浏览全部资源
扫码关注微信
江汉大学光电材料与技术学院 光电化学材料与器件教育部重点实验室 武汉 430056
E-mail: hzg19@jhun.edu.cn
xqliu@jhun.edu.cn
纸质出版日期:2024-09-20,
网络出版日期:2024-05-29,
收稿日期:2024-01-23,
录用日期:2024-03-17
移动端阅览
吴文虎, 李洋, 余华光, 刘继延, 黄祚刚, 刘学清. 苯并环丁烯封端的液晶聚酯酰亚胺的制备与性能. 高分子学报, 2024, 55(9), 1241-1250
Wu, W. H.; Li, Y.; Yu, H. G.; Liu, J. Y.; Huang, Z. G.; Liu, X. Q. Preparation and properties of liquid crystal polyesterimides terminated with benzocyclobutene. Acta Polymerica Sinica, 2024, 55(9), 1241-1250
吴文虎, 李洋, 余华光, 刘继延, 黄祚刚, 刘学清. 苯并环丁烯封端的液晶聚酯酰亚胺的制备与性能. 高分子学报, 2024, 55(9), 1241-1250 DOI: 10.11777/j.issn1000-3304.2024.24030.
Wu, W. H.; Li, Y.; Yu, H. G.; Liu, J. Y.; Huang, Z. G.; Liu, X. Q. Preparation and properties of liquid crystal polyesterimides terminated with benzocyclobutene. Acta Polymerica Sinica, 2024, 55(9), 1241-1250 DOI: 10.11777/j.issn1000-3304.2024.24030.
设计并合成了具有苯并环丁烯(BCB)结构的含酚羟基的酰亚胺2-(二环[4.2.0
]
辛-1
3
5-三烯-3-基)-5-羟基-1
H
-异吲哚-1
3(2H)-二酮(BCB-HP)和含芳酸的酰亚胺2
3-二氢-1
3-二氧-2-(二环[4.2.0
]
辛-1
3
5-三烯-3-基)-1
H
-异吲哚-5-羧酸(BCB-CP),与4-羟基苯甲酸(4-HBA)、6-羟基-2-萘甲酸(HNA)和
N
-(3-羧基苯基)-4-羟基邻苯二甲酰亚胺(3-CHP)通过溶液缩聚共聚合成了液晶聚酯酰亚胺(LCPEI). 与不含热活性BCB基团的LCPEI比较,BCB型LCPEI具有更好的溶解度、较低的熔融温度(
T
m
=200 ℃,以及较高的玻璃化转变温度(
T
g
=149 ℃),具有良好的加工和应用潜力. LCPEI-22-BCB (含22 mol% CHP)制备的薄膜相较于LCPEI-22,弹性模量更高,介电常数相近(
D
k
=3.364 @10 GHz),介电损耗更低(
D
f
=0.0019),具有作为挠性覆铜板材料的应用前景.
Combining features of liquid crystal polyester (LCP) and benzocyclobutene (BCB)
two BCB-containing compounds
2-(dicyclo[4.2.0
]
oct-1
3
5-triene-3-yl)-5-hydroxy-1
H
-isoindole-1
3(2H)-diketone (BCB-HP) and 2
3-dihydro-1
3-dioxo-2-(dicyclo[4.2.0
]
oct-1
3
5-triene-3-yl)-1
H
-isoindole-5-carboxylic acid (BCB-CP)
were designed and prepared as terminal capping compounds for LCP synthesis. Liquid crystal polyesterimides (LCPEIs) were synthesized by solution condensation copolymerization of the phenolic BCB-HP
the carboxylic BCB-CP
4-hydroxybenzoic acid (4-HBA)
and 6-hydroxy-2-naphthoic acid (HNA)
along with
N
-(3-carboxyphenyl)-4-hydroxyphthalimide (3-CHP)
in the presence of esterification reagents and conditions
diphenyl chlorophosphate (DPCP)
LiCl and pyridine at room to reflux temperature
and subsequent methanol precipitation and drying as fine powder. Films of LCPEI-22/44-BCB (with 22 mol%/44 mol% 3-CHP) were generated by hot-pressing and curing procedures
and the curing temperature is around 270 ℃
which is favorably lower than those of 3-ethynylaniline (3-EA
310 ℃) and 4-phenylethynylphthalic anhydride (PEPA
370 ℃)
two alkyne-type thermal reactive terminal groups used in literature. These BCB-type LCPEIs have good thermal stabilities (
T
d
5%
= 416.7-454.8 ℃) in thermo-gravimetric analysis (TGA) under nitrogen gas. Compared with the commercially available Vect
ra A950 LCP and non-BCB-containing LCPEI-22/44
LCPEI-22/44-BCB have better solubility (4/1
V
/
V
chloroform-pentafluorophenol)
lower melting temperature (
T
m
200 ℃)
higher glass transition temperature (
T
g
= 149-167 ℃)
and lower isotropic temperature (
T
i
350 ℃)
indicating processing convenience and application potential. Compared to LCPEI-22
