浏览全部资源
扫码关注微信
复旦大学高分子科学系 聚合物分子工程国家重点实验室 上海 200433
[ "魏大程,男,1981年生. 2003年大学本科毕业于浙江大学,2009年于中国科学院化学研究所获博士学位,此后在新加坡国立大学和斯坦福大学开展研究,2014年加入复旦大学. 现任复旦大学高分子科学系和聚合物分子工程国家重点实验室研究员,研究方向:光电高分子材料可控制备、晶体管器件及生物化学传感应用. 迄今,发表论文130余篇,授权发明专利20项,合编专著4部. 通讯作者论文发表在Nat. Biomed. Eng., Nat. Protoc., Sci. Adv., Nat. Commun., J. Am. Chem. Soc., Adv. Mater., Angew. Chem. Int. Ed.等期刊上;获国家自然科学奖二等奖(4/5)、北京市科学技术奖一等奖(4/7)、中国化工学会科学技术奖一等奖(1/7)、上海职工优秀创新成果奖(1/3)、全国医工结合科技创新十大进展(1/1);担任Microelectronic Engineering副主编." ]
纸质出版日期:2024-07-20,
网络出版日期:2024-04-28,
收稿日期:2024-02-08,
录用日期:2024-03-11
移动端阅览
孙江, 彭兰, 魏大程. 基于超临界溶剂热法的共价有机框架单晶超快制备. 高分子学报, 2024, 55(7), 814-825
Sun, J.; Peng, L.; Wei, D. C. Ultra-fast supercritically-solvothermal polymerization for large-sized covalent organic framework single crystals. Acta Polymerica Sinica, 2024, 55(7), 814-825
孙江, 彭兰, 魏大程. 基于超临界溶剂热法的共价有机框架单晶超快制备. 高分子学报, 2024, 55(7), 814-825 DOI: 10.11777/j.issn1000-3304.2024.24032.
Sun, J.; Peng, L.; Wei, D. C. Ultra-fast supercritically-solvothermal polymerization for large-sized covalent organic framework single crystals. Acta Polymerica Sinica, 2024, 55(7), 814-825 DOI: 10.11777/j.issn1000-3304.2024.24032.
结晶聚合物材料的性质和应用在很大程度上取决于它们的结晶度. 快速制备高结晶度或单晶聚合物材料不仅有利于研究其结构-性能关系,同时可以拓展其实际应用领域. 然而,通过聚合将有机小分子高效精确地组装成单晶聚合物是一项具有挑战性的任务. 为了解决这个问题,我们课题组开发了一种超临界溶剂热法来实现聚合物单晶的超快制备. 该方法使用超临界二氧化碳作为反应介质,由于其具有高扩散率和低黏度,所以该方法极大地提高了聚合物晶体的生长速率. 本专论回顾了共价有机框架材料的发展及常用合成方法,以及在单晶制备方面面临的挑战. 从超临界流体的基本性质和应用、超临界溶剂热法的机理和优势、制得的共价有机框架单晶的结构表征和性质测试等方面系统介绍了基于超临界溶剂热法的聚合物单晶超快制备. 最后,对超临界溶剂热法合成聚合物单晶面临的挑战和发展方向进行了展望.
The properties and applications of crystalline polymer materials largely depend on their crystallinity. Rapid preparation of high crystalline or single crystal polymer materials is not only beneficial for studying their structure-property relationship
but can also expand their practical applications. However
efficiently and accurately assembling organic molecules into polymer single crystals through polymerization is a challenging task. To address this issue
our group has developed a supercritically-solvothermal method for achieving ultra-fast preparation of polymer single crystals. This method uses supercritical carbon dioxide as the reaction medium
which greatly improves the growth rate of polymer crystals due to its high diffusion rate and low viscosity. This feature article reviews the commonly used synthesis methods for covalent organic frameworks (COFs)
as well as the challenges faced in single crystal preparation. Then
the basic properties and applications of supercritical fluids
the advantages of supercritically-solvothermal method
and the structural characterization of the prepared COF single crystals are systematically discussed. Finally
the challenges and development directions faced in the synthesis of polymer single crystals by supercritically-solvothermal method are prospected.
