浏览全部资源
扫码关注微信
精细化工国家重点实验室 大连理工大学化工学院 大连 116024
E-mail: wmren@dlut.edu.cn
纸质出版日期:2024-08-20,
网络出版日期:2024-04-30,
收稿日期:2024-01-22,
录用日期:2024-02-23
移动端阅览
胥洋洋, 乐天俊, 赵金卓, 任伟民. 异核双金属协同催化环氧环己烷与邻苯二甲酸酐无规共聚. 高分子学报, 2024, 55(8), 1001-1008
Xu, Y. Y.; Yue, T. J.; Zhao, J. Z.; Ren, W. M. Random copolymerization of cyclohexene oxide and phthalic anhydride synergistically catalyzed by heterodinuclear metal complex. Acta Polymerica Sinica, 2024, 55(8), 1001-1008
胥洋洋, 乐天俊, 赵金卓, 任伟民. 异核双金属协同催化环氧环己烷与邻苯二甲酸酐无规共聚. 高分子学报, 2024, 55(8), 1001-1008 DOI: 10.11777/j.issn1000-3304.2024.24026.
Xu, Y. Y.; Yue, T. J.; Zhao, J. Z.; Ren, W. M. Random copolymerization of cyclohexene oxide and phthalic anhydride synergistically catalyzed by heterodinuclear metal complex. Acta Polymerica Sinica, 2024, 55(8), 1001-1008 DOI: 10.11777/j.issn1000-3304.2024.24026.
设计、合成了一种新型异核双金属配合物,用于催化环氧环己烷(CHO)和邻苯二甲酸酐(PA)的共聚反应,以制备聚(醚-酯)材料. 分别通过核磁共振波谱和电喷雾质谱对聚合物及其水解后产物结构进行分析,证明所得共聚物为醚酯单元呈无规分布的聚(醚-酯). 重点考察了配体结构、金属离子、反应温度和催化剂浓度对聚合反应的影响. 最后,对所得聚(醚-酯)无规共聚物热性能进行研究,表明聚醚链段的引入可以调变其玻璃化转变温度,丰富了此类聚酯材料的应用场景.
The ring-opening copolymerization of epoxides and cyclic anhydrides constitutes a straightforward route for synthesizing polyesters. The resultant copolymers are mainly obtained with alternating structures
which might limit their application situations due to their low toughness caused by the high density of ester group. It has been demonstrated that the incorporation of ether segments into the mainchain of polyesters is an efficient strategy to tune the thermal and mechanical properties of polyesters
which is greatly limited by the lack of efficient catalyst. In response to these issues
this study proposed to achieve the random copolymerization of cyclohexene oxide (CHO) and phthalic anhydride (PA) to prepare poly(ether-ester)s
via
the hetero-bimetallic synergistic catalysis strat
egy. A series of heterodinuclear Al-K complex has been designed for catalyzing the copolymerization of CHO and PA. The structures of the resultant copolymers are confirmed as poly(ether-ester)s using nuclear magnetic resonance spectroscopy and electrospray ionization mass spectrometry. The exploration of the polymerization process further revealed the randomly structure of obtained poly(ether-ester)s
that is
ester and ether segments were randomly distributed in the polymer mainchain. Systemic studies on the effects of ligand structure
metal ions
reaction temperature and catalyst concentration on the copolymerization were explored
indicating that it is the synergistic cooperation between two metal centers that results in the formation of random copolymers. In addition
thermal property characterization of resultant copolymers indicates that the incorporation of polyether segments into polyester could effectively tune their glass transition temperatures
thus enriching the application of polyester materials.
