浏览全部资源
扫码关注微信
北京理工大学材料学院 北京 100081
[ "周瑾修,男,1994年生,于2016年在北京理工大学获得工学学士学位;2018年在西班牙巴斯克大学获得硕士学位;2023年在西班牙巴斯克大学获得博士学位. 2023年至今在北京理工大学进行博士后研究,导师为黄木华教授. 研究方向为新颖结构多孔高分子的设计合成、结构表征和功能化等. 已在Journal of Materials Chemistry A,Journal of Membrane Science等杂志上发表研究论文6篇,已授权中国发明专利1项." ]
[ "黄木华,男,博士,北京理工大学材料学院长聘教授,博士生导师;北京理化分析测试技术学会波谱分会副理事长. 2001年获北京师范大学化学系理学学士学位,2006年获中国科学院化学研究所理学博士学位. 2006~2011年,先后在瑞士苏黎世联邦理工学院(ETH-Zurich)和英国利物浦大学(University of Liverpool)进行博士后研究. 2012年3月至今,在北京理工大学材料学院开展有机高分子功能材料、含能材料和核磁共振波谱技术等方面的教学与科研工作. 已在Nature Chemistry, Chemistry of Materials等杂志上发表研究论文50余篇,申请中国发明专利和中国国防发明专利30多项,已授权发明专利20余项." ]
纸质出版日期:2024-08-20,
网络出版日期:2024-07-11,
收稿日期:2024-02-13,
录用日期:2024-03-16
移动端阅览
石经, 张志豪, 周瑾修, 黄木华. 偶氮苯骨架的多孔高分子:结构创新及应用研究进展. 高分子学报, 2024, 55(8), 936-953
Shi, J.; Zhang, Z. H.; Zhou, J. X.; Huang, M. H. Progress in azobenzene porous organic polymers: innovative structure evolutions and applications. Acta Polymerica Sinica, 2024, 55(8), 936-953
石经, 张志豪, 周瑾修, 黄木华. 偶氮苯骨架的多孔高分子:结构创新及应用研究进展. 高分子学报, 2024, 55(8), 936-953 DOI: 10.11777/j.issn1000-3304.2024.24040.
Shi, J.; Zhang, Z. H.; Zhou, J. X.; Huang, M. H. Progress in azobenzene porous organic polymers: innovative structure evolutions and applications. Acta Polymerica Sinica, 2024, 55(8), 936-953 DOI: 10.11777/j.issn1000-3304.2024.24040.
偶氮苯骨架的多孔高分子(Azo-POPs)具有化学稳定性好、比表面积高以及易功能化修饰等特点,在多个领域表现出了巨大的应用前景,引起了人们的广泛关注. 本综述首先梳理了近些年来将偶氮苯结构单元引入到多孔高分子骨架中的方式,包括多氨基芳烃与多(亚)硝基芳烃的缩合聚合、多氨基芳烃的氧化偶联聚合、多硝基芳烃的还原偶联聚合,以及富电子芳烃与多重氮盐的偶联聚合等途径,指出了富电子芳烃与多重氮盐的偶联聚合条件温和、聚合效率高且官能团耐受性好. 简述了功能性Azo-POPs的例子与特点,分析并论证了其中三(
β
-羟基-偶氮)苯结构向三(
β
-酮-腙)环己烷结构的不可逆异构化;并对Azo-POPs在气体及蒸气的吸附与存储、多相催化、水中污染物的去除、气体膜分离与电化学等领域的应用进行了分析与总结. 最后分析并指出了发展Azo-POPs所面临的挑战,并结合已有的研究报道探讨了Azo-POPs的未来发展方向及前景.
