浏览全部资源
扫码关注微信
1.黑龙江省科学院石油化学研究院 哈尔滨 150040
2.中国科学院长春应用化学研究所 中国科学院生态环境高分子材料重点实验室 长春 130022
E-mail: xugangzhang_HIPC@163.com
xcbian@ciac.ac.cn
纸质出版日期:2024-09-20,
网络出版日期:2024-05-22,
收稿日期:2024-02-02,
录用日期:2024-03-06
移动端阅览
王霖铎, 张绪刚, 段然龙, 边新超. 双核异金属锰(Ⅲ)-碱金属(Ⅰ)配合物催化环酯类开环聚合反应研究. 高分子学报, 2024, 55(9), 1179-1190
Wang, L. D.; Zhang, X. G.; Duan, R. L.; Bian, X. C. Mn(Ⅲ)/Alkali-Metal(Ⅰ) heterodinuclear catalysts for the ring-opening polymerization of lactide and ε-caprolactone. Acta Polymerica Sinica, 2024, 55(9), 1179-1190
王霖铎, 张绪刚, 段然龙, 边新超. 双核异金属锰(Ⅲ)-碱金属(Ⅰ)配合物催化环酯类开环聚合反应研究. 高分子学报, 2024, 55(9), 1179-1190 DOI: 10.11777/j.issn1000-3304.2024.24042.
Wang, L. D.; Zhang, X. G.; Duan, R. L.; Bian, X. C. Mn(Ⅲ)/Alkali-Metal(Ⅰ) heterodinuclear catalysts for the ring-opening polymerization of lactide and ε-caprolactone. Acta Polymerica Sinica, 2024, 55(9), 1179-1190 DOI: 10.11777/j.issn1000-3304.2024.24042.
设计合成了一系列以氯为轴向基团的锰(Ⅲ)和碱金属(Ⅰ)为核心的大环双金属中心配合物催化剂,并通过基质辅助激光解吸飞行时间质谱(MALDI-TOF-MS)和元素分析对其结构进行了详细表征. 该系列催化剂可以在环氧环己烷(CHO)存在下催化丙交酯(LA)和
ε
-己内酯(
ε
-CL)聚合. 对不同的碱金属离子进行筛选和优化,以确保实现最佳的聚合效果. 研究了配合物中不同的碱金属中心对其催化性能的影响,实验结果表明碱金属中心的引入改善了配合物的催化性能,表现出相较单核席夫碱锰催化剂更好的催化性能,配合物胺桥部分的空间位阻效应对其催化活性具有明显影响,同时,在外消旋丙交酯的立体选择性聚合中,这一系列的配合物催化聚合倾向于得到具有等规立构结构的聚合物,通过MALDI-TOF-MS表征了聚合得到的聚乳酸(PLA)的端基结构,说明这一系列双金属中心配合物在环氧化物存在下的原位引发机理.
A series of large-ring metal coordination catalysts with manganese(Ⅲ) as the axial ligand and alkali metal(Ⅰ) as the core were synthesized in this experiment
and their structures were characterized in detail by matrix assisted laser desorption time-of-flight mass spectrometer (MALDI-TOF-MS) and elemental analysis. These catalysts can catalyze the polymerization of propylene glycolide (LA) and
ε
-caprolactone (
ε
-CL) in the presence of cyclohexane oxide (CHO). We screened and optimized different alkali metal ions to ensure the best polymerization performance. The experimental results show that the introduction of alkali metal centers significantly improves the performance of the catalysts
far exceeding that of mononuclear Schiff base manganese catalysts. The steric hindrance effect of the amine bridge moiety of the catalyst on the reaction activity is also significant. We investigated the stereo-selectivity of the catalysts for monomers and conducted copolymerization studies using different LA isomers
finding that this catalyst is more prone to obtaining polymers with isotactic tendencies. The polymerization mechanism was further analyzed by using MALDI-TOF-MS spectrometer to analyze the end groups of the obtained PLA and assist in the study of the polymerization mechanism. Experimental studies show that the stereo-selectivity of the polymerization is achieved through a chain-end control mechanism.
