浏览全部资源
扫码关注微信
浙江省高分子材料表面与界面科学重点实验室 浙江理工大学化学与化工学院 杭州 310018
E-mail: mjliu@zstu.edu.cn
纸质出版日期:2024-09-20,
网络出版日期:2024-05-17,
收稿日期:2024-01-30,
录用日期:2024-03-04
移动端阅览
解鹏杰, 王倩佩, 刘美娇. 表面交替吸附的圆柱受限下两嵌段共聚物自组装的理论研究. 高分子学报, 2024, 55(9), 1251-1261
Xie, P. J.; Wang, Q. P.; Liu, M. J. Theoretical study on the self-assembly of diblock copolymers under cylindrical confinement with alternately adsorbed surfaces. Acta Polymerica Sinica, 2024, 55(9), 1251-1261
解鹏杰, 王倩佩, 刘美娇. 表面交替吸附的圆柱受限下两嵌段共聚物自组装的理论研究. 高分子学报, 2024, 55(9), 1251-1261 DOI: 10.11777/j.issn1000-3304.2024.24038.
Xie, P. J.; Wang, Q. P.; Liu, M. J. Theoretical study on the self-assembly of diblock copolymers under cylindrical confinement with alternately adsorbed surfaces. Acta Polymerica Sinica, 2024, 55(9), 1251-1261 DOI: 10.11777/j.issn1000-3304.2024.24038.
利用自洽场理论(SCFT)计算研究了AB两嵌段共聚物在交替吸附的圆柱受限下的自组装行为,重点研究了碟状(disk
Dk)结构的稳定性和相区域,构建了关于交替吸附周期
w
、圆柱孔
径
D
以及A嵌段体积分数
f
的一系列相图. 结果表明,Dk结构的稳定性在表面场的诱导下得到很大的提高,特别是
w
≈5.0
R
g
时Dk结构变得更稳定. 固定
w
= 5.0
R
g
的情况下,Dk结构的形貌随着圆柱孔径
D
和A嵌段体积分数
f
的变化而变化,在一定的
D
-
f
线性变化区间, Dk结构可以形成具有负曲率的双凹碟状形貌,否则形成椭球或圆环形貌. 此外,在这样的特殊的表面场诱导下还出现了一些有趣的新型柱结构以及具有规则排列的球形结构. 这些研究加深了对圆柱受限表面场诱导嵌段共聚物自组装相行为的理解,为实验上制备类似的复杂结构提供了理论指导.
The self-consistent field theory (SCFT) is employed to study the self-assembly behavior of AB diblock copolymers confined in alternately adsorbed nanopores. Focusing on the emergence and stability of the disk (Dk) phases
a series of phase diagrams are constructed with respect to the alternating adsorption period (
w
)
size of the cylindrical pore (
D
)
and the volume fraction of the A block (
f
). The results indicate a significant enhanced stability of Dk structure by the alternately adsorbing surface fields. The Dk structure is especially favored
when the alternating adsorption period is around 5.0
R
g
. With fixe
d
w
= 5.0
R
g
the appearance of the Dk structure is tuned by
D
and
f
it forms biconcave shape with negative curvatures within a certain varying ranges of
D
and
f
otherwise it transforms into ellipsoidal or toroid shapes. Additionally
a number of novel cylinders and regularly arranged spheres emerged in the nanopores with specific surface fields. The results deepen the understanding of self-assembly behavior of block copolymers under cylindrical confinements
and provide theoretical guidance for the experimental preparation of such complex structures.
