浏览全部资源
扫码关注微信
聚合物分子工程国家重点实验室 复旦大学高分子科学系 上海 200438
[ "汪莹,女,1989年生. 复旦大学高分子科学系青年研究员,博士生导师. 2010年本科毕业于北京化工大学,2016年获弗吉尼亚理工大学高分子科学与工程博士与统计学硕士学位. 2017在美国劳伦斯伯克利国家实验室从事博士后研究. 2021年加入复旦大学工作. 2021年入选国家优青(海外)项目、上海市领军人才计划、上海市新工科人才、上海市浦江人才计划. 主要研究功能高分子、聚合物离子液体复合固态电解质材料的设计与表征,以及人工智能新技术与能源材料的融合与应用." ]
纸质出版日期:2024-07-20,
网络出版日期:2024-05-16,
收稿日期:2024-01-29,
录用日期:2024-04-16
移动端阅览
纪非凡, 汪莹. 双螺旋液晶聚(2,2'-二磺酰基-4,4'-联苯胺对苯二甲酰胺)复合材料及其在锂电池中的应用. 高分子学报, 2024, 55(7), 826-840
Ji, F.F.; Wang,Y. Double helical liquid crystalline poly(2,2'-disulfonyl-4,4'-benzidine terephthalamide) composite material and its application in lithium batteries. Acta Polymerica Sinica, 2024, 55(7), 826-840
纪非凡, 汪莹. 双螺旋液晶聚(2,2'-二磺酰基-4,4'-联苯胺对苯二甲酰胺)复合材料及其在锂电池中的应用. 高分子学报, 2024, 55(7), 826-840 DOI: 10.11777/j.issn1000-3304.2024.24034.
Ji, F.F.; Wang,Y. Double helical liquid crystalline poly(2,2'-disulfonyl-4,4'-benzidine terephthalamide) composite material and its application in lithium batteries. Acta Polymerica Sinica, 2024, 55(7), 826-840 DOI: 10.11777/j.issn1000-3304.2024.24034.
聚(2
2'-二磺酰基-4
4'-联苯胺对苯二甲酰胺) (PBDT)是一种主链型液晶聚电解质,其具有全芳香分子结构单元、超高的磺酸根密度以及可以形成分子内和分子间氢键网络的酰胺基团. 本文介绍了PBDT在水溶液中表现出的一系列特殊性质,包括自组装成双螺旋构象、溶致向列液晶相、微米级超长持续长度以及沿聚合物链的各向异性离子传输. 指出通过PBDT分子链的多尺度分子构象以及其选择性的离子传输特性,可以设计出具有各种功能的复合材料,例如PBDT基水凝胶、离子凝胶以及纳米复合材料. 分析表明PBDT中高度取向的刚性棒状结构以及各向异性的反离子快速传输机制,不仅实现了PBDT在固态电解质和锂电池电极黏结剂等领域的潜在应用,同时也预示着与PBDT有类似性质的刚性棒状聚电解质材料的开发在能源储存与转化领域以及其他相关应用方向的潜在应用价值.
As a main-chain liquid crystalline polyelectrolyte
poly(2
2'-disulfonyl-4
4'-benzidine terephthalamide) (PBDT) is characterized by its fully aromatic architecture
ultra-high density of sulfonate groups
intramolecular and intermolecular hydrogen bond networks formed by the amide groups. Here we describe a series of distinctive characteristics of PBDT solutions
including the self-assembled double helical conformations
formation of nematic liquid crystalline phases
and anisotropic ion transport along polymer chains. Based on the multi-scale molecular conformation of PBDT and its selective ion transport properties
composite materials with various functions can be designed
such as PBDT-based hydrogels
ionogels and nanocomposites. By emphasizing the rigid rod architecture and the anisotropic ion transport mechanism of counter ions in PBDT
the applications of PBDT composites in solid-state electrolytes and lithium battery electrode binders have been highlighted; meanwhile
indicating potential significance for the development of other rigid-rod polyelectrolyte materials similar as PBDT for the field of new energy storage and conversion and other related areas.