film of LCPEI-22-BCB has a favorably lower linear thermal expansion coefficient (CTE
41.13 versus 73.29×10
-6
K
-1
)
a higher storage modulus (
E'
3.48 versus 0.53 GPa)
higher elastic modulus (
E
r
10.83 versus 9.40 GPa)
and higher hardness (
H
0.66 versus 0.58 GPa). Film of LCPEI-22-BCB also has better hydrophobicity with increased water contact angle (124.7° versus 114.3°). Film of LCPEI-22-BCB exhibits good and comparable low dielectric constant (
D
k
=3.364) and excellent low dielectric loss (
D
f
=0.0019) at 10 GHz high frequency and room temperature. Merits of the above features would make the BCB-type LCPEIs promising materials for flexible copper clad laminates.
液晶聚酯聚酯酰亚胺苯并环丁烯低介电常数
Liquid crystal polyesterPolyesterimideBenzocyclobuteneLow dielectric constant
Wang Y. H.; Zhou X.; Feng X.; Yu X. L.; Li S. H.; Zhao J.; Fan Z.; Sun X. Y.; Zhang P. B.; Cui J.; Guo M. J.; Cheng B. W. Polyimide films containing trifluoromethoxy groups with high comprehensive performance for flexible circuitry substrates. ACS Appl. Polym. Mater., 2022, 4(8), 5831-5839. doi:10.1021/acsapm.2c00730http://dx.doi.org/10.1021/acsapm.2c00730
Sawada R.; Ando S. Colorless, low dielectric, and optically active semialicyclic polyimides incorporating a biobased isosorbide moiety in the main chain. Macromolecules, 2022, 55(15), 6787-6800. doi:10.1021/acs.macromol.2c01288http://dx.doi.org/10.1021/acs.macromol.2c01288
Zhang S. Y.; Fu T.; Gong Y.; Guo D. M.; Wang X. L.; Wang Y. Z. Design and synthesis of liquid crystal copolyesters with high-frequency low dielectric loss and inherent flame retardancy. Chin. Chem. Lett., 2023, 34(5), 107615. doi:10.1016/j.cclet.2022.06.038http://dx.doi.org/10.1016/j.cclet.2022.06.038
Zhang W. X.; Peng Z. Q.; Pan Q. W.; Liu S. M.; Zhao J. Q. Effect of fluorinated substituents on solubility and dielectric properties of the liquid crystalline poly(ester imides). ACS Appl. Polym. Mater., 2023, 5(1), 141-151. doi:10.1021/acsapm.2c01358http://dx.doi.org/10.1021/acsapm.2c01358
Li J. Z.; Chen M. D.; Wang Y. C. Preparation and properties of a fluorinated epoxy resin with low dielectric constant. J. Appl. Polym. Sci., 2022, 139(19), 52132. doi:10.1002/app.52132http://dx.doi.org/10.1002/app.52132
Hou J. R.; Sun J.; Fang Q. A fluorinated low dielectric polymer at high frequency derived from allylphenol and benzocyclobutene by a facile route. Eur. Polym. J., 2022, 163, 110943. doi:10.1016/j.eurpolymj.2021.110943http://dx.doi.org/10.1016/j.eurpolymj.2021.110943
Hou J. R.; Fang L. X.; Huang G.; Dai M. L.; Liu F. P.; Wang C. Y.; Li M. H.; Zhang H.; Sun J.; Fang Q. Low-dielectric polymers derived from biomass. ACS Appl. Polym. Mater., 2021, 3(6), 2835-2848. doi:10.1021/acsapm.1c00043http://dx.doi.org/10.1021/acsapm.1c00043
Ji Y.; Bai Y.; Liu X. B.; Jia K. Progress of liquid crystal polyester (LCP) for 5G application. Adv. Ind. Eng. Polym. Res., 2020, 3(4), 160-174. doi:10.1016/j.aiepr.2020.10.005http://dx.doi.org/10.1016/j.aiepr.2020.10.005
Han H. Wholly aromatic liquid-crystalline polyesters. Prog. Polym. Sci., 1997, 22(7), 1431-1502. doi:10.1016/s0079-6700(96)00028-7http://dx.doi.org/10.1016/s0079-6700(96)00028-7
