浏览全部资源
扫码关注微信
1.四川大学高分子科学与工程学院 高分子材料工程国家重点实验室 成都 610065
2.中国石油化工股份有限公司北京化工研究院 北京 100013
E-mail: zoufs.bjhy@sinopec.com
hongweibai@scu.edu.cn
纸质出版日期:2024-09-20,
网络出版日期:2024-06-18,
收稿日期:2024-02-07,
录用日期:2024-05-06
移动端阅览
乔泽爽, 邹发生, 宋文波, 白红伟, 傅强. 利用片状填料调控聚丙烯线收缩率的机理研究. 高分子学报, 2024, 55(9), 1216-1228
Qiao, Z. S.; Zou, F. S.; Song, W. B.; Bai, H. W.; Fu, Q. Study on the mechanism of the flake-shaped filler tailored linear shrinkage of polypropylene. Acta Polymerica Sinica, 2024, 55(9), 1216-1228
乔泽爽, 邹发生, 宋文波, 白红伟, 傅强. 利用片状填料调控聚丙烯线收缩率的机理研究. 高分子学报, 2024, 55(9), 1216-1228 DOI: 10.11777/j.issn1000-3304.2024.24046.
Qiao, Z. S.; Zou, F. S.; Song, W. B.; Bai, H. W.; Fu, Q. Study on the mechanism of the flake-shaped filler tailored linear shrinkage of polypropylene. Acta Polymerica Sinica, 2024, 55(9), 1216-1228 DOI: 10.11777/j.issn1000-3304.2024.24046.
添加无机粒子是有效降低聚丙烯(PP)成型收缩率的一条重要途径,但目前对其作用机制的理解还很局限. 本研究以滑石粉(talc)填充的等规PP (
i
-PP)为例,通过理论计算与实验相结合的方法,研究了无机粒子对
i
-PP注塑制品线收缩率的影响规律和机理. 结果表明,当talc含量较低时(
<
6 vol%),注塑制品在面内(即平行模流方向MD和垂直模流方向TD)和面外(即厚度方向ND)的线收缩率均随talc含量的增加而线性降低,与理论预测基本一致. 然而,当talc含量较高时(
>
6 vol%),收缩率的变化趋势显著偏离理论曲线,面内线收缩率急剧降低,而面外线收缩率则基本保持不变. 进一步分析发现,由于注塑制品中的片状talc倾向于沿MD-TD平面方向取向,并诱导
i
-PP片晶垂直于其表面生长,因此致密的talc片层网络可促使
i
-PP结晶形成垂直于MD-TD平面高度取向的晶体,最终导致制品的面内线收缩率显著低于理论值(这对大尺寸低收缩薄壁制品的开发非常有利),而面外收缩率则高于理论值. 研究结果打破了通过填料体积占比减小PP复合材料成型收缩的传统认识,从结晶的角度揭示了基于填料诱导的取向结晶调控PP制品线收缩的新机理,为低收缩PP材料的开发提供了可行思路.
The addition of inorganic fillers has been deemed as an effective strategy for reducing the mold shrinkage of polypropylene (PP). However
the current understanding on the underlying mechanisms is still unclear. In this work
taking talc filled isotactic PP (
i
-PP) as an example
the effect and mechanisms of inorganic particles on the linear shrinkage of injection-molded
i
-PP products were investigated theoretically and experimentally. The results indicate that
at low contents (
<
6 vol%) of talc
the linear shrinkage of the injection-molded products in both in-plane (
i.e.
along the machine direction MD and transverse direction TD) and out-of-plane directions (
i.e.
along the thickness direction ND) is found to decrease linearly with increasing talc content
which is consistent with the theoretical prediction. However
at high contents (
>
6 vol%) of talc
the change trend of the linear shrinkage deviates significantly from the theoretical curves. The in-plane shrinkage decreases remarkably
while the out-of-plane shrinkage remains almost unchanged. Further analysis indicates that the talc plates in the injection-molded products show a strong tendency to align along the MD-TD plane and induce the growth of
i
-PP lamellae perpendicular to their su
rfaces. Accordingly
the dense talc network promotes the formation of highly oriented
i
-PP lamellae perpendicular to the MD-TD plane
ultimately leading to a much lower in-plane linear shrinkage but a higher out-of-plane shrinkage as compared to the theoretical values. Achieving low in-plane linear shrinkage is particularly beneficial for the development of large-sized thin-walled products. Our work not only breaks through the current knowledge (the shrinkage of composites is decreased based on the increased volume fraction of fillers) and gives a new insight on the role of the filler-induced orientation crystallization in tailoring the shrinkage of PP products
but also provides a solution for the development of low-shrinkage PP materials.