刚性棒状聚电解质双螺旋构象液晶相各向异性离子传输锂电池
Rigid rod polyelectrolytesDouble helical conformationLiquid crystalline phaseAnisotropic ion transportationLithium batteries
Kornyshev A. A.; Lee D. J.; Leikin S.; Wynveen A. Structure and interactions of biological helices. Rev. Mod. Phys., 2007, 79(3), 943-996. doi:10.1103/revmodphys.79.943http://dx.doi.org/10.1103/revmodphys.79.943
Grinshpan D. D.; Savitskaya T. A.; Tsygankova N. G.; Makarevich S. E.; Tretsiakova S. M.; Nevar T. N. Cellulose acetate sulfate as a lyotropic liquid crystalline polyelectrolyte: synthesis, properties, and application. Int. J. Polym. Sci., 2010, 2010, 831658. doi:10.1155/2010/831658http://dx.doi.org/10.1155/2010/831658
Every H. A.; Mendes E.; Picken S. J. Ordered structures in proton conducting membranes from supramolecular liquid crystal polymers. J. Phys. Chem. B, 2006, 110(47), 23729-23735. doi:10.1021/jp064398ihttp://dx.doi.org/10.1021/jp064398i
Ermoshkin A. V.; Olvera De La Cruz, M. Gelation in strongly charged polyelectrolytes. J. Polym. Sci. Part B Polym. Phys., 2004, 42(5), 766-776. doi:10.1002/polb.10752http://dx.doi.org/10.1002/polb.10752
Cheng Y. H.; Chen W. P.; Zheng C.; Qu W.; Wu H. L.; Shen Z. H.; Liang D. H.; Fan X. H.; Zhu M. F.; Zhou Q. F. Synthesis and phase structures of mesogen-jacketed liquid crystalline polyelectrolytes and their ionic complexes. Macromolecules, 2011, 44(10), 3973-3980. doi:10.1021/ma2001004http://dx.doi.org/10.1021/ma2001004
Sarkar N.; Kershner L. D. Rigid rod water-soluble polymers. J. Appl. Polym. Sci., 1996, 62(2), 393-408. doi:10.1002/(sici)1097-4628(19961010)62:2<393::aid-app14>3.3.co;2-lhttp://dx.doi.org/10.1002/(sici)1097-4628(19961010)62:2<393::aid-app14>3.3.co;2-l
Yang W.; Furukawa H.; Shigekura Y.; Shikinaka K.; Osada Y.; Gong J. P. Self-assembling structure in solution of a semirigid polyelectrolyte. Macromolecules, 2008, 41(5), 1791-1799. doi:10.1021/ma071251whttp://dx.doi.org/10.1021/ma071251w
Funaki T.; Kaneko T.; Yamaoka K.; Ohsedo Y.; Gong J. P.; Osada Y.; Shibasaki Y.; Ueda M. Shear-induced mesophase organization of polyanionic rigid rods in aqueous solution. Langmuir, 2004, 20(15), 6518-6520. doi:10.1021/la0364284http://dx.doi.org/10.1021/la0364284
Onsager L. The effects of shape on the interaction of colloidal particles. Ann. N Y Acad. Sci., 1949, 51(4), 627-659. doi:10.1111/j.1749-6632.1949.tb27296.xhttp://dx.doi.org/10.1111/j.1749-6632.1949.tb27296.x
Flory P. J. Phase equilibria in solutions of rod-like particles. Proc. R. Soc. Lond. A, 1956, 234(1196), 73-89. doi:10.1098/rspa.1956.0016http://dx.doi.org/10.1098/rspa.1956.0016
Wang Y.; Gao J. W.; Dingemans T. J.; Madsen L. A. Molecular alignment and ion transport in rigid rod polyelectrolyte solutions. Macromolecules, 2014, 47(9), 2984-2992. doi:10.1021/ma500364thttp://dx.doi.org/10.1021/ma500364t
