; Zhang Y. M.; Yang Z. H.; Li S.; Tao L. M.; Wang Q. H.; Wang T. M. Room-temperature self-healing supramolecular polyurethanes based on the synergistic strengthening of biomimetic hierarchical hydrogen-bonding interactions and coordination bonds. Chem. Eng. J., 2023, 451, 138673. doi:10.1016/j.cej.2022.138673http://dx.doi.org/10.1016/j.cej.2022.138673
Emmerling S. T.; Schuldt R.; Bette S.; Yao L.; Dinnebier R. E.; Kästner J.; Lotsch B. V. Interlayer interactions as design tool for large-pore COFs. J. Am. Chem. Soc., 2021, 143(38), 15711-15722. doi:10.1021/jacs.1c06518http://dx.doi.org/10.1021/jacs.1c06518
Kang C. J.; Zhang Z. Q.; Usadi A. K.; Calabro D. C.; Baugh L. S.; Yu K. X.; Wang Y. X.; Zhao D. Aggregated structures of two-dimensional covalent organic frameworks. J. Am. Chem. Soc., 2022, 144(7), 3192-3199. doi:10.1021/jacs.1c12708http://dx.doi.org/10.1021/jacs.1c12708
Wei J.; Liu C. Y.; Duan J. Y.; Shao A. W.; Li J. L.; Li J. G.; Gu W. J.; Li Z. X.; Liu S. J.; Ma Y.; Huang W.; Zhao Q. Conformation-dependent dynamic organic phosphorescence through thermal energy driven molecular rotations. Nat. Commun., 2023, 14(1), 627. doi:10.1038/s41467-023-35930-5http://dx.doi.org/10.1038/s41467-023-35930-5
0
浏览量
248
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构