双核异金属催化剂聚乳酸聚己内酯开环聚合非均相催化剂
Heterodinuclear complexPolylacticPolycaprolactoneRing-opening polymerizationNon-homogeneous catalysts
Auras R. A.; Lim L. T.; Selke S. E.; Tsuji H. Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications. Hoboken: John Wiley & Sons, Inc, 2011, 3-18. doi:10.1002/9780470649848http://dx.doi.org/10.1002/9780470649848
Arbaoui A.; Redshaw C. Metal catalysts for ε-caprolactone polymerisation. Polym. Chem., 2010, 1(6), 801. doi:10.1039/b9py00334ghttp://dx.doi.org/10.1039/b9py00334g
Auras R.; Harte B.; Selke S. An overview of polylactides as packaging materials. Macromol. Biosci., 2004, 4(9), 835-864. doi:10.1002/mabi.200400043http://dx.doi.org/10.1002/mabi.200400043
Ikada Y.; Tsuji H. Biodegradable polyesters for medical and ecological applications. Macromol. Rapid Commun., 2000, 21(3), 117-132. doi:10.1002/(sici)1521-3927(20000201)21:3<117::aid-marc117>3.3.co;2-ohttp://dx.doi.org/10.1002/(sici)1521-3927(20000201)21:3<117::aid-marc117>3.3.co;2-o
Albertsson A. C.; Varma I. K. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules, 2003, 4(6), 1466-1486. doi:10.1021/bm034247ahttp://dx.doi.org/10.1021/bm034247a
Okada M. Chemical syntheses of biodegradable polymers. Prog. Polym. Sci., 2002, 27(1), 87-133. doi:10.1016/s0079-6700(01)00039-9http://dx.doi.org/10.1016/s0079-6700(01)00039-9
Zhang H.; Sun Z.; Pang X.; Zhou L.; Li S.; Sun H.; Chen W.; Chen X. Structure and properties of polylactide/polycaprolactone/poly(ε-caprolactone-L-lactide) ternary blends. Chin. J. Appl. Chem.,2016, 9, 1026-1032.
Thomas C. M. Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures. Chem. Soc. Rev., 2010, 39(1), 165-173. doi:10.1039/b810065ahttp://dx.doi.org/10.1039/b810065a
Dijkstra P. J.; Du H. Z.; Feijen J. Single site catalysts for stereoselective ring-opening polymerization of lactides. Polym. Chem., 2011, 2(3), 520-527. doi:10.1039/c0py00204fhttp://dx.doi.org/10.1039/c0py00204f
Mitić N.; Smith S. J.; Neves A.; Guddat L. W.; Gahan L. R.; Schenk G. The catalytic mechanisms of binuclear metallohydrolases. Chem. Rev., 2006, 106(8), 3338-3363. doi:10.1021/cr050318fhttp://dx.doi.org/10.1021/cr050318f
Delferro M.; Marks T. J. Multinuclear olefin polymerization catalysts. Chem. Rev., 2011, 111(3), 2450-2485. doi:10.1021/cr1003634http://dx.doi.org/10.1021/cr1003634
Duan R. L.; Qu Z.; Pang X.; Zhang Y.; Sun Z. Q.; Zhang H.; Bian X. C.; Chen X. S. Ring-opening polymerization of lactide catalyzed by bimetallic salen-type titanium complexes. Chin. J. Chem., 2017, 35(5), 640-644. doi:10.1002/cjoc.201600580http://dx.doi.org/10.1002/cjoc.201600580
Shi T.; Zheng Q. D.; Zuo W. W.; Liu S. F.; Li Z. B. Bimetallic aluminum complexes supported by bis(salicylaldimine) ligand: synthesis, characterization and ring-opening polymerization of lactide. Chinese J. Polym. Sci., 2018, 36(2), 149-156. doi:10.1007/s10118-018-2039-5http://dx.doi.org/10.1007/s10118-018-2039-5