聚丙烯收缩率结晶
PolypropyleneShrinkageCrystallization
张志箭, 王莉, 祖凤华, 洪柳婷, 秦亚伟, 董金勇. α-烯烃基甲基二氯硅烷调控丙烯多相共聚制备高熔体强度高抗冲聚丙烯. 高分子学报, 2020, 51(7), 744-753. doi:10.11777/j.issn1000-3304.2020.20017http://dx.doi.org/10.11777/j.issn1000-3304.2020.20017
Pantani R.; Coccorullo I.; Speranza V.; Titomanlio G. Modeling of morphology evolution in the injection molding process of thermoplastic polymers. Prog. Polym. Sci., 2005, 30(12), 1185-1222. doi:10.1016/j.progpolymsci.2005.09.001http://dx.doi.org/10.1016/j.progpolymsci.2005.09.001
Yang C. X.; Wang G. L.; Zhao J. C.; Zhao G. Q.; Zhang A. M. Lightweight and strong glass fiber reinforced polypropylene composite foams achieved by mold-opening microcellular injection molding. J. Mater. Res. Technol., 2021, 14, 2920-2931. doi:10.1016/j.jmrt.2021.08.052http://dx.doi.org/10.1016/j.jmrt.2021.08.052
Maier, C.; Calafut, T. Polypropylene: the Definitive User's Guide and Databook. Norwich: William Andrew, 1998. 151-152, 171.
Cadena-Perez A. M.; Yañez-Flores I.; Sanchez-Valdes S.; Rodriguez-Fernandez O. S.; Fernandez-Tavizon S.; de Valle L. F. R.; Lozano-Ramirez T.; Martinez-Colunga J. G.; Sanchez-Cuevas J. L. Shrinkage reduction and morphological characterization of PP reinforced with glass fiber and nanoclay using functionalized PP as compatibilizer. Int. J. Mater. Form., 2017, 10(2), 233-240. doi:10.1007/s12289-015-1272-5http://dx.doi.org/10.1007/s12289-015-1272-5
Guerra N. B.; Reis T. M.; Scopel T.; de Lima M. S.; Figueroa C. A.; Michels A. F. Influence of process parameters and post-molding condition on shrinkage and warpage of injection-molded plastic parts with complex geometry. Int. J. Adv. Manuf. Technol., 2023, 128(1), 479-490. doi:10.1007/s00170-023-11782-7http://dx.doi.org/10.1007/s00170-023-11782-7
Zhao N. Y.; Lian J. Y.; Wang P. F.; Xu Z. B. Recent progress in minimizing the warpage and shrinkage deformations by the optimization of process parameters in plastic injection molding: a review. Int. J. Adv. Manuf. Technol., 2022, 120(1-2), 85-101. doi:10.1007/s00170-022-08859-0http://dx.doi.org/10.1007/s00170-022-08859-0
Fujiyama M.; Kimura S. Effect of molecular parameters on the shrinkage of injection-molded polypropylene. J. Appl. Polym. Sci., 1978, 22(5), 1225-1241. doi:10.1002/app.1978.070220506http://dx.doi.org/10.1002/app.1978.070220506
Kwon K.; Isayev A. I.; Kim K. H.; van Sweden C. Theoretical and experimental studies of anisotropic shrinkage in injection moldings of semicrystalline polymers. Polym. Eng. Sci., 2006, 46(6), 712-728. doi:10.1002/pen.20546http://dx.doi.org/10.1002/pen.20546
Grestenberger G.; Potter G. D.; Grein C. Polypropylene/ethylene-propylene rubber (PP/EPR) blends for the automotive industry: basic correlations between EPR-design and shrinkage. Express Polym. Lett., 2014, 8(4), 282-292. doi:10.3144/expresspolymlett.2014.31http://dx.doi.org/10.3144/expresspolymlett.2014.31
Wu L. P.; Kang W. L.; Chen Y.; Zhang X.; Lin X. H.; Chen L. Y.; Gai J. G. Structures and properties of low-shrinkage polypropylene composites. J. Appl. Polym. Sci., 2017, 134(7), 44275. doi:10.1002/app.44275http://dx.doi.org/10.1002/app.44275
Ono M.; Washiyama J.; Nakajima K.; Nishi T. Anisotropy in thermal expansion in rubber toughened polypropylene—injection molded system. Polym. J., 2004, 36(7), 563-566. doi:10.1295/polymj.36.563http://dx.doi.org/10.1295/polymj.36.563
Ono M.; Washiyama J.; Nakajima K.; Nishi T. Anisotropic thermal expansion in polypropylene/poly(ethylene-co-octene) binary blends: influence of arrays of elastomer domains. Polymer, 2005, 46(13), 4899-4908. doi:10.1016/j.polymer.2005.03.098http://dx.doi.org/10.1016/j.polymer.2005.03.098