Porous polymers with azobenzene skeleton (Azo-POPs)
which possess good chemical stability
high specific surface area
and easy functionalization and modification
have shown great application prospects in a number of fields and attracted much attention. In this review
we firstly sorted o
ut the ways of introducing azobenzene structural elements into porous polymer skeletons in recent years
including the condensation polymerization of polyaminoaromatics and poly(nitroso)aromatics
the oxidative coupling polymerization of polyaminoaromatics
the reductive coupling polymerization of poly(nitroso)aromatics and the coupling polymerization of electron-rich aromatics with polydiazonium salts
etc
. It is pointed out that the coupling polymerization of electron-rich aromatic hydrocarbons with polydiazonium salts has mild conditions
high polymerization efficiency and good functional group tolerance. The examples and characteristics of functional Azo-POPs is briefly described. The electron cloud
polar dipole interactions and alkalinity provided by amino or hydroxyl groups in Azo-POPs
can significantly improve the adsorption capacity of porous polymers for metal ions
polar compounds and CO
2.
Then the paper analyzes and demonstrates the irreversible isomerization of tris(
β
-hydroxyazo)benzene structure to tris(
β
-keto-hydrazone)cyclohexane structure
and analyzes and summarizes the applications of Azo-POPs in the fields of gas and vapor adsorption and storage
multiphase catalysis
removal of pollutants in water
gas membrane separation and electrochemistry. Finally
the challenges to the development of Azo-POPs are analyzed and pointed out
and the future development direction and prospect of Azo-POPs are discussed in the light of the existing research reports.
多孔高分子偶氮苯羟基偶氮苯氨基偶氮苯三酮三腙环己酮
Porous organic polymersAzo-benzeneHydroxyl-azobenzeneAmino-azobenzeneTris(β-keto-hydrozo)cyclohexane
Tan L. X.; Tan B. E. Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chem. Soc. Rev., 2017, 46(11), 3322-3356. doi:10.1039/c6cs00851hhttp://dx.doi.org/10.1039/c6cs00851h
Low Z. X.; Budd P. M.; McKeown N. B.; Patterson D. A. Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers. Chem. Rev., 2018, 118(12), 5871-5911. doi:10.1021/acs.chemrev.7b00629http://dx.doi.org/10.1021/acs.chemrev.7b00629
Lee J., S M.; Cooper A. I. Advances in conjugated microporous polymers. Chem. Rev., 2020, 120(4), 2171-2214. doi:10.1021/acs.chemrev.9b00399http://dx.doi.org/10.1021/acs.chemrev.9b00399
Yang X. C.; Ullah Z.; Stoddart J. F.; Yavuz C. T. Porous organic cages. Chem. Rev., 2023, 123(8), 4602-4634. doi:10.1021/acs.chemrev.2c00667http://dx.doi.org/10.1021/acs.chemrev.2c00667
Tian Y. Y.; Zhu G. S. Porous aromatic frameworks (PAFs). Chem. Rev., 2020, 120(16), 8934-8986. doi:10.1021/acs.chemrev.9b00687http://dx.doi.org/10.1021/acs.chemrev.9b00687
Song K. S.; Fritz P. W.; Coskun A. Porous organic polymers for CO2 capture, separation and conversion. Chem. Soc. Rev., 2022, 51(23), 9831-9852. doi:10.1039/d2cs00727dhttp://dx.doi.org/10.1039/d2cs00727d