Kricheldorf H. R.; Schwarz G.; de Abajo J.; de la Campa J. LC-polyimides: 5. Poly(ester-imide)s derived from N-(4-carboxyphenyl) trimellitimide and α,ω-dihydroxyalkanes. Polymer, 1991, 32(5), 942-949. doi:10.1016/0032-3861(91)90524-mhttp://dx.doi.org/10.1016/0032-3861(91)90524-m
Kricheldorf H. R.; Schwarz G.; Domschke A.; Linzer V. Liquid-crystalline polyimides. 15. Role of conformation and donor-acceptor interactions for the nematic order of poly(ester imides). Macromolecules, 1993, 26(19), 5161-5168. doi:10.1021/ma00071a028http://dx.doi.org/10.1021/ma00071a028
Kricheldorf H. R.; Linzer V.; Bruhn C. LC-polyimides—14. Thermotropic copoly (ester-imide)s derived from N-(3′-hydroxyphenyl) trimellitimide and 4-hydroxybenzoic acid or 6-hydroxy-2-naphthoic acid. Eur. Polym. J., 1994, 30(4), 549-556. doi:10.1016/0014-3057(94)90058-2http://dx.doi.org/10.1016/0014-3057(94)90058-2
Ding Z. J.; Yuan L.; Huang T.; Liang G. Z.; Gu A. J. High-temperature triple-shape memory polymer with full recovery through cross-linking all-aromatic liquid crystalline poly(ester imide) under reduced molding temperature. Ind. Eng. Chem. Res., 2019, 58(20), 8734-8742. doi:10.1021/acs.iecr.9b00662http://dx.doi.org/10.1021/acs.iecr.9b00662
Iqbal M.; Norder B.; Mendes E.; Dingemans T. J. All-aromatic liquid crystalline thermosets with high glass transition temperatures. J. Polym. Sci. Part A Polym. Chem., 2009, 47(5), 1368-1380. doi:10.1002/pola.23245http://dx.doi.org/10.1002/pola.23245
Knijnenberg A.; Weiser E. S.; StClair T. L.; Mendes E.; Dingemans T. J. Synthesis and characterization of aryl ethynyl terminated liquid crystalline oligomers and their cured polymers. Macromolecules, 2006, 39(20), 6936-6943. doi:10.1021/ma060441ohttp://dx.doi.org/10.1021/ma060441o
Dingemans T.; Knijnenberg A.; Iqbal M.; Weiser E.; Stclair T. All-aromatic liquid crystal thermosets: new high-performance materials for structural applications. Liq. Cryst. Today, 2006, 15(4), 19-24. doi:10.1080/14645180701470371http://dx.doi.org/10.1080/14645180701470371
Guan Q. B.; Norder B.; Dingemans T. J. Flexible all-aromatic polyesterimide films with high glass transition temperatures. J. Appl. Polym. Sci., 2017, 134(18), 44774. doi:10.1002/app.44774http://dx.doi.org/10.1002/app.44774
Huang T.; Guan Q. B.; Yuan L.; Liang G. Z.; Gu A. J. Facilely synthesizing ethynyl terminated all-aromatic liquid crystalline poly(esterimide)s with good processability and thermal resistance under medium-low temperature via direct esterification. Ind. Eng. Chem. Res., 2018, 57(21), 7090-7098. doi:10.1021/acs.iecr.8b00301http://dx.doi.org/10.1021/acs.iecr.8b00301
Guan Q. B.; Norder B.; Chu L. Y.; Besseling N. A. M.; Picken S. J.; Dingemans T. J. All-aromatic (AB)n-multiblock copolymers via simple one-step melt condensation chemistry. Macromolecules, 2016, 49(22), 8549-8562. doi:10.1021/acs.macromol.6b01341http://dx.doi.org/10.1021/acs.macromol.6b01341