Wang Y.; He Y. D.; Yu Z.; Gao J. W.; Ten Brinck S.; Slebodnick C.; Fahs G. B.; Zanelotti C. J.; Hegde M.; Moore R. B.; Ensing B.; Dingemans T. J.; Qiao R.; Madsen L. A. Double helical conformation and extreme rigidity in a rodlike polyelectrolyte. Nat. Commun., 2019, 10(1), 801. doi:10.1038/s41467-019-08756-3http://dx.doi.org/10.1038/s41467-019-08756-3
Manning G. S. The critical onset of counterion condensation: a survey of its experimental and theoretical basis. Ber. Der Bunsengesellschaft Für Phys. Chem., 1996, 100(6), 909-922. doi:10.1002/bbpc.19961000637http://dx.doi.org/10.1002/bbpc.19961000637
Fox R. J.; Hegde M.; Zanelotti C. J.; Kumbhar A. S.; Samulski E. T.; Madsen L. A.; Picken S. J.; Dingemans T. J. Irreversible shear-activated gelation of a liquid crystalline polyelectrolyte. ACS Macro Lett., 2020, 9(7), 957-963. doi:10.1021/acsmacrolett.0c00168http://dx.doi.org/10.1021/acsmacrolett.0c00168
Fox R. J.; Chen W. R.; Do C.; Picken S. J.; Forest M. G.; Dingemans T. J. Fingerprinting the nonlinear rheology of a liquid crystalline polyelectrolyte. Rheol. Acta, 2020, 59(10), 727-743. doi:10.1007/s00397-020-01234-4http://dx.doi.org/10.1007/s00397-020-01234-4
Doi M.; Edwards S. F. Dynamics of rod-like macromolecules in concentrated solution. Part 1. J. Chem. Soc., Faraday Trans. 2, 1978, 74, 560. doi:10.1039/f29787400560http://dx.doi.org/10.1039/f29787400560
Fox R. J.; Forest M. G.; Picken S. J.; Dingemans T. J. Observation of transition cascades in sheared liquid crystalline polymers. Soft Matter, 2020, 16(16), 3891-3901. doi:10.1039/d0sm00275ehttp://dx.doi.org/10.1039/d0sm00275e
Forest M. G.; Wang Q.; Zhou R. H. The weak shear kinetic phase diagram for nematic polymers. Rheol. Acta, 2004, 43(1), 17-37. doi:10.1007/s00397-003-0317-8http://dx.doi.org/10.1007/s00397-003-0317-8
Forest M. G.; Wang Q.; Zhou R. H. The flow-phase diagram of Doi-Hess theory for sheared nematic polymers II: finite shear rates. Rheol. Acta, 2004, 44(1), 80-93. doi:10.1007/s00397-004-0380-9http://dx.doi.org/10.1007/s00397-004-0380-9
Wu Z. L.; Kurokawa T.; Liang S. M.; Gong J. P. Dual network formation in polyelectrolyte hydrogel via viscoelastic phase separation: role of ionic strength and polymerization kinetics. Macromolecules, 2010, 43(19), 8202-8208. doi:10.1021/ma101558jhttp://dx.doi.org/10.1021/ma101558j
Wu Z. L.; Kurokawa T.; Liang S. M.; Furukawa H.; Gong J. P. Hydrogels with cylindrically symmetric structure at macroscopic scale by self-assembly of semi-rigid polyion complex. J. Am. Chem. Soc., 2010, 132(29), 10064-10069. doi:10.1021/ja101969khttp://dx.doi.org/10.1021/ja101969k
Wu Z. L.; Kurokawa T.; Sawada D.; Hu J.; Furukawa H.; Gong J. P. Anisotropic hydrogel from complexation-driven reorientation of semirigid polyanion at Ca2+ diffusion flux front. Macromolecules, 2011, 44(9), 3535-3541. doi:10.1021/ma2001228http://dx.doi.org/10.1021/ma2001228
