浏览全部资源
扫码关注微信
1.沈阳工业大学材料科学与工程学院 沈阳 110870
2.中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
E-mail: hpxing@ciac.ac.cn
lisanxi@sut.edu.cn
纸质出版日期:2024-08-20,
网络出版日期:2024-06-06,
收稿日期:2024-03-13,
录用日期:2024-04-22
移动端阅览
孟振浩, 邢海平, 邱健, 姜治伟, 李明罡, 唐涛, 李三喜. 硅橡胶基膨胀防火封堵材料的制备与性能研究. 高分子学报, 2024, 55(8), 1059-1068
Meng, Z. H.; Xing, H. P.; Qiu, J.; Jiang, Z. W.; Li, M. G.; Tang, T.; Li, S. X. Preparation and properties of silicone rubber-based intumescent fireproof sealing material. Acta Polymerica Sinica, 2024, 55(8), 1059-1068
孟振浩, 邢海平, 邱健, 姜治伟, 李明罡, 唐涛, 李三喜. 硅橡胶基膨胀防火封堵材料的制备与性能研究. 高分子学报, 2024, 55(8), 1059-1068 DOI: 10.11777/j.issn1000-3304.2024.24025.
Meng, Z. H.; Xing, H. P.; Qiu, J.; Jiang, Z. W.; Li, M. G.; Tang, T.; Li, S. X. Preparation and properties of silicone rubber-based intumescent fireproof sealing material. Acta Polymerica Sinica, 2024, 55(8), 1059-1068 DOI: 10.11777/j.issn1000-3304.2024.24025.
设计了一种以室温硫化硅橡胶(SR)为基体、硅酸钠为膨胀填料、聚磷酸铵为阻燃剂的膨胀耐火体系,采用共混浇筑法制备了硅橡胶复合材料,并探究了不同模数膨胀剂对材料性能的影响. 通过垂直燃烧测试(UL-94)、极限氧指数(LOI)和热重分析(TGA)测试SR复合材料的热稳定性和阻燃性能. 通过膨胀性能测试和耐火性能测试测定了封堵材料的重要指标. 此外,通过扫描电子显微镜(SEM)观察了UL-94测试和耐火性能测试后的残炭形貌. 结果表明,高模数的硅酸钠有更好的受热膨胀效果,其中2.8模硅酸钠具备最佳的膨胀耐火性能. 仅添加膨胀剂的样品无法满足阻燃测试要求,但通过添加少量阻燃剂,极限氧指数可提升至30.9%,达到了垂直燃烧测试V-0等级. 膨胀耐火机理研究发现,在受火时,材料外层转化为薄壁中空微球堆叠结构,形成坚固的膨胀阻隔层. 同时,阻燃剂利用膨胀阻隔层高效发挥气相阻燃作用,有效提高阻燃效果. 此外,所制备的样品能够达到缝隙用防火封堵材料耐火性能3 h等级. 因此,硅酸钠/聚磷酸铵/硅橡胶复合材料是一种制备简单、使用方便、高效耐火的封堵材料.
An intumescent fireproof sealing system with room temperature vulcanized silicone rubber (SR) as matrix
sodium silicate (NSH) as expansion filler and ammonium polyphosphate (APP) as flame retardant was designed
and the effects of different modulus expansion agents on the properties of the material were investigated. The SR composites were prepared
via
blending pouring method. The thermal stability and flame retardancy of SR composites were measured by vertical burning test (UL-94)
limiting oxygen index (LOI) and thermogravimetric analysis (TGA). Moreover
the important indexes of the sealing material were characterized by expansion test and fire resistance test. The morphology of char residues after UL-94 test and fire resistance test were observed by scanning electron microscopy (SEM). The results showed that the high modulus sodium silicate had better thermal exp
ansion effect
and the 2.8 modulus sodium silicate had the best expansion fireproof performance. The sample with only expansive agent had no grade in the flame-retardant test
but by adding a small amount of flame retardant
the limiting oxygen index increased to 30.9%
and passed the UL-94 test V-0 grade. The study of mechanism found that the outer layer of the material was transformed into a thin-walled hollow microsphere stacking structure when exposed to fire
forming a strong expansion barrier layer. Concomitantly
the expansion barrier layer efficiently exerts the gas phase flame retardant effect of the flame retardant. In addition
the prepared sample can reach the 3 h level of fire sealing test for cracks.