Wang S. T.; Li H. T.; Huang H. N.; Cao X. H.; Chen X. D.; Cao D. P. Porous organic polymers as a platform for sensing applications. Chem. Soc. Rev., 2022, 51(6), 2031-2080. doi:10.1039/d2cs00059hhttp://dx.doi.org/10.1039/d2cs00059h
Fajal S.; Dutta S.; Ghosh S. K. Porous organic polymers (POPs) for environmental remediation. Mater. Horiz. 2023, 10 (10), 4083-4138. doi:10.1039/d3mh00672ghttp://dx.doi.org/10.1039/d3mh00672g
Wu J. L.; Xu F.; Li S. M.; Ma P. W.; Zhang X. C.; Liu Q. H.; Fu R. W.; Wu D. C. Porous polymers as multifunctional material platforms toward task-specific applications. Adv. Mater., 2019, 31(4), 1802922. doi:10.1002/adma.201802922http://dx.doi.org/10.1002/adma.201802922
Lu W. G.; Wei Z. W.; Yuan D. Q.; Tian J.; Fordham S.; Zhou H. C. Rational design and synthesis of porous polymer networks: toward high surface area. Chem. Mater., 2014, 26(15), 4589-4597. doi:10.1021/cm501922hhttp://dx.doi.org/10.1021/cm501922h
Luo, X. S.; Deng, H. L.; Chi, S. M.; Liu, Y.; Huang, M. H. 15N solid-state NMR as bright eyes to see the isomerization of the azo bond: revision of tris(β-hydroxyl-azo)-benzene to tris(β-keto-hydrazo)-cyclohexane in porous organic polymers. J. Phys. Chem. Lett., 2021, 12(29), 6767-6772. doi:10.1021/acs.jpclett.1c01750http://dx.doi.org/10.1021/acs.jpclett.1c01750
Zhou J. X.; Luo X. S.; Liu X. X.; Qiao Y.; Wang P. F.; Mecerreyes D.; Bogliotti N.; Chen S. L.; Huang M. H. Azo-linked porous organic polymers: robust and time-efficient synthesis via NaBH4-mediated reductive homocoupling on polynitro monomers and adsorption capacity towards aniline in water. J. Mater. Chem. A, 2018, 6(14), 5608-5612. doi:10.1039/c8ta00341fhttp://dx.doi.org/10.1039/c8ta00341f
Peng S. Q.; Yang T. Y.; Fan W. H.; Chi S. M.; Kuang B. Y.; Fan L.; Li X. D.; Huang M. H. Flexible porous polynorbornenes with alkene linkage for decolorizing the highly reactive triisocyanate in ethyl acetate. Chem. Mater., 2022, 34(11), 5184-5193. doi:10.1021/acs.chemmater.2c00780http://dx.doi.org/10.1021/acs.chemmater.2c00780
Merino E. Synthesis of azobenzenes: the coloured pieces of molecular materials. Chem. Soc. Rev., 2011, 40(7), 3835-3853. doi:10.1039/c0cs00183jhttp://dx.doi.org/10.1039/c0cs00183j
Baroncini M.; D'Agostino S.; Bergamini G.; Ceroni P.; Comotti A.; Sozzani P.; Bassanetti I.; Grepioni F.; Hernandez T. M.; Silvi S.; Venturi M.; Credi A. Photoinduced reversible switching of porosity in molecular crystals based on star-shaped azobenzene tetramers. Nat. Chem., 2015, 7(8), 634-640. doi:10.1038/nchem.2304http://dx.doi.org/10.1038/nchem.2304
Patel H. A.; Je S. H.; Park J.; Chen D. P.; Jung Y.; Yavuz C. T.; Coskun A. Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers. Nat. Commun., 2013, 4, 1357. doi:10.1038/ncomms2359http://dx.doi.org/10.1038/ncomms2359
Patel H. A.; Je S. H.; Park J.; Jung Y.; Coskun A.; Yavuz C. T. Directing the structural features of N2-phobic nanoporous covalent organic polymers for CO2 capture and separation. Chem, 2014, 20(3), 772-780. doi:10.1002/chem.201303493http://dx.doi.org/10.1002/chem.201303493