聚(醚-酯)共聚物异核双金属配合物开环共聚无规共聚物
Poly(ester-ether)sHeterodinuclear metal complexRing-opening copolymerizationRandom copolymer
Siracusa V.; Rocculi P.; Romani S.; Dalla Rosa M. Biodegradable polymers for food packaging: a review. Trends Food Sci. Technol., 2008, 19(12), 634-643. doi:10.1016/j.tifs.2008.07.003http://dx.doi.org/10.1016/j.tifs.2008.07.003
Zhu Y. Q.; Romain C.; Williams C. K. Sustainable polymers from renewable resources. Nature, 2016, 540(7633), 354-362. doi:10.1038/nature21001http://dx.doi.org/10.1038/nature21001
Abel B.; Lidston C. A. L.; Coates G. W. Mechanism-inspired design of bifunctional catalysts for the alternating ring-opening copolymerization of epoxides and cyclic anhydrides. J. Am. Chem. Soc., 2019, 141(32), 12760-12769. doi:10.1021/jacs.9b05570http://dx.doi.org/10.1021/jacs.9b05570
Longo J. M.; Sanford M. J.; Coates G. W. Ring-opening copolymerization of epoxides and cyclic anhydrides with discrete metal complexes: structure-property relationships. Chem. Rev., 2016, 116(24), 15167-15197. doi:10.1021/acs.chemrev.6b00553http://dx.doi.org/10.1021/acs.chemrev.6b00553
Garden J. A.; Saini P. K.; Williams C. K. Greater than the sum of its parts: a heterodinuclear polymerization catalyst. J. Am. Chem. Soc., 2015, 137(48), 15078-15081. doi:10.1021/jacs.5b09913http://dx.doi.org/10.1021/jacs.5b09913
张昊天, 胡晨阳, 李莉莉, 庞烜. 开环聚合催化剂用于脂肪族聚酯合成的研究进展. 高分子学报, 2022, 53(9), 1057-1071. doi:10.11777/j.issn1000-3304.2022.22088http://dx.doi.org/10.11777/j.issn1000-3304.2022.22088
Deacy A. C.; Durr C. B.; Kerr R. W. F.; Williams C. K. Heterodinuclear catalysts Zn(Ⅱ)/M and Mg(Ⅱ)/M, where M = Na(Ⅰ), Ca(Ⅱ) or Cd(Ⅱ), for phthalic anhydride/cyclohexene oxide ring opening copolymerization. Catal. Sci. Technol., 2021, 11(9), 3109-3118. doi:10.1039/d1cy00238dhttp://dx.doi.org/10.1039/d1cy00238d
Diment W. T.; Gregory G. L.; Kerr R. W. F.; Phanopoulos A.; Buchard A.; Williams C. K. Catalytic synergy using Al(Ⅲ) and group 1 metals to accelerate epoxide and anhydride ring-opening copolymerizations. ACS Catal., 2021, 11(20), 12532-12542. doi:10.1021/acscatal.1c04020http://dx.doi.org/10.1021/acscatal.1c04020
Jeske R. C.; DiCiccio A. M.; Coates G. W. Alternating copolymerization of epoxides and cyclic anhydrides: an improved route to aliphatic polyesters. J. Am. Chem. Soc., 2007, 129(37), 11330-11331. doi:10.1021/ja0737568http://dx.doi.org/10.1021/ja0737568
陈烨, 刘珊, 赵俊鹏. 环氧单体的有机/无金属催化开环聚合与共聚. 高分子学报, 2020, 51(10), 1067-1082. doi:10.11777/j.issn1000-3304.2020.20088http://dx.doi.org/10.11777/j.issn1000-3304.2020.20088
Bernard A.; Chatterjee C.; Chisholm M. H. The influence of the metal (Al, Cr and Co) and the substituents of the porphyrin in controlling the reactions involved in the copolymerization of propylene oxide and cyclic anhydrides by porphyrin metal(Ⅲ) complexes. Polymer, 2013, 54, 2639-2646. doi:10.1016/j.polymer.2013.02.033http://dx.doi.org/10.1016/j.polymer.2013.02.033
Harrold N. D.; Li Y.; Chisholm M. H. Studies of ring-opening reactions of styrene oxide by chromium tetraphenylporphyrin initiators. Mechanistic and stereochemical considerations. Macromolecules, 2013, 46(3), 692-698. doi:10.1021/ma302492phttp://dx.doi.org/10.1021/ma302492p
Lu X. B.; Ren B. H. Partners in epoxide copolymerization catalysis: approach to high activity and selectivity. Chinese J. Polym. Sci., 2022, 40(11), 1331-1348. doi:10.1007/s10118-022-2744-yhttp://dx.doi.org/10.1007/s10118-022-2744-y