乔泽爽, 邹发生, 宋文波, 白红伟, 傅强. 基于结晶调控制备低收缩聚丙烯. 高分子学报, 2023, 54(8), 1186-1195. doi:10.11777/j.issn1000-3304.2022.22450http://dx.doi.org/10.11777/j.issn1000-3304.2022.22450
Pan Y. M.; Guo X. B.; Zheng G. Q.; Liu C. T.; Chen Q.; Shen C. Y.; Liu X. H. Shear-induced skin-core structure of molten isotactic polypropylene and the formation of β-crystal. Macromol. Mater. Eng., 2018, 303(6), 1800083. doi:10.1002/mame.201800083http://dx.doi.org/10.1002/mame.201800083
Li X. X.; Wu H. Y.; Wang Y.; Bai H. W.; Liu L.; Huang T. Study on the β to α transformation of PP/POE blends with β-phase nucleating agent during the tensile deformation process. Mater. Sci. Eng. A, 2010, 527(3), 531-538. doi:10.1016/j.msea.2009.08.007http://dx.doi.org/10.1016/j.msea.2009.08.007
秦玉洁, 陈桂吉, 谢正瑞. 聚丙烯材料收缩率影响因素研究. 上海塑料, 2021, 49(3), 32-36. doi:10.16777/j.cnki.issn.1009-5993.2021.03.006http://dx.doi.org/10.16777/j.cnki.issn.1009-5993.2021.03.006
Xu Y. J.; Yang W.; Xie B. H.; Liu Z. Y.; Yang M. B. Effect of injection parameters and addition of nanoscale materials on the shrinkage of polypropylene copolymer. J. Macromol. Sci. Part B, 2009, 48(3), 573-586. doi:10.1080/00222340902837741http://dx.doi.org/10.1080/00222340902837741
Ryu Y.; Sohn J. S.; Kweon B. C.; Cha S. W. Shrinkage optimization in talc- and glass-fiber-reinforced polypropylene composites. Materials, 2019, 12(5), 764. doi:10.3390/ma12050764http://dx.doi.org/10.3390/ma12050764
Shelesh-Nezhad K.; Taghizadeh A. Shrinkage behavior and mechanical performances of injection molded polypropylene/talc composites. Polym. Eng. Sci., 2007, 47(12), 2124-2128. doi:10.1002/pen.20940http://dx.doi.org/10.1002/pen.20940
Schirmeister C. G.; Schächtele S.; Keßler Y.; Hees T.; Köhler R.; Schmitz K.; Licht E. H.; Muelhaupt R. Low warpage nanophase-separated polypropylene/olefinic elastomer reactor blend composites with digitally tuned glass fiber orientation by extrusion-based additive manufacturing. ACS Appl. Polym. Mater., 2021, 3(4), 2070-2081. doi:10.1021/acsapm.1c00119http://dx.doi.org/10.1021/acsapm.1c00119
Segal L. The thermal expansion of reinforced nylon-6 composites through the matrix glass transition temperature. Polym. Eng. Sci., 1979, 19(5), 365-372. doi:10.1002/pen.760190508http://dx.doi.org/10.1002/pen.760190508
Qiu F.; Wang M.; Hao Y. B.; Guo S. Y. The effect of talc orientation and transcrystallization on mechanical properties and thermal stability of the polypropylene/talc composites. Compos. Part A Appl. Sci. Manuf., 2014, 58, 7-15. doi:10.1016/j.compositesa.2013.11.011http://dx.doi.org/10.1016/j.compositesa.2013.11.011
Fiorentino B.; Fulchiron R.; Duchet-Rumeau J.; Bounor-Legaré V.; Majesté J. C. Controlled shear-induced molecular orientation and crystallization in polypropylene/talc microcomposites—effects of the talc nature. Polymer, 2013, 54(11), 2764-2775. doi:10.1016/j.polymer.2013.03.057http://dx.doi.org/10.1016/j.polymer.2013.03.057
Gee D. R.; Melia T. P. Thermal properties of melt and solution crystallized isotactic polypropylene. Makromol. Chem., 1970, 132(1), 195-201. doi:10.1002/macp.1970.021320117http://dx.doi.org/10.1002/macp.1970.021320117
Sun H. W.; Wang L.; Yi J. J.; Wang F. S.; Gao Y.; Sha X.; Feng J. C. The influence of melt temperature on the crystal orientation of polypropylene containing talc. Polymer, 2022, 256, 125179. doi:10.1016/j.polymer.2022.125179http://dx.doi.org/10.1016/j.polymer.2022.125179
Sun H. W.; Wang F. S.; Gao Y.; Wei F. Q.; Feng J. C. Significantly enhanced melt memory effect of metallocene-made isotactic polypropylene containing talc. Chinese J. Polym. Sci., 2024, 42(2), 213-222. doi:10.1007/s10118-023-3027-yhttp://dx.doi.org/10.1007/s10118-023-3027-y