Buyukcakir O.; Je S. H.; Park J.; Patel H. A.; Jung Y.; Yavuz C. T.; Coskun A. Systematic investigation of the effect of polymerization routes on the gas-sorption properties of nanoporous azobenzene polymers. Chem, 2015, 21(43), 15320-15327. doi:10.1002/chem.201501233http://dx.doi.org/10.1002/chem.201501233
Hou Y. X.; Zhang E. H.; Gao J. Y.; Zhang S. Q.; Liu P.; Wang J. C.; Zhang Y. P.; Cui C. X.; Jiang J. Z. Metal-free azo-bridged porphyrin porous organic polymers for visible-light-driven CO2 reduction to CO with high selectivity. Dalton Trans., 2020, 49(22), 7592-7597. doi:10.1039/d0dt01436bhttp://dx.doi.org/10.1039/d0dt01436b
Jiang X. W.; Liu Y. F.; Liu J.; Luo Y. L.; Lyu Y. N. Facile synthesis of porous organic polymers bifunctionalized with azo and porphyrin groups. RSC Adv., 2015, 5(119), 98508-98513. doi:10.1039/c5ra19422ahttp://dx.doi.org/10.1039/c5ra19422a
Grirrane A.; Corma A.; García H. Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics. Science, 2008, 322(5908), 1661-1664. doi:10.1126/science.1166401http://dx.doi.org/10.1126/science.1166401
Nguyen H. T.; Coulembier O.; Gheysen K.; Martins J. C.; Dubois P. Copper-catalyzed dehydrogenative polycondensation of a bis-aniline hexylthiophene-based monomer: a kinetically controlled air-tolerant process. Macromolecules, 2012, 45(23), 9547-9550. doi:10.1021/ma301881yhttp://dx.doi.org/10.1021/ma301881y
Arab P.; Rabbani M. G.; Sekizkardes A. K.; İslamoğlu T.; El-Kaderi H. M. Copper(I)-catalyzed synthesis of nanoporous azo-linked polymers: impact of textural properties on gas storage and selective carbon dioxide capture. Chem. Mater., 2014, 26(3), 1385-1392. doi:10.1021/cm403161ehttp://dx.doi.org/10.1021/cm403161e
Zhao S.; Gao Y.; Mao G.; Yang L.; Zhang G.; Zhou H.; Jin W. Q. Synthesis of azo-linked porous polymers as fillers to enhance the performance of mixed-matrix membranes for the separation of bioethanol fermentation tail gas. Chem. Eng. J., 2023, 456, 141141. doi:10.1016/j.cej.2022.141141http://dx.doi.org/10.1016/j.cej.2022.141141
Yang Z. Z.; Zhang H. Y.; Yu B.; Zhao Y. F.; Ma Z. S.; Ji G. P.; Han B. X.; Liu Z. M. Azo-functionalized microporous organic polymers: synthesis and applications in CO2 capture and conversion. Chem. Commun., 2015, 51(58), 11576-11579. doi:10.1039/c5cc03151fhttp://dx.doi.org/10.1039/c5cc03151f
Wang J. Q.; Zhang Y. G. Facile synthesis of N-rich porous azo-linked frameworks for selective CO2 capture and conversion. Green Chem., 2016, 18(19), 5248-5253. doi:10.1039/c6gc01114dhttp://dx.doi.org/10.1039/c6gc01114d
Hou S. T.; Xu J. L.; Wang J. J.; Wang H. J.; Zhang P. F. Mechanochemical oxidative coupling of amine to azo-based polymers by hypervalent iodine oxidant. Chem. Eur. J., 2024, 30(1), e202303126. doi:10.1002/chem.202303126http://dx.doi.org/10.1002/chem.202303126
Lu J. Z.; Zhang J. Facile synthesis of azo-linked porous organic frameworks via reductive homocoupling for selective CO2 capture. J. Mater. Chem. A, 2014, 2(34), 13831-13834. doi:10.1039/c4ta03015jhttp://dx.doi.org/10.1039/c4ta03015j