超临界溶剂热聚合物单晶共价有机框架快速制备
Supercritically-solvothermal methodPolymerSingle crystalCovalent organic frameworksFast synthesis
Smith B. J.; Dichtel W. R. Mechanistic studies of two-dimensional covalent organic frameworks rapidly polymerized from initially homogenous conditions. J. Am. Chem. Soc., 2014, 136(24), 8783-8789. doi:10.1021/ja5037868http://dx.doi.org/10.1021/ja5037868
Rowan S. J.; Cantrill S. J.; Cousins G. R. L.; Sanders J. K. M.; Stoddart J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed., 2002, 41(6), 898-952. doi:10.1002/1521-3773(20020315)41:6<898::aid-anie898>3.0.co;2-ehttp://dx.doi.org/10.1002/1521-3773(20020315)41:6<898::aid-anie898>3.0.co;2-e
Waller P. J.; Gándara F.; Yaghi O. M. Chemistry of covalent organic frameworks. Acc. Chem. Res., 2015, 48(12), 3053-3063. doi:10.1021/acs.accounts.5b00369http://dx.doi.org/10.1021/acs.accounts.5b00369
Ma T. Q.; Kapustin E. A.; Yin S. X.; Liang L.; Zhou Z. Y.; Niu J.; Li L. H.; Wang Y. Y.; Su J.; Li J.; Wang X. G.; Wang W. D.; Wang W.; Sun J. L.; Yaghi O. M. Single-crystal X-ray diffraction structures of covalent organic frameworks. Science, 2018, 361(6397), 48-52. doi:10.1126/science.aat7679http://dx.doi.org/10.1126/science.aat7679
Evans A. M.; Parent L. R.; Flanders N. C.; Bisbey R. P.; Vitaku E.; Kirschner M. S.; Schaller R. D.; Chen L. X.; Gianneschi N. C.; Dichtel W. R. Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science, 2018, 361(6397), 52-57. doi:10.1126/science.aar7883http://dx.doi.org/10.1126/science.aar7883
Segura J. L.; Mancheño M. J.; Zamora F. Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chem. Soc. Rev., 2016, 45(20), 5635-5671. doi:10.1039/c5cs00878fhttp://dx.doi.org/10.1039/c5cs00878f
Hu W. B. Polymer features in crystallization. Chinese J. Polym. Sci., 2022, 40(6), 545-555. doi:10.1007/s10118-022-2710-8http://dx.doi.org/10.1007/s10118-022-2710-8
Lin H. X.; Liu Y.; Wang Z. R.; Ling L. Y.; Huang H.; Li Q. H.; Cheng L. X.; Li Y. B.; Zhou J. L.; Wu K. F.; Zhang J.; Zhou T. H. Enhanced CO2 photoreduction through spontaneous charge separation in end-capping assembly of heterostructured covalent-organic frameworks. Angew. Chem. Int. Ed., 2022, 61(50), e202214142. doi:10.1002/anie.202214142http://dx.doi.org/10.1002/anie.202214142
Zhang Q.; Gao S. Q.; Guo Y. Y.; Wang H. Y.; Wei J. S.; Su X. F.; Zhang H. C.; Liu Z. M.; Wang J. J. Designing covalent organic frameworks with Co-O4 atomic sites for efficient CO2 photoreduction. Nat. Commun., 2023, 14(1), 1147. doi:10.1038/s41467-023-36779-4http://dx.doi.org/10.1038/s41467-023-36779-4
Guo Z. Y.; Wu H.; Chen Y.; Zhu S. Y.; Jiang H. F.; Song S. Q.; Ren Y. X.; Wang Y. H.; Liang X.; He G. W.; Li Y. H.; Jiang Z. Y. Missing-linker defects in covalent organic framework membranes for efficient CO2 separation. Angew. Chem. Int. Ed., 2022, 61(41), e202210466. doi:10.1002/anie.202210466http://dx.doi.org/10.1002/anie.202210466
Shi X. S.; Zhang Z. P.; Yin C. C.; Zhang X.; Long J. H.; Zhang Z.; Wang Y. Design of three-dimensional covalent organic framework membranes for fast and robust organic solvent nanofiltration. Angew. Chem. Int. Ed., 2022, 61(36), e202207559. doi:10.1002/anie.202207559http://dx.doi.org/10.1002/anie.202207559