Shigekura Y.; Chen Y. M.; Furukawa H.; Kaneko T.; Kaneko D.; Osada Y.; Gong J. P. Anisotropic polyion-complex gels from template polymerization. Adv. Mater., 2005, 17(22), 2695-2699. doi:10.1002/adma.200500707http://dx.doi.org/10.1002/adma.200500707
Shigekura Y.; Furukawa H.; Yang W.; Chen Y. M.; Kaneko T.; Osada Y.; Gong J. P. Anisotropic gelation seeded by a rod-like polyelectrolyte. Macromolecules, 2007, 40(7), 2477-2485. doi:10.1021/ma061511uhttp://dx.doi.org/10.1021/ma061511u
Wu Z. L.; Arifuzzaman M.; Kurokawa T.; Furukawa H.; Gong J. P. Hydrogel with cubic-packed giant concentric domains of semi-rigid polyion complex. Soft Matter, 2011, 7(5), 1884-1889. doi:10.1039/c0sm01139hhttp://dx.doi.org/10.1039/c0sm01139h
Wu Z. L.; Gong J. P. Hydrogels with self-assembling ordered structures and their functions. NPG Asia Mater., 2011, 3(6), 57-64. doi:10.1038/asiamat.2010.200http://dx.doi.org/10.1038/asiamat.2010.200
Wang Y.; Chen Y.; Gao J. W.; Yoon H. G.; Jin L. Y.; Forsyth M.; Dingemans T. J.; Madsen L. A. Highly conductive and thermally stable ion gels with tunable anisotropy and modulus. Adv. Mater., 2016, 28(13), 2571-2578. doi:10.1002/adma.201505183http://dx.doi.org/10.1002/adma.201505183
Bostwick J. E.; Zanelotti C. J.; Iacob C.; Korovich A. G.; Madsen L. A.; Colby R. H. Ion transport and mechanical properties of non-crystallizable molecular ionic composite electrolytes. Macromolecules, 2020, 53(4), 1405-1414. doi:10.1021/acs.macromol.9b02125http://dx.doi.org/10.1021/acs.macromol.9b02125
Hegde M.; Yang L.; Vita F.; Fox R. J.; van de Watering R.; Norder B.; Lafont U.; Francescangeli O.; Madsen L. A.; Picken S. J.; Samulski E. T.; Dingemans T. J. Strong graphene oxide nanocomposites from aqueous hybrid liquid crystals. Nat. Commun., 2020, 11(1), 830. doi:10.1038/s41467-020-14618-0http://dx.doi.org/10.1038/s41467-020-14618-0
Fox R. J.; Hegde M.; Cole D. P.; Moore R. B.; Picken S. J.; Dingemans T. J. High-strength liquid crystal polymer-graphene oxide nanocomposites from water. ACS Appl. Mater. Interfaces, 2022, 14(14), 16592-16600. doi:10.1021/acsami.2c00186http://dx.doi.org/10.1021/acsami.2c00186
Yu Z.; He Y. D.; Wang Y.; Madsen L. A.; Qiao R. Molecular structure and dynamics of ionic liquids in a rigid-rod polyanion-based ion gel. Langmuir, 2017, 33(1), 322-331. doi:10.1021/acs.langmuir.6b03798http://dx.doi.org/10.1021/acs.langmuir.6b03798
Fox R. J.; Yu D. Y.; Hegde M.; Kumbhar A. S.; Madsen L. A.; Dingemans T. J. Nanofibrillar ionic polymer composites enable high-modulus ion-conducting membranes. ACS Appl. Mater. Interfaces, 2019, 11(43), 40551-40563. doi:10.1021/acsami.9b10921http://dx.doi.org/10.1021/acsami.9b10921