Zhang Y. D.; Zhu Y. L.; Guo J.; Gu S.; Wang Y. Y.; Fu Y.; Chen D. Y.; Lin Y. J.; Yu G. P.; Pan C. Y. The role of the internal molecular free volume in defining organic porous copolymer properties: tunable porosity and highly selective CO2 adsorption. Phys. Chem. Chem. Phys., 2016, 18(16), 11323-11329. doi:10.1039/c6cp00981fhttp://dx.doi.org/10.1039/c6cp00981f
Dang Q. Q.; Wang X. M.; Zhan Y. F.; Zhang X. M. An azo-linked porous triptycene network as an absorbent for CO2 and iodine uptake. Polym. Chem., 2016, 7(3), 643-647. doi:10.1039/c5py01671ahttp://dx.doi.org/10.1039/c5py01671a
Peng S. Q.; Zhang B. T.; Fan W. H.; Wang S. F.; Zhang Z. H.; Liu Y.; Chen S. L.; Huang M. H. Facile synthesis of a porous polynorbornene with an azobenzene subunit: selective adsorption of 4over-nitrophenol 4-aminophenol in water. Polym. Chem., 2020, 11(40), 6429-6434. doi:10.1039/d0py00994fhttp://dx.doi.org/10.1039/d0py00994f
Younis M.; Long J.; Peng S. Q.; Wang X. S.; Chai C. P.; Bogliotti N.; Huang M. H. Reversible transformation between azo and azonium bond other than photoisomerization of azo bond in main-chain polyazobenzenes. J. Phys. Chem. Lett., 2021, 12(14), 3655-3661. doi:10.1021/acs.jpclett.1c00750http://dx.doi.org/10.1021/acs.jpclett.1c00750
Wang J.; Xiong S.H.; Tao J.; Liu C.; Tang J.T.; Pan C.Y.; Jian X.G; Yu, G.P. An azo-bridged porous organic polymers modified poly(phthalazinone ether sulfone ketone) membrane for efficient O2/N2 separation. Sep. Purif. Technol. 2020, 248, 117044. doi:10.1016/j.seppur.2020.117044http://dx.doi.org/10.1016/j.seppur.2020.117044
Zhu Y. L.; Zhang W. Reversible tuning of pore size and CO2 adsorption in azobenzene functionalized porous organic polymers. Chem. Sci., 2014, 5(12), 4957-4961. doi:10.1039/c4sc02305fhttp://dx.doi.org/10.1039/c4sc02305f
Das G.; Prakasam T.; Addicoat M. A.; Sharma S. K.; Ravaux F.; Mathew R.; Baias M.; Jagannathan R.; Olson M. A.; Trabolsi A. Azobenzene-equipped covalent organic framework: light-operated reservoir. J. Am. Chem. Soc., 2019, 141(48), 19078-19087. doi:10.1021/jacs.9b09643http://dx.doi.org/10.1021/jacs.9b09643
Huang Q.; Zhan Z.; Sun R. X.; Mu J. J.; Tan B. E.; Wu C. F. Light triggered pore size tuning in photoswitching covalent triazine frameworks for low energy CO2 capture. Angew. Chem. Int. Ed., 2023, 62(28), e202305500. doi:10.1002/anie.202305500http://dx.doi.org/10.1002/anie.202305500
Yuan R. R.; Ren H.; He H. M.; Jiang L. C.; Zhu G. S. Targeted synthesis of porous aromatic frameworks with stimuli-responsive adsorption properties. Sci. China Mater., 2015, 58(1), 38-43. doi:10.1007/s40843-015-0023-8http://dx.doi.org/10.1007/s40843-015-0023-8
Zhang H. J.; Zhang C.; Wang X. C.; Qiu Z. X.; Liang X. M.; Chen B.; Xu J. W.; Jiang J. X.; Li Y. D.; Li H.; Wang F. Microporous organic polymers based on tetraethynyl building blocks with N-functionalized pore surfaces: synthesis, porosity and carbon dioxide sorption. RSC Adv., 2016, 6(115), 113826-113833. doi:10.1039/c6ra20765khttp://dx.doi.org/10.1039/c6ra20765k
Yuan R. R.; Sun H.; He H. M. Rational construction of a responsive azo-functionalized porous organic framework for CO2 sorption. Molecules, 2021, 26(16), 4993. doi:10.3390/molecules26164993http://dx.doi.org/10.3390/molecules26164993