Wang Y. Q.; Sun J.; Jin K. K.; Wang J. J.; Yuan C.; Tong J. W.; Diao S.; He F. K.; Fang Q. Benzocyclobutene resin with fluorene backbone: a novel thermosetting material with high thermostability and low dielectric constant. RSC Adv., 2014, 4(75), 39884-39888. doi:10.1039/c4ra05898dhttp://dx.doi.org/10.1039/c4ra05898d
Tong J. W.; Diao S.; Jin K. K.; Yuan C.; Wang J. J.; Sun J.; Fang Q. Benzocyclobutene-functionalized poly(m-phenylene): a novel polymer with low dielectric constant and high thermostability. Polymer, 2014, 55(16), 3628-3633. doi:10.1016/j.polymer.2014.07.001http://dx.doi.org/10.1016/j.polymer.2014.07.001
Tan L. S.; Arnold F. E. Benzocyclobutene in polymer synthesis. II. Solid state diels-alder polymerization utilizing an in situ generated diene and an alkyne. J. Polym. Sci. Part A Polym. Chem., 1987, 25(11), 3159-3172. doi:10.1002/pola.1987.080251118http://dx.doi.org/10.1002/pola.1987.080251118
Tan L. S.; Arnold F. E. Benzocyclobutene in polymer synthesis. I. Homopolymerization of bisbenzocyclobutene aromatic imides to form high-temperature resistant thermosetting resins. J. Polym. Sci. Part A Polym. Chem., 1988, 26(7), 1819-1834. doi:10.1002/pola.1988.080260712http://dx.doi.org/10.1002/pola.1988.080260712
张英强, 沈学宁, 蔡春华, 黄发荣. 新型苯并环丁烯封端的聚醚酰亚胺的合成与表征. 石油化工, 2005, 34(8), 786-790. doi:10.3321/j.issn:1000-8144.2005.08.018http://dx.doi.org/10.3321/j.issn:1000-8144.2005.08.018
Que X. F.; Yan Y. R.; Qiu Z. M. Synthesis and characterization of benzocyclobutene-terminated imides with high organosolubility. Eur. Polym. J., 2018, 103, 410-420. doi:10.1016/j.eurpolymj.2018.04.033http://dx.doi.org/10.1016/j.eurpolymj.2018.04.033
Chorell E.; Chorell E. Efficient synthesis of 2-substituted phthalimides from phthalic acids in one step. Eur. J. Org. Chem., 2013, (33), 7512-7516. doi:10.1002/ejoc.201300952http://dx.doi.org/10.1002/ejoc.201300952
Zhou Y.; Chen G. F.; Wang W.; Wei L. H.; Zhang Q. J.; Song L. P.; Fang X. Z. Synthesis and characterization of transparent polyimides derived from ester-containing dianhydrides with different electron affinities. RSC Adv., 2015, 5(96), 79207-79215. doi:10.1039/c5ra16574ahttp://dx.doi.org/10.1039/c5ra16574a
Habenschuss A.; Varma-Nair M.; Kwon Y. K.; Ma J. S.; Wunderlich B. The phase diagram of poly(4-hydroxybenzoic acid) and poly(2,6-hydroxynaphthoic acid) and their copolymers from X-ray diffraction and thermal analysis. Polymer, 2006, 47(7), 2369-2380. doi:10.1016/j.polymer.2006.01.088http://dx.doi.org/10.1016/j.polymer.2006.01.088
Wilson D. J.; Vonk C. G.; Windle A. H. Diffraction measurements of crystalline morphology in a thermotropic random copolymer. Polymer, 1993, 34(2), 227-237. doi:10.1016/0032-3861(93)90071-hhttp://dx.doi.org/10.1016/0032-3861(93)90071-h
Chen Y. C.; Lin Y. C.; Chang E. C.; Kuo C. C.; Ueda M.; Chen W. C. Investigation of the structure-dielectric relationship of polyimides with ultralow dielectric constant and dissipation factors using density functional theory. Polymer, 2022, 256, 125184. doi:10.1016/j.polymer.2022.125184http://dx.doi.org/10.1016/j.polymer.2022.125184
0
浏览量
346
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构