封堵材料室温硫化硅橡胶聚磷酸铵硅酸钠
Sealing materialRoom temperature vulcanized silicone rubberAmmonium polyphosphateSodium silicat
Zhang J.; Huang Y.; Luo S.; Wang S.; Ding Y. Study on pyrolysis characteristics and kinetics of organic fireproof plugging material by shuffled complex evolution. J. Therm. Anal. Calorim., 2022, 147(23), 13459-13467. doi:10.1007/s10973-022-11555-6http://dx.doi.org/10.1007/s10973-022-11555-6
Bascou S.; Zavaleta P.; Babik F. Cable tray fire tests simulations in open atmosphere and in confined and mechanically ventilated compartments with the calif3s/isis cfd software. Fire Mater., 2019, 43(5), 448-465. doi:10.1002/fam.2680http://dx.doi.org/10.1002/fam.2680
Zavaleta P.; Suard S. Experimental study in open atmosphere and confined conditions of fire spread between adjacent electrical cabinets connected by cable trays. Fire Safety J., 2023, 140, 103872. doi:10.1016/j.firesaf.2023.103872http://dx.doi.org/10.1016/j.firesaf.2023.103872
Sun Z. E.; Zhou Y. Discussion on fire-proof sealing technology and product. Procedia Eng., 2016, 135, 644-648. doi:10.1016/j.proeng.2016.01.131http://dx.doi.org/10.1016/j.proeng.2016.01.131
Zhang J.; Huang D.; Luo S.; Huang Y.; Guo Y.; Liu R.; Ding Y. Assessment of micro-scale thermal behaviors and combustion performance of organic fireproof plugging material in air atmosphere. J. Vinyl Addit. Technol., 2022, 28(4), 788-798. doi:10.1002/vnl.21928http://dx.doi.org/10.1002/vnl.21928
Shang K.; Lin G. D.; Jiang H. J.; Jin X.; Zhao J.; Liu D.; Zhao B.; Yang J. J.; Fu T.; Wang J. S. Flame retardancy, combustion, and ceramization behavior of ceramifiable flame-retardant room temperature vulcanized silicone rubber foam. Fire Mater., 2023, 47(8), 1082-1091. doi:10.1002/fam.3154http://dx.doi.org/10.1002/fam.3154
Yu J.; Hong L.; Qu L. Study on char reinforcing of different inorganic fillers for expandable fire resistance silicone rubber. J. Appl. Polym. Sci., 2021, 138(28), 50675. doi:10.1002/app.50675http://dx.doi.org/10.1002/app.50675
Wang Y.; Qian F.; Lai X.; Li H.; Zeng X.; Liu Z.; Gao J. Improvement of tracking resistance of silicone rubber via synergistically promoting ceramization with fluorophlogopite and platinum-nitrogen system. Compos. Part B: Eng., 2022, 245110200. doi:10.1016/j.compositesb.2022.110200http://dx.doi.org/10.1016/j.compositesb.2022.110200
Wang Y.; Lai X.; Li H.; Liu T.; Zeng X. Significantly improve fire safety of silicone rubber by efficiently catalyzing ceramization on fluorophlogopite. Compos. Commun., 2021, 25, 100683. doi:10.1016/j.coco.2021.100683http://dx.doi.org/10.1016/j.coco.2021.100683
Hong L.; Hu X. Mechanical and flame retardant properties and microstructure of expandable graphite/silicone rubber composites. J. Macromol. Sci., Part B, 2016, 55(2), 175-187. doi:10.1080/00222348.2015.1138029http://dx.doi.org/10.1080/00222348.2015.1138029