Pang X.; Duan R. L.; Li X.; Hu C. Y.; Wang X. H.; Chen X. S. Breaking the paradox between catalytic activity and stereoselectivity: rac-lactide polymerization by trinuclear salen-Al complexes. Macromolecules, 2018, 51(3), 906-913. doi:10.1021/acs.macromol.7b02662http://dx.doi.org/10.1021/acs.macromol.7b02662
Roymuhury S. K.; Chakraborty D.; Ramkumar V. Synthesis and characterization of group 4 metal alkoxide complexes containing imine based bis-bidentate ligands: effective catalysts for the ring opening polymerization of lactides, epoxides and polymerization of ethylene. Dalton Trans., 2015, 44(22), 10352-10367. doi:10.1039/c5dt01092fhttp://dx.doi.org/10.1039/c5dt01092f
Carpentier J. F. Rare-earth complexes supported by tripodal tetradentate bis(phenolate) ligands: a privileged class of catalysts for ring-opening polymerization of cyclic esters. Organometallics, 2015, 34(17), 4175-4189. doi:10.1021/acs.organomet.5b00540http://dx.doi.org/10.1021/acs.organomet.5b00540
Soobrattee S.; Zhai X. F.; Nyamayaro K.; Diaz C.; Kelley P.; Ebrahimi T.; Mehrkhodavandi P. Dinucleating amino-phenolate platform for zinc catalysts: impact on lactide polymerization. Inorg. Chem., 2020, 59(8), 5546-5557. doi:10.1021/acs.inorgchem.0c00250http://dx.doi.org/10.1021/acs.inorgchem.0c00250
Petrus R.; Sobota P. Zinc complexes supported by maltolato ligands: synthesis, structure, solution behavior, and application in ring-opening polymerization of lactides. Organometallics, 2012, 31(13), 4755-4762. doi:10.1021/om300321hhttp://dx.doi.org/10.1021/om300321h
Gao Y.; Dai Z. R.; Zhang J. J.; Ma X. X.; Tang N.; Wu J. C. Trinuclear and tetranuclear magnesium alkoxide clusters as highly active initiators for ring-opening polymerization of L-lactide. Inorg. Chem., 2014, 53(2), 716-726. doi:10.1021/ic401459ahttp://dx.doi.org/10.1021/ic401459a
Liu Y.; Ren W. M.; Liu J.; Lu X. B. Asymmetric copolymerization of CO2 with meso-epoxides mediated by dinuclear cobalt(Ⅲ) complexes: Unprecedented enantioselectivity and activity. Angew. Chem. Int. Ed., 2013, 52(44), 11594-11598. doi:10.1002/anie.201305154http://dx.doi.org/10.1002/anie.201305154
Shi Q.; Yang J. X.; Lü X. Q. A tetranuclear [Zn4L)2OAc)3OH)] complex based on the salen-type schiff-base ligand H2L for effective bulk solvent-free melt ring-opening polymerization (ROP) of L-lactide. Inorg. Chem. Commun., 2015, 59, 61-62. doi:10.1016/j.inoche.2015.06.026http://dx.doi.org/10.1016/j.inoche.2015.06.026
Yin K.; Hua L. Y.; Qu L. Y.; Yao Q. Y.; Wang Y. R.; Yuan D.; You H. P.; Yao Y. M. Heterobimetallic rare earth metal-zinc catalysts for reactions of epoxides and CO2 under ambient conditions. Dalton Trans., 2021, 50(4), 1453-1464. doi:10.1039/d0dt03772ahttp://dx.doi.org/10.1039/d0dt03772a
Zhu L. Q.; Liu D. F.; Wu L. Y.; Feng W. X.; Zhang X. M.; Wu J.; Fan D. D.; Lü X. Q.; Lu R.; Shi Q. A trinuclear[Zn3L)2OAc)2]complex based on the asymmetrical bis-Schiff-base ligand H2L for ring-opening copolymerization of CHO and MA. Inorg. Chem. Commun., 2013, 37, 182-185. doi:10.1016/j.inoche.2013.09.059http://dx.doi.org/10.1016/j.inoche.2013.09.059