Wang H. J.; Zhai Y. M.; Li Y.; Cao Y.; Shi B. B.; Li R. L.; Zhu Z.; Jiang H. F.; Guo Z. Y.; Wang M. D.; Chen L.; Liu Y. W.; Zhou K. G.; Pan F. S.; Jiang Z. Y. Covalent organic framework membranes for efficient separation of monovalent cations. Nat. Commun., 2022, 13(1), 7123. doi:10.1038/s41467-022-34849-7http://dx.doi.org/10.1038/s41467-022-34849-7
Côté A. P.; Benin A. I.; Ockwig N. W.; O'Keeffe M.; Matzger A. J.; Yaghi O. M. Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751), 1166-1170. doi:10.1126/science.1120411http://dx.doi.org/10.1126/science.1120411
Albacete P.; Martínez J. I.; Li X.; López-Moreno A.; Mena-Hernando S. A.; Platero-Prats A. E.; Montoro C.; Loh K. P.; Pérez E. M.; Zamora F. Layer-stacking-driven fluorescence in a two-dimensional imine-linked covalent organic framework. J. Am. Chem. Soc., 2018, 140(40), 12922-12929. doi:10.1021/jacs.8b07450http://dx.doi.org/10.1021/jacs.8b07450
Yang J.; Ghosh S.; Roeser J.; Acharjya A.; Penschke C.; Tsutsui Y.; Rabeah J.; Wang T. Y.; Djoko Tameu S. Y.; Ye M. Y.; Grüneberg J.; Li S.; Li C. X.; Schomäcker R.; van de Krol R.; Seki S.; Saalfrank P.; Thomas A. Constitutional isomerism of the linkages in donor-acceptor covalent organic frameworks and its impact on photocatalysis. Nat. Commun., 2022, 13(1), 6317. doi:10.1038/s41467-022-33875-9http://dx.doi.org/10.1038/s41467-022-33875-9
Hamzehpoor E.; Ruchlin C.; Tao Y. Z.; Liu C. H.; Titi H. M.; Perepichka D. F. Efficient room-temperature phosphorescence of covalent organic frameworks through covalent halogen doping. Nat. Chem., 2023, 15(1), 83-90. doi:10.1038/s41557-022-01070-4http://dx.doi.org/10.1038/s41557-022-01070-4
Auras F.; Ascherl L.; Hakimioun A. H.; Margraf J. T.; Hanusch F. C.; Reuter S.; Bessinger D.; Döblinger M.; Hettstedt C.; Karaghiosoff K.; Herbert S.; Knochel P.; Clark T.; Bein T. Synchronized offset stacking: a concept for growing large-domain and highly crystalline 2D covalent organic frameworks. J. Am. Chem. Soc., 2016, 138(51), 16703-16710. doi:10.1021/jacs.6b09787http://dx.doi.org/10.1021/jacs.6b09787
Liu Y. N.; Fu S.; Pastoetter D. L.; Khan A. H.; Zhang Y. Y.; Dianat A.; Xu S. Q.; Liao Z. Q.; Richter M.; Yu M. H.; Položij M.; Brunner E.; Cuniberti G.; Heine T.; Bonn M.; Wang H. I.; Feng X. L. Vinylene-linked 2D conjugated covalent organic frameworks by Wittig reactions. Angew. Chem. Int. Ed., 2022, 61(49), e202209762. doi:10.1002/anie.202209762http://dx.doi.org/10.1002/anie.202209762
Liu C. L.; Wang Z. Z.; Zhang L.; Dong Z. Y. Soft 2D covalent organic framework with compacted honeycomb topology. J. Am. Chem. Soc., 2022, 144(41), 18784-18789. doi:10.1021/jacs.2c08468http://dx.doi.org/10.1021/jacs.2c08468
Bojdys M. J.; Jeromenok J.; Thomas A.; Antonietti M. Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity. Adv. Mater., 2010, 22(19), 2202-2205. doi:10.1002/adma.200903436http://dx.doi.org/10.1002/adma.200903436
Kuhn P.; Antonietti M.; Thomas A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed., 2008, 47(18), 3450-3453. doi:10.1002/anie.200705710http://dx.doi.org/10.1002/anie.200705710