Yu Q. P.; Mai W. C.; Xue W. J.; Xu G. Y.; Liu Q.; Zeng K.; Liu Y. M.; Kang F. Y.; Li B. H.; Li J. Sacrificial poly-(propylene carbonate) membrane for dispersing nanoparticles and preparing artificial solid electrolyte interphase on Li metal anode. ACS Appl. Mater. Interfaces, 2020, 12(24), 27087-27094. doi:10.1021/acsami.0c04205http://dx.doi.org/10.1021/acsami.0c04205
Wang Z. C.; Zhang H. Y.; Xu J. J.; Pan A. R.; Zhang F. R.; Wang L.; Han R.; Hu J. C.; Liu M. N.; Wu X. D. Advanced ultralow-concentration electrolyte for wide-temperature and high-voltage Li-metal batteries. Adv. Funct. Mater., 2022, 32(23), 2112598. doi:10.1002/adfm.202112598http://dx.doi.org/10.1002/adfm.202112598
Tian X. L.; Yi Y. K.; Fang B. R.; Yang P.; Wang T.; Liu P.; Qu L.; Li M. T.; Zhang S. Q. Design strategies of safe electrolytes for preventing thermal runaway in lithium ion batteries. Chem. Mater., 2020, 32(23), 9821-9848. doi:10.1021/acs.chemmater.0c02428http://dx.doi.org/10.1021/acs.chemmater.0c02428
Gao J. W.; Wang Y.; Norder B.; Garcia S. J.; Picken S. J.; Madsen L. A.; Dingemans T. J. Water and sodium transport and liquid crystalline alignment in a sulfonated aramid membrane. J. Membr. Sci., 2015, 489, 194-203. doi:10.1016/j.memsci.2015.03.090http://dx.doi.org/10.1016/j.memsci.2015.03.090
Wang Y.; Zanelotti C. J.; Wang X. E.; Kerr R.; Jin L. Y.; Kan W. H.; Dingemans T. J.; Forsyth M.; Madsen L. A. Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways. Nat. Mater., 2021, 20(9), 1255-1263. doi:10.1038/s41563-021-00995-4http://dx.doi.org/10.1038/s41563-021-00995-4
Yu D. Y.; Pan X. N.; Bostwick J. E.; Zanelotti C. J.; Mu L. Q.; Colby R. H.; Lin F.; Madsen L. A. Room temperature to 150 ℃ lithium metal batteries enabled by a rigid molecular ionic composite electrolyte. Adv. Energy Mater., 2021, 11(12), 2003559. doi:10.1002/aenm.202003559http://dx.doi.org/10.1002/aenm.202003559
Li K.; Wang J. F.; Song Y. Y.; Wang Y. Machine learning-guided discovery of ionic polymer electrolytes for lithium metal batteries. Nat. Commun., 2023, 14(1), 2789. doi:10.1038/s41467-023-38493-7http://dx.doi.org/10.1038/s41467-023-38493-7
Yu D. Y.; Mu L. Q.; Feng X.; Lin F.; Madsen L. A. Rigid-rod sulfonated polyamide as an aqueous-processable binder for Li-ion battery electrodes. ACS Appl. Energy Mater., 2022, 5(10), 12531-12537. doi:10.1021/acsaem.2c02173http://dx.doi.org/10.1021/acsaem.2c02173
Zhang J. Y.; Sun J. Z.; Zhao Y.; Su Y. T.; Meng X. H.; Yan L. J.; Ma T. L. Prelithiated rigid polymer with high ionic conductivity as silicon-based anode binder for lithium-ion battery. J. Colloid Interface Sci., 2023, 649, 977-985. doi:10.1016/j.jcis.2023.06.133http://dx.doi.org/10.1016/j.jcis.2023.06.133
0
浏览量
538
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构