嵌段共聚物自组装圆柱受限表面场诱导自洽场理论
Block copolymersSelf-assemblyCylindrical confinementSurface field inductionSelf-consistent field theory (SCFT)
Bates F. S.; Fredrickson G. H. Block copolymers: designer soft materials. Phys. Today, 1999, 52(2), 32-38. doi:10.1063/1.882522http://dx.doi.org/10.1063/1.882522
Maldovan M.; Thomas E. L. Diamond-structured photonic crystals. Nat. Mater., 2004, 3, 593-600. doi:10.1038/nmat1201http://dx.doi.org/10.1038/nmat1201
Crossland E. J. W.; Kamperman M.; Nedelcu M.; Ducati C.; Wiesner U.; Smilgies D. M.; Toombes G. E. S.; Hillmyer M. A.; Ludwigs S.; Steiner U.; Snaith H. J. A bicontinuous double gyroid hybrid solar cell. Nano Lett., 2009, 9(8), 2807-2812. doi:10.1021/nl803174phttp://dx.doi.org/10.1021/nl803174p
Xiang L. X.; Li Q.; Li C.; Yang Q. Q.; Xu F. G.; Mai Y. Y. Block copolymer self-assembly directed synthesis of porous materials with ordered bicontinuous structures and their potential applications. Adv. Mater., 2023, 35(5), 2207684. doi:10.1002/adma.202207684http://dx.doi.org/10.1002/adma.202207684
Wan L.; Ruiz R.; Gao H.; Albrecht T. R. Self-registered self-assembly of block copolymers. ACS Nano, 2017, 11(8), 7666-7673. doi:10.1021/acsnano.7b03284http://dx.doi.org/10.1021/acsnano.7b03284
Khandpur A. K.; Foerster S.; Bates F. S.; Hamley I. W.; Ryan A. J.; Bras W.; Almdal K.; Mortensen K. Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition. Macromolecules, 1995, 28(26), 8796-8806. doi:10.1021/ma00130a012http://dx.doi.org/10.1021/ma00130a012
Matsen M. W. Effect of architecture on the phase behavior of AB-type block copolymer melts. Macromolecules, 2012, 45(4), 2161-2165. doi:10.1021/ma202782shttp://dx.doi.org/10.1021/ma202782s
Xie N.; Li W. H.; Qiu F.; Shi A. C. σ Phase formed in conformationally asymmetric AB-type block copolymers. ACS Macro Lett., 2014, 3(9), 906-910. doi:10.1021/mz500445vhttp://dx.doi.org/10.1021/mz500445v
Xie N.; Liu M. J.; Deng H. L.; Li W. H.; Qiu F.; Shi A. C. Macromolecular metallurgy of binary mesocrystals via designed multiblock terpolymers. J. Am. Chem. Soc., 2014, 136(8), 2974-2977. doi:10.1021/ja412760khttp://dx.doi.org/10.1021/ja412760k
Shi A. C.; Li B. H. Self-assembly of diblock copolymers under confinement. Soft Matter, 2013, 9(5), 1398-1413. doi:10.1039/c2sm27031ehttp://dx.doi.org/10.1039/c2sm27031e
Li W. H.; Liu M. J.; Qiu F.; Shi A. C. Phase diagram of diblock copolymers confined in thin films. J. Phys. Chem. B, 2013, 117(17), 5280-5288. doi:10.1021/jp309546qhttp://dx.doi.org/10.1021/jp309546q
Chen P.; Liang H. J.; Shi A. C. Microstructures of a cylinder-forming diblock copolymer under spherical confinement. Macromolecules, 2008, 41(22), 8938-8943. doi:10.1021/ma800443hhttp://dx.doi.org/10.1021/ma800443h
Xiang H. Q.; Shin K.; Kim T.; Moon S.; McCarthy T. J.; Russell T. P. The influence of confinement and curvature on the morphology of block copolymers. J. Polym. Sci. Part B Polym. Phys., 2005, 43(23), 3377-3383. doi:10.1002/polb.20641http://dx.doi.org/10.1002/polb.20641
Juan Y. T.; Lai Y. F.; Li X. Y.; Tai T. C.; Lin C. H.; Huang C. F.; Li B. H.; Shi A. C.; Hsueh H. Y. Self-assembly of gyroid-forming diblock copolymers under spherical confinement. Macromolecules, 2023, 56(2), 457-469. doi:10.1021/acs.macromol.2c02086http://dx.doi.org/10.1021/acs.macromol.2c02086
容婧婧, 马兰, 朱有亮, 黄以能, 孙昭艳. 表面图案诱导两嵌段共聚物形成穿孔层状结构的模拟. 高等学校化学学报, 2018, 39(12), 2805-2810. doi:10.7503/cjcu20180263http://dx.doi.org/10.7503/cjcu20180263