Yuan R. R.; Sun H.; He H. M. Design and construction of an azo-functionalized pop for reversibly stimuli-responsive CO2 adsorption. Polymers 2023, 15 (7), 1709. doi:10.3390/polym15071709http://dx.doi.org/10.3390/polym15071709
Kumar S.; Hassan A.; Das N.; Koh J. Triazine based nanoarchitectonics of porous organic polymers for CO2 storage. Mater. Lett., 2022, 13, 131757. doi:10.1016/j.matlet.2022.131757http://dx.doi.org/10.1016/j.matlet.2022.131757
Liu A. T.; Mollart C.; Trewin A.; Fan X. F.; Lau C. H. Photo-modulating CO2 uptake of hypercross-linked polymers upcycled from polystyrene waste. ChemSusChem, 2023, 16(10), e202300019. doi:10.1002/cssc.202300019http://dx.doi.org/10.1002/cssc.202300019
Liu A. T.; Lu G. C.; Fan X. F.; Lau C. H. Delivering low-energy carbon capture with photo-responsive hypercrosslinked polymers derived from polystyrene waste. J. Mater. Chem. A, 2023, 11(38), 20559-20567. doi:10.1039/d3ta04553fhttp://dx.doi.org/10.1039/d3ta04553f
Beaudoin D.; Maris T.; Wuest J. D. Constructing monocrystalline covalent organic networks by polymerization. Nat. Chem., 2013, 5(10), 830-834. doi:10.1038/nchem.1730http://dx.doi.org/10.1038/nchem.1730
Liu X. X.; Luo X. S.; Deng H. L.; Fan W. H.; Wang S. F.; Yang C. J.; Sun X. Y.; Chen S. L.; Huang M. H. Functional porous organic polymers comprising a triaminotriphenylazobenzene subunit as a platform for copper-catalyzed aerobic C―H oxidation. Chem. Mater., 2019, 31(15), 5421-5430. doi:10.1021/acs.chemmater.9b00590http://dx.doi.org/10.1021/acs.chemmater.9b00590
Ding R.; Chen Y. L.; Li Y. H.; Zhu Y. C.; Song C.; Zhang X. M. Highly efficient and selective gold recovery based on hypercross-linking and polyamine-functionalized porous organic polymers. ACS Appl. Mater. Interfaces, 2022, 14(9), 11803-11812. doi:10.1021/acsami.1c22514http://dx.doi.org/10.1021/acsami.1c22514
Ji G. P.; Yang Z. Z.; Zhang H. Y.; Zhao Y. F.; Yu B.; Ma Z. S.; Liu Z. M. Hierarchically mesoporous o-hydroxyazobenzene polymers: synthesis and their applications in CO2 capture and conversion. Angew. Chem., 2016, 128(33), 9837-9841. doi:10.1002/ange.201602667http://dx.doi.org/10.1002/ange.201602667
Xie C.; Song J. L.; Wu H. R.; Hu Y.; Liu H. Z.; Yang Y. D.; Zhang Z. R.; Chen B. F.; Han B. X. Naturally occurring Gallic acid derived multifunctional porous polymers for highly efficient CO2 conversion and I2 capture. Green Chem., 2018, 20(20), 4655-4661. doi:10.1039/c8gc02685hhttp://dx.doi.org/10.1039/c8gc02685h
Fu H. X.; Zhang Z. H.; Fan W. H.; Wang S. F.; Liu Y.; Huang M. H. A soluble porous organic polymer for highly efficient organic-aqueous biphasic catalysis and convenient reuse of catalysts. J. Mater. Chem. A, 2019, 7(25), 15048-15053. doi:10.1039/c9ta04594ehttp://dx.doi.org/10.1039/c9ta04594e
Su K. Z.; Wang W. J.; Li B. B.; Yuan D. Q. Azo-bridged calix[4]resorcinarene-based porous organic frameworks with highly efficient enrichment of volatile iodine. ACS Sustainable Chem. Eng., 2018, 6(12), 17402-17409. doi:10.1021/acssuschemeng.8b05203http://dx.doi.org/10.1021/acssuschemeng.8b05203