Maschita J.; Banerjee T.; Savasci G.; Haase F.; Ochsenfeld C.; Lotsch B. V. Ionothermal synthesis of imide-linked covalent organic frameworks. Angew. Chem. Int. Ed., 2020, 59(36), 15750-15758. doi:10.1002/anie.202007372http://dx.doi.org/10.1002/anie.202007372
Lan Z. A.; Wu M.; Fang Z. P.; Zhang Y. F.; Chen X.; Zhang G. G.; Wang X. C. Ionothermal synthesis of covalent triazine frameworks in a NaCl-KCl-ZnCl2 eutectic salt for the hydrogen evolution reaction. Angew. Chem., 2022, 134(18), e202201482. doi:10.1002/ange.202201482http://dx.doi.org/10.1002/ange.202201482
Ritchie L. K.; Trewin A.; Reguera-Galan A.; Hasell T.; Cooper A. I. Synthesis of COF-5 using microwave irradiation and conventional solvothermal routes. Micropor. Mesopor. Mater., 2010, 132(1-2), 132-136. doi:10.1016/j.micromeso.2010.02.010http://dx.doi.org/10.1016/j.micromeso.2010.02.010
Campbell N. L.; Clowes R.; Ritchie L. K.; Cooper A. I. Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem. Mater., 2009, 21(2), 204-206. doi:10.1021/cm802981mhttp://dx.doi.org/10.1021/cm802981m
Biswal B. P.; Chandra S.; Kandambeth S.; Lukose B.; Heine T.; Banerjee R. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc., 2013, 135(14), 5328-5331. doi:10.1021/ja4017842http://dx.doi.org/10.1021/ja4017842
Chandra S.; Kandambeth S.; Biswal B. P.; Lukose B.; Kunjir S. M.; Chaudhary M.; Babarao R.; Heine T.; Banerjee R. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc., 2013, 135(47), 17853-17861. doi:10.1021/ja408121phttp://dx.doi.org/10.1021/ja408121p
Yang S. T.; Kim J.; Cho H. Y.; Kim S.; Ahn W. S. Facile synthesis of covalent organic frameworks COF-1 and COF-5 by sonochemical method. RSC Adv., 2012, 2(27), 10179-10181. doi:10.1039/c2ra21531dhttp://dx.doi.org/10.1039/c2ra21531d
Zhao W.; Yan P. Y.; Li B. Y.; Bahri M.; Liu L. J.; Zhou X.; Clowes R.; Browning N. D.; Wu Y.; Ward J. W.; Cooper A. I. Accelerated synthesis and discovery of covalent organic framework photocatalysts for hydrogen peroxide production. J. Am. Chem. Soc., 2022, 144(22), 9902-9909. doi:10.1021/jacs.2c02666http://dx.doi.org/10.1021/jacs.2c02666
Zhang M. X.; Chen J. C.; Zhang S. T.; Zhou X. Q.; He L. W.; Sheridan M. V.; Yuan M. J.; Zhang M. J.; Chen L.; Dai X.; Ma F. Y.; Wang J. D.; Hu J. T.; Wu G. Z.; Kong X. Q.; Zhou R. H.; Albrecht-Schmitt T. E.; Chai Z. F.; Wang S. A. Electron beam irradiation as a general approach for the rapid synthesis of covalent organic frameworks under ambient conditions. J. Am. Chem. Soc., 2020, 142(20), 9169-9174. doi:10.1021/jacs.0c03941http://dx.doi.org/10.1021/jacs.0c03941
Giri A.; Shreeraj G.; Dutta T. K.; Patra A. Transformation of an imine cage to a covalent organic framework film at the liquid-liquid interface. Angew. Chem. Int. Ed., 2023, 62(23), e202219083. doi:10.1002/anie.202219083http://dx.doi.org/10.1002/anie.202219083
Wang M. D.; Wang Y. T.; Zhao J. Y.; Zou J. Y.; Liang X.; Zhu Z. T.; Zhu J. S.; Wang H. J.; Wang Y. H.; Pan F. S.; Jiang Z. Y. Electrochemical interfacial polymerization toward ultrathin COF membranes for brine desalination. Angew. Chem. Int. Ed., 2023, 62(13), e202219084. doi:10.1002/anie.202219084http://dx.doi.org/10.1002/anie.202219084