An Y. J.; Wang S. H.; Li R.; Shi D. Z.; Gao Y. X.; Song L. Effect of different nucleating agent on crystallization kinetics and morphology of polypropylene. e-Polymers, 2019, 19(1), 32-39. doi:10.1515/epoly-2019-0005http://dx.doi.org/10.1515/epoly-2019-0005
Maeda K.; Yamada K.; Yamada K.; Kotaki M.; Nishimura H. Structure and fracture toughness of thin-wall polypropylene moulded at different injection speeds. Thin Walled Struct., 2018, 125, 12-20. doi:10.1016/j.tws.2018.01.017http://dx.doi.org/10.1016/j.tws.2018.01.017
刘伟, 王向东. 高熔体强度聚丙烯/低密度聚乙烯共混体系的挤出发泡行为研究. 工程塑料应用, 2011, 39(10), 78-83. doi:10.3969/j.issn.1001-3539.2011.10.019http://dx.doi.org/10.3969/j.issn.1001-3539.2011.10.019
Jacoby P.; Bersted B. H.; Kissel W. J.; Smith C. E. Studies on the β-crystalline form of isotactic polypropylene. J. Polym. Sci. Part B Polym. Phys., 1986, 24(3), 461-491. doi:10.1002/polb.1986.090240301http://dx.doi.org/10.1002/polb.1986.090240301
Ferrer-Balas D.; Maspoch M. L.; Martinez A. B.; Santana O. O. Influence of annealing on the microstructural, tensile and fracture properties of polypropylene films. Polymer, 2001, 42(4), 1697-1705. doi:10.1016/s0032-3861(00)00487-0http://dx.doi.org/10.1016/s0032-3861(00)00487-0
Hou J. J.; Zhao G. Q.; Wang G. L. Polypropylene/talc foams with high weight-reduction and improved surface quality fabricated by mold-opening microcellular injection molding. J. Mater. Res. Technol., 2021, 12, 74-86. doi:10.1016/j.jmrt.2021.02.077http://dx.doi.org/10.1016/j.jmrt.2021.02.077
Revilla-Díaz R.; Sánchez-Valdés S.; López-Campos F.; Medellín-Rodríguez F. J.; López-Quintanilla M. L. Comparative characterization of PP nano- and microcomposites by in-mold shrinkage measurements and structural characteristics. Macromol. Mater. Eng., 2007, 292(6), 762-768. doi:10.1002/mame.200700019http://dx.doi.org/10.1002/mame.200700019
Castillo L. A.; Barbosa S. E. Influence of processing and particle morphology on final properties of polypropylene/talc nanocomposites. Polym. Compos., 2020, 41(8), 3170-3183. doi:10.1002/pc.25608http://dx.doi.org/10.1002/pc.25608
Dı́ez-Gutiérrez S.; Rodrı́guez-Pérez M. A.; De Saja J. A.; Velasco J. I. Dynamic mechanical analysis of injection-moulded discs of polypropylene and untreated and silane-treated talc-filled polypropylene composites. Polymer, 1999, 40(19), 5345-5353. doi:10.1016/s0032-3861(98)00754-xhttp://dx.doi.org/10.1016/s0032-3861(98)00754-x
Menczel J.; Varga J. Influence of nucleating agents on crystallization of polypropylene. J. Therm. Anal., 1983, 28(1), 161-174. doi:10.1007/bf02105288http://dx.doi.org/10.1007/bf02105288
Kocic N.; Kretschmer K.; Bastian M.; Heidemeyer P. The influence of talc as a nucleation agent on the nonisothermal crystallization and morphology of isotactic polypropylene: the application of the Lauritzen-Hoffmann, Avrami, and Ozawa theories. J. Appl. Polym. Sci., 2012, 126(4), 1207-1217. doi:10.1002/app.36880http://dx.doi.org/10.1002/app.36880
Xu S. S.; Zhou J.; Pan P. J. Strain-induced multiscale structural evolutions of crystallized polymers: from fundamental studies to recent progresses. Prog. Polym. Sci., 2023, 140, 101676. doi:10.1016/j.progpolymsci.2023.101676http://dx.doi.org/10.1016/j.progpolymsci.2023.101676
Frihi D.; Masenelli-Varlot K.; Vigier G.; Satha H. Mixed percolating network and mechanical properties of polypropylene/talc composites. J. Appl. Polym. Sci., 2009, 114(5), 3097-3105. doi:10.1002/app.30890http://dx.doi.org/10.1002/app.30890
Jahani Y. Dynamic rheology, mechanical performance, shrinkage, and morphology of chemically coupled talc-filled polypropylene. J. Vinyl Addit. Technol., 2010, 16(1), 70-77. doi:10.1002/vnl.20209http://dx.doi.org/10.1002/vnl.20209
0
浏览量
230
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构