Cui L.; Ren B. H.; Lu X. B. Trinuclear salphen-chromium(Ⅲ)chloride complexes as catalysts for the alternating copolymerization of epoxides and cyclic anhydrides. J. Polym. Sci., 2021, 59(16), 1821-1828. doi:10.1002/pol.20210334http://dx.doi.org/10.1002/pol.20210334
Duan R. L.; Zhou Y. C.; Huang Y. Z.; Sun Z. Q.; Zhang H.; Pang X.; Chen X. S. A trinuclear salen-Al complex for copolymerization of epoxides and anhydride: mechanistic insight into a cocatalyst-free system. Chem. Commun., 2021, 57(1), 133-136. doi:10.1039/d0cc06874hhttp://dx.doi.org/10.1039/d0cc06874h
Duan R. L.; Hu C. Y.; Sun Z. Q.; Zhang H.; Pang X.; Chen X. S. Conjugated tri-nuclear salen-Co complexes for the copolymerization of epoxides/CO2: cocatalyst-free catalysis. Green Chem., 2019, 21(17), 4723-4731. doi:10.1039/c9gc02045dhttp://dx.doi.org/10.1039/c9gc02045d
He G. H.; Ren B. H.; Chen S. Y.; Liu Y.; Lu X. B. Enantioselective, stereoconvergent resolution copolymerization of racemic cis-internal epoxides and anhydrides. Angew. Chem. Int. Ed., 2021, 60(11), 5994-6002. doi:10.1002/anie.202011259http://dx.doi.org/10.1002/anie.202011259
Morris L. S.; Childers M. I.; Coates G. W. Bimetallic chromium catalysts with chain transfer agents: a route to isotactic poly(propylene oxide)s with narrow dispersities. Angew. Chem. Int. Ed., 2018, 57(20), 5731-5734. doi:10.1002/anie.201801380http://dx.doi.org/10.1002/anie.201801380
Li J.; Ren B. H.; Wan Z. Q.; Chen S. Y.; Liu Y.; Ren W. M.; Lu X. B. Enantioselective resolution copolymerization of racemic epoxides and anhydrides: efficient approach for stereoregular polyesters and chiral epoxides. J. Am. Chem. Soc., 2019, 141(22), 8937-8942. doi:10.1021/jacs.9b02722http://dx.doi.org/10.1021/jacs.9b02722
Diment W. T.; Lindeboom W.; Fiorentini F.; Deacy A. C.; Williams C. K. Synergic heterodinuclear catalysts for the ring-opening copolymerization (ROCOP) of epoxides, carbon dioxide, and anhydrides. Acc. Chem. Res., 2022, 55(15), 1997-2010. doi:10.1021/acs.accounts.2c00197http://dx.doi.org/10.1021/acs.accounts.2c00197
Fiorentini F.; Diment W. T.; Deacy A. C.; Kerr R. W. F.; Faulkner S.; Williams C. K. Understanding catalytic synergy in dinuclear polymerization catalysts for sustainable polymers. Nat. Commun., 2023, 14(1), 4783. doi:10.1038/s41467-023-40284-zhttp://dx.doi.org/10.1038/s41467-023-40284-z
Nagae H.; Aoki R.; Akutagawa S. N.; Kleemann J.; Tagawa R.; Schindler T.; Choi G.; Spaniol T. P.; Tsurugi H.; Okuda J.; Mashima K. Lanthanide complexes supported by a trizinc crown ether as catalysts for alternating copolymerization of epoxide and CO2: telomerization controlled by carboxylate anions. Angew. Chem. Int. Ed., 2018, 57(9), 2492-2496. doi:10.1002/anie.201709218http://dx.doi.org/10.1002/anie.201709218