Tang J. Q.; Liang Z. Z.; Qin H. N.; Liu X. Q.; Zhai B. B.; Su Z.; Liu Q. Q.; Lei H. T.; Liu K. Q.; Zhao C.; Cao R.; Fang Y. Large-area free-standing metalloporphyrin-based covalent organic framework films by liquid-air interfacial polymerization for oxygen electrocatalysis. Angew. Chem. Int. Ed., 2023, 62(1), e202214449. doi:10.1002/anie.202214449http://dx.doi.org/10.1002/anie.202214449
Wang G. B.; Wang Y. J.; Kan J. L.; Xie K. H.; Xu H. P.; Zhao F.; Wang M. C.; Geng Y.; Dong Y. B. Construction of covalent organic frameworks via a visible-light-activated photocatalytic multicomponent reaction. J. Am. Chem. Soc., 2023, 145(9), 4951-4956. doi:10.1021/jacs.2c13541http://dx.doi.org/10.1021/jacs.2c13541
Kim S.; Choi H. C. Light-promoted synthesis of highly-conjugated crystalline covalent organic framework. Commun. Chem., 2019, 2, 60. doi:10.1038/s42004-019-0162-zhttp://dx.doi.org/10.1038/s42004-019-0162-z
Kim S.; Park C.; Lee M.; Song I.; Kim J.; Lee M. H.; Jung J.; Kim Y.; Lim H.; Choi H. C. Rapid photochemical synthesis of sea-urchin-shaped hierarchical porous COF-5 and its lithography-free patterned growth. Adv. Funct. Mater., 2017, 27(32), 1700925. doi:10.1002/adfm.201700925http://dx.doi.org/10.1002/adfm.201700925
Li Z. P.; Deng T. Q.; Ma S.; Zhang Z. W.; Wu G.; Wang J. A.; Li Q. Z.; Xia H.; Yang S. W.; Liu X. M. Three-component donor-π-acceptor covalent-organic frameworks for boosting photocatalytic hydrogen evolution. J. Am. Chem. Soc., 2023, 145(15), 8364-8374.
Ma S.; Deng T. Q.; Li Z. P.; Zhang Z. W.; Jia J.; Li Q. Z.; Wu G.; Xia H.; Yang S. W.; Liu X. M. Photocatalytic hydrogen production on a sp2-carbon-linked covalent organic framework. Angew. Chem. Int. Ed., 2022, 61(42), 2208919. doi:10.1002/anie.202208919http://dx.doi.org/10.1002/anie.202208919
Wu X.; Zhang M. C.; Xia Y. S.; Ru C. L.; Chen P. Y.; Zhao H.; Zhou L.; Gong C. L.; Wu J. C.; Pan X. B. Arylboron functional covalent organic frameworks for synergistic photocatalytic hydrogen evolution. J. Mater. Chem. A, 2022, 10(34), 17691-17698. doi:10.1039/d2ta04748ahttp://dx.doi.org/10.1039/d2ta04748a
Zhi Q. J.; Liu W. P.; Jiang R.; Zhan X. N.; Jin Y. C.; Chen X.; Yang X. Y.; Wang K.; Cao W.; Qi D. D.; Jiang J. Z. Piperazine-linked metalphthalocyanine frameworks for highly efficient visible-light-driven H2O2 photosynthesis. J. Am. Chem. Soc., 2022, 144(46), 21328-21336. doi:10.1021/jacs.2c09482http://dx.doi.org/10.1021/jacs.2c09482
Wang X. H.; Enomoto R.; Murakami Y. Ionic additive strategy to control nucleation and generate larger single crystals of 3D covalent organic frameworks. Chem. Commun., 2021, 57(54), 6656-6659. doi:10.1039/d1cc01857dhttp://dx.doi.org/10.1039/d1cc01857d
Natraj A.; Ji W.; Xin J. J.; Castano I.; Burke D. W.; Evans A. M.; Strauss M. J.; Ateia M.; Hamachi L. S.; Gianneschi N. C.; Alothman Z. A.; Sun J. L.; Yusuf K.; Dichtel W. R. Single-crystalline imine-linked two-dimensional covalent organic frameworks separate benzene and cyclohexane efficiently. J. Am. Chem. Soc., 2022, 144(43), 19813-19824. doi:10.1021/jacs.2c07166http://dx.doi.org/10.1021/jacs.2c07166