Petrus P.; Lísal M.; Brennan J. K. Self-assembly of symmetric diblock copolymers in planar slits with and without nanopatterns: insight from dissipative particle dynamics simulations. Langmuir, 2010, 26(5), 3695-3709. doi:10.1021/la903200jhttp://dx.doi.org/10.1021/la903200j
Xie P. J.; Xu M. H.; Dong Q. S.; Song Q. L.; Liu M. J. Stabilizing undulated lamellae by diblock copolymers confined in alternately adsorbed thin films. Giant, 2024, 17, 100219. doi:10.1016/j.giant.2023.100219http://dx.doi.org/10.1016/j.giant.2023.100219
Deng H. L.; Qiang Y. C.; Zhang T. T.; Li W. H.; Yang T. Chiral selection of single helix formed by diblock copolymers confined in nanopores. Nanoscale, 2016, 8(35), 15961-15969. doi:10.1039/c6nr05043chttp://dx.doi.org/10.1039/c6nr05043c
Hu X. J.; Wang Z.; Yin Y. H.; Jiang R.; Li B. H. Controlling the chirality and number of strands of helices self-assembled from achiral block copolymers confined inside a nanopore: a simulation study. Soft Matter, 2021, 17(16), 4434-4444. doi:10.1039/d1sm00103ehttp://dx.doi.org/10.1039/d1sm00103e
Ou-Yang Z. C.; Helfrich W. Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A, 1989, 39(10), 5280-5288. doi:10.1103/physreva.39.5280http://dx.doi.org/10.1103/physreva.39.5280
Ou-Yang Z. C.; Liu J. X.; Xie Y. Z. Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases. Singapore: World Scientific Publishing Co. Pte. Ltd., 1999. doi:10.1142/10645http://dx.doi.org/10.1142/10645
Li W. H.; Wickham R. A.; Garbary R. A. Phase diagram for a diblock copolymer melt under cylindrical confinement. Macromolecules, 2006, 39(2), 806-811. doi:10.1021/ma052151yhttp://dx.doi.org/10.1021/ma052151y
Li W. H.; Wickham R. A. Influence of the surface field on the self-assembly of a diblock copolymer melt confined in a cylindrical nanopore. Macromolecules, 2009, 42(19), 7530-7536. doi:10.1021/ma900667whttp://dx.doi.org/10.1021/ma900667w
Yu B.; Sun P. C.; Chen T. H.; Jin Q. H.; Ding D. T.; Li B. H.; Shi A. C. Self-assembly of diblock copolymers confined in cylindrical nanopores. J. Chem. Phys., 2007, 127(11), 114906. doi:10.1063/1.2768920http://dx.doi.org/10.1063/1.2768920
Singh J.; Gupta S.; Chokshi P. Confinement-induced self-assembly of a diblock copolymer within a non-uniform cylindrical nanopore. Soft Matter, 2024, 20(7), 1543-1553. doi:10.1039/d3sm01348khttp://dx.doi.org/10.1039/d3sm01348k
Xiang H. Q.; Shin K.; Kim T.; Moon S. I.; McCarthy T. J.; Russell T. P. Block copolymers under cylindrical confinement. Macromolecules, 2004, 37(15), 5660-5664. doi:10.1021/ma049299mhttp://dx.doi.org/10.1021/ma049299m
Xiang H. Q.; Shin K.; Kim T.; Moon S. I.; McCarthy T. J.; Russell T. P. From cylinders to helices upon confinement. Macromolecules, 2005, 38(4), 1055-1056. doi:10.1021/ma0476036http://dx.doi.org/10.1021/ma0476036
Shin K.; Xiang H. Q.; Moon S. I.; Kim T.; McCarthy T. J.; Russell T. P. Curving and frustrating flatland. Science, 2004, 306(5693), 76. doi:10.1126/science.1100090http://dx.doi.org/10.1126/science.1100090
Li W. H.; Wickham R. A. Self-assembled morphologies of a diblock copolymer melt confined in a cylindrical nanopore. Macromolecules, 2006, 39(24), 8492-8498. doi:10.1021/ma061630+http://dx.doi.org/10.1021/ma061630+
Yu B.; Sun P. C.; Chen T. H.; Jin Q. H.; Ding D. T.; Li B. H.; Shi A. C. Confinement-induced novel morphologies of block copolymers. Phys. Rev. Lett., 2006, 96(13), 138306. doi:10.1103/physrevlett.96.138306http://dx.doi.org/10.1103/physrevlett.96.138306