Chen D.; Luo D.; He Y. L.; Tian J. Y.; Yu Y.; Wang H. Y.; Sessler J. L.; Chi X. D. Calix[4]pyrrole-based azo-bridged porous organic polymer for bromine capture. J. Am. Chem. Soc., 2022, 144(37), 16755-16760. doi:10.1021/jacs.2c08327http://dx.doi.org/10.1021/jacs.2c08327
Machado T. F.; Valente A.; Silva Serra M. E.; Murtinho D. Diazo-coupled porous organic polymers as efficient catalysts for metal-free Henry and Knoevenagel reactions. Microporous Mesoporous Mater. 2023, 355, 112561. doi:10.1016/j.micromeso.2023.112561http://dx.doi.org/10.1016/j.micromeso.2023.112561
Chen Y. J.; Ren Q. G.; Zeng X. J.; Tao L. M.; Zhou X. T.; Ji H. B. Sustainable synthesis of multifunctional porous metalloporphyrin polymers for efficient carbon dioxide transformation under mild conditions. Chem. Engin. Sci. 2021, 232, 116380. doi:10.1016/j.ces.2020.116380http://dx.doi.org/10.1016/j.ces.2020.116380
Dong S. Y.; Rene E. R.; Zhao L. X.; Lun X. X.; Ma W. F. Design and preparation of functional azo linked polymers for the adsorptive removal of bisphenol A from water: Performance and analysis of the mechanism. Environ. Res., 2022, 206, 112601. doi:10.1016/j.envres.2021.112601http://dx.doi.org/10.1016/j.envres.2021.112601
Yang Y.; He X. Y.; Zhang P. H.; Andaloussi Y. H.; Zhang H. L.; Jiang Z. Y.; Chen Y.; Ma S. Q.; Cheng P.; Zhang Z. J. Combined intrinsic and extrinsic proton conduction in robust covalent organic frameworks for hydrogen fuel cell applications. Angew. Chem. Int. Ed., 2020, 59(9), 3678-3684. doi:10.1002/anie.201913802http://dx.doi.org/10.1002/anie.201913802
Wang Q. Q.; Wang X. L.; Wang J. M.; Liu W. H.; Hao L.; Zhou J. H.; Wang C.; Wu Q. H.; Wang Z. Facile construction of magnetic azobenzene-based framework materials for enrichment and sensitive determination of phenylurea herbicides. J. Chromatogr. A, 2020, 1626 (30), 461362. doi:10.1016/j.chroma.2020.461362http://dx.doi.org/10.1016/j.chroma.2020.461362
Liu X. X.; Luo X. S.; Fu H. X.; Fan W. H.; Chen S. L.; Huang M. H. Irreversible tautomerization as a powerful tool to access unprecedented functional porous organic polymers with a tris(β-keto-hydrazo)cyclohexane subunit (TKH-POPs). Chem. Commun., 2020, 56(14), 2103-2106. doi:10.1039/c9cc09710dhttp://dx.doi.org/10.1039/c9cc09710d
Lee H. Y.; Song X. L.; Park H.; Baik M. H.; Lee D. Torsionally responsive C3-symmetric azo dyes: Azo-hydrazone tautomerism, conformational switching, and application for chemical sensing. J. Am. Chem. Soc., 2010, 132(34), 12133-12144. doi:10.1021/ja105121zhttp://dx.doi.org/10.1021/ja105121z
Chen Y. H.; Li Y. G.; Dai L.; Qin G. R.; Guo J.; Zhang Q. F.; Li S. H.; Sherazi T. A.; Zhang S. B. High-efficiency Pd nanoparticles loaded porous organic polymers membrane catalytic reactors. Chem. Commun., 2021, 57(25), 3131-3134. doi:10.1039/d0cc08097ghttp://dx.doi.org/10.1039/d0cc08097g
Chen Y. H.; Li Y. G.; Li Y. Q.; Guo J.; Li S. H.; Zhang S. B. Nano-interlayers fabricated via interfacial azo-coupling polymerization: Effect of pore properties of interlayers on overall performance of thin-film composite for nanofiltration. ACS Appl. Mater. Interfaces, 2021, 13(49), 59329-59340. doi:10.1021/acsami.1c19525http://dx.doi.org/10.1021/acsami.1c19525