Hua L.; Li B.; Han C.; Gao P.; Wang Y.; Yuan D.; Yao Y. Inorg. Chem., 2019, 58, 8775-8786. doi:10.1021/acs.inorgchem.9b01169http://dx.doi.org/10.1021/acs.inorgchem.9b01169
Plajer A. J.; Williams C. K. Heterotrimetallic carbon dioxide copolymerization and switchable catalysts: sodium is the key to high activity and unusual selectivity. Angew. Chem. Int. Ed., 2021, 60(24), 13372-13379. doi:10.1002/anie.202101180http://dx.doi.org/10.1002/anie.202101180
Ren W. M.; Gao H. J.; Yue T. J. Flexible gradient poly(ether-ester) from the copolymerization of epoxides and ε-caprolactone mediated by a hetero-bimetallic complex. Chinese J. Polym. Sci., 2021, 39(8), 1013-1019. doi:10.1007/s10118-021-2559-2http://dx.doi.org/10.1007/s10118-021-2559-2
Yang Z. J.; Hu C. Y.; Duan R. L.; Sun Z. Q.; Zhang H.; Pang X.; Li L. L. Salen-manganese complexes and their application in the ring-opening polymerization of lactide and ε-caprolactone. Asian J. Org. Chem., 2019, 8(3), 376-384. doi:10.1002/ajoc.201800695http://dx.doi.org/10.1002/ajoc.201800695
Huang Y. Z.; Hu C. Y.; Zhou Y. C.; Duan R. L.; Sun Z. Q.; Wan P. Q.; Xiao C. S.; Pang X.; Chen X. S. Monomer controlled switchable copolymerization: a feasible route for the functionalization of poly(lactide). Angew. Chem. Int. Ed., 2021, 60(17), 9274-9278. doi:10.1002/anie.202017088http://dx.doi.org/10.1002/anie.202017088
Yang Z. J.; Hu C. Y.; Cui F. C.; Pang X.; Huang Y. Z.; Zhou Y. C.; Chen X. S. One-pot precision synthesis of AB, ABA and ABC block copolymers via switchable catalysis. Angew. Chem. Int. Ed., 2022, 61(12), e202117533. doi:10.1002/anie.202117533http://dx.doi.org/10.1002/anie.202117533
Hu C. Y.; Chen X.; Niu M. X.; Zhang Q.; Duan R. L.; Pang X. Immortal ring-opening copolymerization of epoxide and isocyanate using a commercial manganese catalyst. Macromolecules, 2022, 55(2), 652-657. doi:10.1021/acs.macromol.1c02331http://dx.doi.org/10.1021/acs.macromol.1c02331
Yang Z. J.; Hu C. Y.; Gao Z.; Duan R. L.; Sun Z. Q.; Zhou Y. C.; Pang X.; Chen X. S. Precise synthesis of sequence-controlled oxygen-rich multiblock copolymers via reversible carboxylation of a commercial salen-Mn(Ⅲ) catalyst. Macromolecules, 2023, 56(6), 2370-2378. doi:10.1021/acs.macromol.3c00154http://dx.doi.org/10.1021/acs.macromol.3c00154
Chisholm M. H.; Navarro-Llobet D.; Simonsick W. J. A comparative study in the ring-opening polymerization of lactides and propylene oxide. Macromolecules, 2001, 34(26), 8851-8857. doi:10.1021/ma011328vhttp://dx.doi.org/10.1021/ma011328v
Zhong Z. Y.; Dijkstra P. J.; Feijen J. Controlled and stereoselective polymerization of lactide: kinetics, selectivity, and microstructures. J. Am. Chem. Soc., 2003, 125(37), 11291-11298. doi:10.1021/ja0347585http://dx.doi.org/10.1021/ja0347585
Li B. K.; Hu C. Y.; Yang Z. J.; Pang X.; Chen X. S. Bimetallic manganese catalysts: a route to controlled and switchable polymerization of lactones. Chem. Eur. J., 2024, 30(2), e202302884. doi:10.1002/chem.202302884http://dx.doi.org/10.1002/chem.202302884