Dobriyal P.; Xiang H. Q.; Kazuyuki M.; Chen J. T.; Jinnai H.; Russell T. P. Cylindrically confined diblock copolymers. Macromolecules, 2009, 42(22), 9082-9088. doi:10.1021/ma901730ahttp://dx.doi.org/10.1021/ma901730a
Yang J. Y.; Dong Q. S.; Liu M. J.; Li W. H. Universality and specificity in the self-assembly of cylinder-forming block copolymers under cylindrical confinement. Macromolecules, 2022, 55(6), 2171-2181. doi:10.1021/acs.macromol.1c02504http://dx.doi.org/10.1021/acs.macromol.1c02504
Yang J. Y.; Dong Q. S.; Peng L.; Huang X. B.; Li W. H. Transition paths of ordered phases in a diblock copolymer under cylindrical confinement. Macromolecules, 2023, 56(24), 10132-10142. doi:10.1021/acs.macromol.3c01960http://dx.doi.org/10.1021/acs.macromol.3c01960
Liu M. J.; Li W. H.; Wang X. P. Order-order transitions of diblock copolymer melts under cylindrical confinement. J. Chem. Phys., 2017, 147(11), 114903. doi:10.1063/1.5004181http://dx.doi.org/10.1063/1.5004181
Matsen M. W. Thin films of block copolymer. J. Chem. Phys., 1997, 106(18), 7781-7791. doi:10.1063/1.473778http://dx.doi.org/10.1063/1.473778
Khanna V.; Cochran E. W.; Hexemer A.; Stein G. E.; Fredrickson G. H.; Kramer E. J.; Li X.; Wang J.; Hahn S. F. Effect of chain architecture and surface energies on the ordering behavior of lamellar and cylinder forming block copolymers. Macromolecules, 2006, 39(26), 9346-9356. doi:10.1021/ma0609228http://dx.doi.org/10.1021/ma0609228
Fredrickson G. H. The Equilibrium Theory of Inhomogeneous Polymers. Oxford: Clarendon Press, 2006. doi:10.1093/acprof:oso/9780198567295.001.0001http://dx.doi.org/10.1093/acprof:oso/9780198567295.001.0001
Tzeremes G.; Rasmussen K. Ø.; Lookman T.; Saxena A. Efficient computation of the structural phase behavior of block copolymers. Phys. Rev. E, 2002, 65(4 Pt 1), 041806. doi:10.1103/physreve.65.041806http://dx.doi.org/10.1103/physreve.65.041806
Rasmussen K. Ø.; Kalosakas G. Improved numerical algorithm for exploring block copolymer mesophases. J. Polym. Sci. Part B Polym. Phys., 2002, 40(16), 1777-1783. doi:10.1002/polb.10238http://dx.doi.org/10.1002/polb.10238
Stasiak P.; Matsen M. W. Efficiency of pseudo-spectral algorithms with Anderson mixing for the SCFT of periodic block-copolymer phases. Eur. Phys. J. E, 2011, 34(10), 110. doi:10.1140/epje/i2011-11110-0http://dx.doi.org/10.1140/epje/i2011-11110-0
Matsen M. W. Fast and accurate SCFT calculations for periodic block-copolymer morphologies using the spectral method with Anderson mixing. Eur. Phys. J. E, 2009, 30(4), 361-369. doi:10.1140/epje/i2009-10534-3http://dx.doi.org/10.1140/epje/i2009-10534-3
Xu Y. C.; Li W. H.; Qiu F.; Yang Y. L.; Shi A. C. Self-assembly of ABC star triblock copolymers under a cylindrical confinement. J. Phys. Chem. B, 2009, 113(32), 11153-11159. doi:10.1021/jp9043896http://dx.doi.org/10.1021/jp9043896
Liu M. J.; Li W. H.; Qiu F. Segmented helical structures formed by ABC star copolymers in nanopores. J. Chem. Phys., 2013, 138(10), 104904. doi:10.1063/1.4794785http://dx.doi.org/10.1063/1.4794785
Lv Z. Y.; Wu J.; Lang W. C.; Wang X. H.; Li S. B. Self-assembly of tiling-forming ABC star triblock copolymers in cylindrical nanotubes: a study of self-consistent field theory. J. Taiwan Inst. Chem. Eng., 2016, 65, 565-573. doi:10.1016/j.jtice.2016.05.051http://dx.doi.org/10.1016/j.jtice.2016.05.051
0
浏览量
126
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构