Sun J. K.; Zhan W. W.; Akita T.; Xu Q. Toward homogenization of heterogeneous metal nanoparticle catalysts with enhanced catalytic performance: Soluble porous organic cage as a stabilizer and homogenizer. J. Am. Chem. Soc., 2015, 137(22), 7063-7066. doi:10.1021/jacs.5b04029http://dx.doi.org/10.1021/jacs.5b04029
Huang Y. B.; Wang Q.; Liang J.; Wang X. S.; Cao R. Soluble metal-nanoparticle-decorated porous coordination polymers for the homogenization of heterogeneous catalysis. J. Am. Chem. Soc., 2016, 138(32), 10104-10107. doi:10.1021/jacs.6b06185http://dx.doi.org/10.1021/jacs.6b06185
Liu X.; Jia Q.; Lai Y.; Fan L.; Chen S. L.; Li X.; Huang M. H. Highly magnetically responsive porous nanoparticles based on tris(β-keto-hydrazo)-cyclohexane subunit: fast removal of dyes from water with convenient recyclability. Colloids Surf., A 2022, 648 (5), 129173. doi:10.1016/j.colsurfa.2022.129173http://dx.doi.org/10.1016/j.colsurfa.2022.129173
He R. R.; Cong S. Z.; Wang J.; Liu J. D.; Zhang Y. T. Porous graphene oxide/porous organic polymer hybrid nanosheets functionalized mixed matrix membrane for efficient CO2 capture. ACS Appl. Mater. Interfaces, 2019, 11(4), 4338-4344. doi:10.1021/acsami.8b17599http://dx.doi.org/10.1021/acsami.8b17599
He, R. R; Cong, S. Z.; Xu, S. N.; Han, S. Q; Guo, H. Y.; Liang, Z. Y.; Wang, J.; Zhang, Y. T. CO2-philic mixed matrix membranes based on low-molecular-weight polyethylene glycol and porous organic polymers. J. Membr. Sci. 2021, 624 (15), 119081. doi:10.1016/j.memsci.2021.119081http://dx.doi.org/10.1016/j.memsci.2021.119081
Nabais A. R.; Ortiz-Albo P.; Zhou J. X.; Huang M. H.; Mecerreyes D.; Crespo J. G.; Tomé L. C.; Neves L. A. Mixed matrix iongel membranes containing azo-porous organic polymers: influence of temperature, pressure and water vapour on CO2 separation. J. Membr. Sci. 2023, 685 (5), 121938. doi:10.1016/j.memsci.2023.121938http://dx.doi.org/10.1016/j.memsci.2023.121938
Nabais A. R.; Ahmed S.; Younis M.; Zhou J. X.; Pereira J. R.; Freitas F.; Mecerreyes D.; Crespo J. G.; Huang M. H.; Neves L. A.; Tomé L. C. Mixed matrix membranes based on ionic liquids and porous organic polymers for selective CO2 separation. J. Membr. Sci. 2022, 660 (15), 120841. doi:10.1016/j.memsci.2022.120841http://dx.doi.org/10.1016/j.memsci.2022.120841
Weeraratne K. S.; Alzharani A. A.; El-Kaderi H. M. Redox-active porous organic polymers as novel electrode materials for green rechargeable sodium-ion batteries. ACS Appl. Mater. Interfaces, 2019, 11(26), 23520-23526. doi:10.1021/acsami.9b05956http://dx.doi.org/10.1021/acsami.9b05956
Ahmed S.; Amin K.; Younis M.; Wei Z. X.; Huang M. H. Incorporation of azo-linkage to elevate the redox potential of triphenylamine-based porous organic polymer cathodes for Li-ion batteries. ACS Appl. Energy Mater., 2023, 6(20), 10674-10681. doi:10.1021/acsaem.3c01837http://dx.doi.org/10.1021/acsaem.3c01837
0
浏览量
244
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构