Zheng Q.; Huang J. J.; He Y. T.; Huang H.; Ji Y.; Zhang Y. F.; Lin Z. A. Single-crystalline covalent organic frameworks as high-performance liquid chromatographic stationary phases for positional isomer separation. ACS Appl. Mater. Interfaces, 2022, 14(7), 9754-9762. doi:10.1021/acsami.1c20989http://dx.doi.org/10.1021/acsami.1c20989
Knez, Markočič E.; Leitgeb M.; Primožič M.; Knez Hrnčič M.; Škerget M. Industrial applications of supercritical fluids: a review. Energy, 2014, 77, 235-243. doi:10.1016/j.energy.2014.07.044http://dx.doi.org/10.1016/j.energy.2014.07.044
Cooper A. I. Polymer synthesis and processing using supercritical carbon dioxide. J. Mater. Chem., 2000, 10(2), 207-234. doi:10.1039/a906486ihttp://dx.doi.org/10.1039/a906486i
Fu C. P.; Wei R. L.; Xu P. Y.; Luo S. W.; Zhang C. Y.; Kankala R. K.; Wang S. B.; Jiang X. Q.; Wei X. H.; Zhang L. M.; Chen A. Z.; Yang R. M. Supercritical fluid-assisted fabrication of diselenide-bridged polymeric composites for improved indocyanine green-guided photodynamic therapy. Chem. Eng. J., 2021, 407, 127108. doi:10.1016/j.cej.2020.127108http://dx.doi.org/10.1016/j.cej.2020.127108
Field C. N.; Hamley P. A.; Webster J. M.; Gregory D. H.; Titman J. J.; Poliakoff M. Precipitation of solvent-free C60(CO2)0.95 from conventional solvents: a new antisolvent approach to controlled crystal growth using supercritical carbon dioxide. J. Am. Chem. Soc., 2000, 122(11), 2480-2488.
Peng L.; Guo Q. Y.; Song C. Y.; Ghosh S.; Xu H. S.; Wang L. Q.; Hu D. D.; Shi L.; Zhao L.; Li Q. W.; Sakurai T.; Yan H. G.; Seki S.; Liu Y. Q.; Wei D. C. Ultra-fast single-crystal polymerization of large-sized covalent organic frameworks. Nat. Commun., 2021, 12(1), 5077. doi:10.1038/s41467-021-24842-xhttp://dx.doi.org/10.1038/s41467-021-24842-x
Peng L.; Sun J.; Huang J.; Song C. Y.; Wang Q. K.; Wang L. Q.; Yan H. G.; Ji M. B.; Wei D. P.; Liu Y. Q.; Wei D. C. Ultra-fast synthesis of single-crystalline three-dimensional covalent organic frameworks and their applications in polarized optics. Chem. Mater., 2022, 34(7), 2886-2895. doi:10.1021/acs.chemmater.1c02382http://dx.doi.org/10.1021/acs.chemmater.1c02382
Lu Y.; Zhou Z. B.; Qi Q. Y.; Yao J.; Zhao X. Polyamide covalent organic framework membranes for molecular sieving. ACS Appl. Mater. Interfaces, 2022, 14(32), 37019-37027. doi:10.1021/acsami.2c07753http://dx.doi.org/10.1021/acsami.2c07753
Xu X. Y.; Zhang S. Q.; Xu K.; Chen H. Z.; Fan X. L.; Huang N. Janus dione-based conjugated covalent organic frameworks with high conductivity as superior cathode materials. J. Am. Chem. Soc., 2023, 145(2), 1022-1030. doi:10.1021/jacs.2c10509http://dx.doi.org/10.1021/jacs.2c10509
Tang Y. Z.; Zheng M. Z.; Xue W. J.; Huang H. L.; Zhang G. L. Combined skeleton and spatial rigidification of AIEgens in 2D covalent organic frameworks for boosted fluorescence emission and sensing of antibiotics. ACS Appl. Mater. Interfaces, 2022, 14(33), 37853-37864. doi:10.1021/acsami.2c11052http://dx.doi.org/10.1021/acsami.2c11052
0
浏览量
264
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构