Baran J.; Duda A.; Kowalski A.; Szymanski R.; Penczek S. Intermolecular chain transfer to polymer with chain scission: general treatment and determination of kp/ktr in L, L-lactide polymerization. Macromol. Rapid Commun., 1997, 18(4), 325-333. doi:10.1002/marc.1997.030180409http://dx.doi.org/10.1002/marc.1997.030180409
Pang X.; Duan R. L.; Li X.; Chen X. S. Bimetallic salen-aluminum complexes: synthesis, characterization and their reactivity with rac-lactide and epsilon-caprolactone. Polym. Chem., 2014, 5(12), 3894-3900. doi:10.1039/c3py01774ehttp://dx.doi.org/10.1039/c3py01774e
Cheng M.; Attygalle A. B.; Lobkovsky E. B.; Coates G. W. Single-site catalysts for ring-opening polymerization: synthesis of heterotactic poly(lactic acid) from rac-lactide. J. Am. Chem. Soc., 1999, 121(49), 11583-11584. doi:10.1021/ja992678ohttp://dx.doi.org/10.1021/ja992678o
Chisholm M. H.; Patmore N. J.; Zhou Z. P. Concerning the relative importance of enantiomorphic site vs. chain end control in the stereoselective polymerization of lactides: reactions of (R,R-salen)- and (S,S-salen)-aluminium alkoxides LAlOCH2R complexes (R = CH3 and S-CHMeCl). Chem. Commun., 2005(1), 127-129. doi:10.1039/b413266ahttp://dx.doi.org/10.1039/b413266a
Duan R. L.; Hu C. Y.; Li X.; Pang X.; Sun Z. Q.; Chen X. S.; Wang X. H. Air-stable salen-iron complexes: stereoselective catalysts for lactide and ε-caprolactone polymerization through in situ initiation. Macromolecules, 2017, 50(23), 9188-9195. doi:10.1021/acs.macromol.7b01766http://dx.doi.org/10.1021/acs.macromol.7b01766
Yang J. W.; Sun Z. Q.; Duan R. L.; Li L. L.; Pang X.; Chen X. S. Copolymer of lactide and ε-caprolactone catalyzed by bimetallic Schiff base aluminum complexes. Sci. China Chem., 2016, 59(11), 1384-1389. doi:10.1007/s11426-016-0118-9http://dx.doi.org/10.1007/s11426-016-0118-9
Doherty S.; Errington R. J.; Housley N.; Clegg W. Dimeric aluminum chloride complexes of N-alkoxyalkyl-β-ketoimines: activation with propylene oxide to form efficient lactide polymerization catalysts. Organometallics, 2004, 23(10), 2382-2388. doi:10.1021/om0343770http://dx.doi.org/10.1021/om0343770
Endo M.; Aida T.; Inoue S. Immortal polymerization of ε-caprolactone initiated by aluminum porphyrin in the presence of alcohol. Macromolecules, 1987, 20(12), 2982-2988. doi:10.1021/ma00178a005http://dx.doi.org/10.1021/ma00178a005
Save M.; Schappacher M.; Soum A. Controlled ring-opening polymerization of lactones and lactides initiated by lanthanum isopropoxide, 1. General aspects and kinetics. Macromol. Chem. Phys., 2002, 203(5-6), 889-899. doi:10.1002/1521-3935(20020401)203:5/6<889::aid-macp889>3.0.co;2-ohttp://dx.doi.org/10.1002/1521-3935(20020401)203:5/6<889::aid-macp889>3.0.co;2-o
0
浏览量
178
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构