Ren W. M.; Wang R. J.; Ren B. H.; Gu G. G.; Yue T. J. Mechanism-inspired design of heterodinuclear catalysts for copolymerization of epoxide and lactone. Chinese J. Polym. Sci., 2020, 38(9), 950-957. doi:10.1007/s10118-020-2413-yhttp://dx.doi.org/10.1007/s10118-020-2413-y
Ren W. M.; Gao H. J.; Yue T. J. Flexible gradient poly(ether-ester) from the copolymerization of epoxides and ε-caprolactone mediated by a hetero-bimetallic complex. Chinese J. Polym. Sci., 2021, 39(8), 1013-1019. doi:10.1007/s10118-021-2559-2http://dx.doi.org/10.1007/s10118-021-2559-2
Isnard F.; Lamberti M.; Pellecchia C.; Mazzeo M. Ring-opening copolymerization of epoxides with cyclic anhydrides promoted by bimetallic and monometallic phenoxy-imine aluminum complexes. ChemCatChem, 2017, 9(15), 2972-2979. doi:10.1002/cctc.201700234http://dx.doi.org/10.1002/cctc.201700234
Ungpittagul T.; Jaenjai T.; Roongcharoen T.; Namuangruk S.; Phomphrai K. Unprecedented double insertion of cyclohexene oxide in ring-opening copolymerization with cyclic anhydrides catalyzed by a Tin(Ⅱ) alkoxide complex. Macromolecules, 2020, 53(22), 9869-9877. doi:10.1021/acs.macromol.0c01738http://dx.doi.org/10.1021/acs.macromol.0c01738
Kerr R. W. F.; Williams C. K. Zr(IV) catalyst for the ring-opening copolymerization of anhydrides (A) with epoxides (B), oxetane (B), and tetrahydrofurans (C) to make ABB- and/or ABC-poly(ester-alt-ethers). J. Am. Chem. Soc., 2022, 144(15), 6882-6893. doi:10.1021/jacs.2c01225http://dx.doi.org/10.1021/jacs.2c01225
Cui L.; Liu Y.; Ren B. H.; Lu X. B. Preparation of sequence-controlled polyester and polycarbonate materials via epoxide copolymerization mediated by trinuclear Co(Ⅲ) complexes. Macromolecules, 2022, 55(9), 3541-3549. doi:10.1021/acs.macromol.2c00501http://dx.doi.org/10.1021/acs.macromol.2c00501
Yang G. W.; Xu C. K.; Xie R.; Zhang Y. Y.; Lu C. J.; Qi H.; Yang L.; Wang Y. H.; Wu G. P. Precision copolymerization of CO2 and epoxides enabled by organoboron catalysts. Nat. Synth., 2022, 1, 892-901. doi:10.1038/s44160-022-00137-xhttp://dx.doi.org/10.1038/s44160-022-00137-x
Carnahan M. A.; Middleton C.; Kim J.; Kim T.; Grinstaff M. W. Hybrid dendritic-linear polyester-ethers for in situ photopolymerization. J. Am. Chem. Soc., 2002, 124(19), 5291-5293. doi:10.1021/ja025576yhttp://dx.doi.org/10.1021/ja025576y
Diaz C.; Mehrkhodavandi P. Strategies for the synthesis of block copolymers with biodegradable polyester segments. Polym. Chem., 2021, 12(6), 783-806. doi:10.1039/d0py01534bhttp://dx.doi.org/10.1039/d0py01534b
Wang R.; Zhang H. Y.; Jiang M.; Wang Z. P.; Zhou G. Y. Dynamics-driven controlled polymerization to synthesize fully renewable poly(ester-ether)s. Macromolecules, 2022, 55(1), 190-200. doi:10.1021/acs.macromol.1c01899http://dx.doi.org/10.1021/acs.macromol.1c01899
陈建良. 1,8-二氨基-3,6-二氧辛烷的合成研究. 广东化工, 2015, 42(17), 221-222.
Ma Y.; Stivala C. E.; Wright A. M.; Hayton T.; Liang J.; Keresztes I.; Lobkovsky E.; Collum D. B.; Zakarian A. Enediolate-dilithium amide mixed aggregates in the enantioselective alkylation of arylacetic acids: structural studies and a stereochemical model. J. Am. Chem. Soc., 2013, 135(45), 16853-16864. doi:10.1021/ja403076uhttp://dx.doi.org/10.1021/ja403076u
0
浏览量
122
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构