Yu J.; Qu L.; Min Y.; Hong L.; Chen D. Preparation, characterization and fire resistance evaluation of a novel ceramizable silicone rubber composite. J. Appl. Polym. Sci., 2022, 139(20), 52157. doi:10.1002/app.52157http://dx.doi.org/10.1002/app.52157
Matinfar M.; Nychka J. A. A review of sodium silicate solutions: Structure, gelation, and syneresis. Adv. Colloid Interface Sci., 2023, 322, 103036. doi:10.1016/j.cis.2023.103036http://dx.doi.org/10.1016/j.cis.2023.103036
El-Amir A. A. M.; Attia M. A. A.; Newishy M.; Fend T.; Ewais E. M. M. Aluminium dross/soda lime glass waste-derived high-quality glass foam. J. Mater. Res. Technol., 2021, 15, 4940-4948. doi:10.1016/j.jmrt.2021.10.085http://dx.doi.org/10.1016/j.jmrt.2021.10.085
Chen X.; Lu A.; Qu G. Preparation and characterization of foam ceramics from red mud and fly ash using sodium silicate as foaming agent. Ceram. Int., 2013, 39(2), 1923-1929. doi:10.1016/j.ceramint.2012.08.042http://dx.doi.org/10.1016/j.ceramint.2012.08.042
Wu T.; Qiu J. D.; Xu W. H.; Du Y.; Zhou W. L.; Xie H.; Qu J. P. Efficient fabrication of flame-retarding silicone rubber/hydroxylated boron nitride nanocomposites based on volumetric extensional rheology. Chem. Eng. J., 2022, 435, 135154. doi:10.1016/j.cej.2022.135154http://dx.doi.org/10.1016/j.cej.2022.135154
Meng Z.; Liu Y.; Wang S.; Zhang A.; Li S. Application of the PAPP/MCA/APP intumescent flame retardant system in polypropylene. Fire Mater., 2023, 47(8), 1064-1073. doi:10.1002/fam.3152http://dx.doi.org/10.1002/fam.3152
孙晋皓; 倪金平; 路丹; 汤兆宾. 磷化淀粉的合成及其与聚磷酸铵协效阻燃聚乳酸的性能研究. 高分子学报, 2022, 53(3), 227-235. doi:10.11777/j.issn1000-3304.2021.21285http://dx.doi.org/10.11777/j.issn1000-3304.2021.21285
Yan L.; Zhang H.; Zhou S.; Zou H.; Chen Y.; Liang M. Improving ablation properties of liquid silicone rubber composites by in situ construction of rich-porous char layer. J. Appl. Polym. Sci., 2021, 138(11), 50030. doi:10.1002/app.50030http://dx.doi.org/10.1002/app.50030
Hu S.; Chen F.; Li J. G.; Shen Q.; Huang Z. X.; Zhang L. M. The ceramifying process and mechanical properties of silicone rubber/ ammonium polyphosphate/ aluminium hydroxide/ mica composites. Polym. Degrad. Stab., 2016, 126, 196-203. doi:10.1016/j.polymdegradstab.2016.02.010http://dx.doi.org/10.1016/j.polymdegradstab.2016.02.010
丁勇, 罗远芳, 薛锋, 贾志欣, 贾德民. 磷腈类衍生物改性磷酸锆的合成及其复配聚磷酸铵对硅橡胶阻燃性能和力学性能的影响. 高分子学报, 2017, (11), 1796-1805. doi:10.11777/j.issn1000-3304.2017.17005http://dx.doi.org/10.11777/j.issn1000-3304.2017.17005
Zhao D.; Liu T.; Xu Y.; Zhang J.; Shen Y.; Wang T. Investigation of the thermal degradation kinetics of ceramifiable silicone rubber-based composite. J. Therm. Anal. Calorim., 2023, 148(13), 6487-6499. doi:10.1007/s10973-023-12138-9http://dx.doi.org/10.1007/s10973-023-12138-9
0
浏览量
243
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构