浏览全部资源
扫码关注微信
纺织面料技术教育部重点实验室 纺织行业生物医用纺织材料与技术重点实验室 上海市现代纺织前沿科学研究基地 东华大学纺织学院 上海 201620
E-mail: jifu.mao@dhu.edu.cn
纸质出版日期:2024-09-20,
网络出版日期:2024-06-12,
收稿日期:2024-02-14,
录用日期:2024-04-19
移动端阅览
孟金华, 李沂蒙, 魏乐倩, 李雯昕, 单梦琪, 蓝丽珍, 王富军, 王璐, 毛吉富. 双重导电网络柔性应变/温度传感器的制备及健康监测应用. 高分子学报, 2024, 55(9), 1165-1178
Meng, J. H.; Li, Y. M.; Wei, L. Q.; Li, W. X.; Shan, M. Q; Lan, L. Z.; Wang, F. J.;Wang, L.; Mao, J. F. Construction of flexible strain/temperature sensors with dual conductive networks and application in health monitoring. Acta Polymerica Sinica, 2024, 55(9), 1165-1178
孟金华, 李沂蒙, 魏乐倩, 李雯昕, 单梦琪, 蓝丽珍, 王富军, 王璐, 毛吉富. 双重导电网络柔性应变/温度传感器的制备及健康监测应用. 高分子学报, 2024, 55(9), 1165-1178 DOI: 10.11777/j.issn1000-3304.2024.24047.
Meng, J. H.; Li, Y. M.; Wei, L. Q.; Li, W. X.; Shan, M. Q; Lan, L. Z.; Wang, F. J.;Wang, L.; Mao, J. F. Construction of flexible strain/temperature sensors with dual conductive networks and application in health monitoring. Acta Polymerica Sinica, 2024, 55(9), 1165-1178 DOI: 10.11777/j.issn1000-3304.2024.24047.
为了解决智能可穿戴柔性传感器宽应变传感范围和高灵敏度难以兼顾的问题,采用湿法同轴纺丝方法,一步制备了一种具有双重导电网络结构的带状纤维作为柔性应变/温度传感器. 芯轴的碳纳米管在非溶剂致相分离过程中向鞘轴的聚氨酯扩散,导致碳纳米管嵌入聚氨酯形成导电网络,与芯轴碳纳米管导电层构成双重导电网络,聚氨酯作为鞘轴提供可拉伸性和保护作用. 这种双重导电结构实现了低初始电阻(387 Ω)、宽应变传感范围(Sensing
ε
=425%)
和高灵敏度(
ε
= 0%~200%
GF=208.8;
ε
= 200%~425%
GF=1359.2),而且它作为柔性传感器还能在0%~20%应变重复1.25×10
4
次后保持相对电阻基本不变. 此外,该柔性传感器还兼具温度传感功能(TCR=-0.240 %/℃)和耐腐蚀耐水洗性,在智能可穿戴设备等领域具有广泛的前景.
In order to solve the problem that it is difficult to balance the wide strain sensing range and high sensitivity of smart wearable flexible sensors
a ribbon fiber with a dual conductive network structure was prepared as a flexible strain/temperature sensor in one step by using a wet coaxial spinning method. The carbon nanotubes in the core axis diffuse into the polyurethane in the sheath axis during the non-solvent phase separation process
leading to the formation of a conductive network of carbon nanotubes embedded in the polyurethane
which constitutes a dual conductive network with the carbon nanotubes conductive layer in the core axis
and the polyurethane as the sheath axis to provide stretchability and protection. This dual conductive structure achieves low initial resistance (387 Ω)
wide strain sensing range (sensing
ε
=425%)
and high sensitivity (
ε
= 0%-200%
GF=208.8;
ε
= 200%-425%
GF=1359.2)
and it can also keep the relative resistance as a flexible sensor basically unchanged after 12
500 repetitions at 0%-20% strain. It can also be used as a flexible sensor to keep the relative resistance almost unchanged after 12500 repetitions at 0% to 20% strain. In addition
the flexible sensor also has temperature sensing function (TCR=-0.240 %/°C) and corrosion and water washing resistance
which has a wide range of prospects in the field of smart wearable devices.
柔性传感器双重导电网络宽应变传感范围高灵敏度温度传感
Flexible sensorDual conductive networkWide strain sensing rangeHigh sensitivityTemperature sensing
Li Y. M.; Gao Y. Y.; Lan L. Z.; Zhang Q.; Wei L. Q.; Shan M. Q.; Guo L. M.; Wang F. J.; Mao J. F.; Zhang Z.; Wang L. Ultrastretchable and wearable conductive multifilament enabled by buckled polypyrrole structure in parallel. NPJ Flex. Electron., 2022, 6, 42. doi:10.1038/s41528-022-00176-6http://dx.doi.org/10.1038/s41528-022-00176-6
Liu L. P.; Niu S. C.; Zhang J. Q.; Mu Z. Z.; Li J.; Li B.; Meng X. C.; Zhang C. C.; Wang Y. Q.; Hou T.; Han Z. W.; Yang S.; Ren L. Q. Bioinspired, omnidirectional, and hypersensitive flexible strain sensors. Adv. Mater., 2022, 34(17), 2200823. doi:10.1002/adma.202200823http://dx.doi.org/10.1002/adma.202200823
Heng W. Z.; Solomon S.; Gao W. Flexible electronics and devices as human-machine interfaces for medical robotics. Adv. Mater., 2022, 34(16), 2107902. doi:10.1002/adma.202107902http://dx.doi.org/10.1002/adma.202107902
Qiu Y. L.; Ashok A.; Nguyen C. C.; Yamauchi Y.; Do T. N.; Phan H. P. Integrated sensors for soft medical robotics. Small, 2024, 2308805. doi:10.1002/smll.202308805http://dx.doi.org/10.1002/smll.202308805
Fu Z. W.; Liu H.; Lyu Q. Y.; Dai J. W.; Ji C.; Tian Y. Anti-freeze hydrogel-based sensors for intelligent wearable human-machine interaction. Chem. Eng. J., 2024, 481, 148526. doi:10.1016/j.cej.2024.148526http://dx.doi.org/10.1016/j.cej.2024.148526
高娅娅, 李沂蒙, 魏乐倩, 杨擎宇, 毛吉富, 王璐. 仿蠕虫状聚吡咯基复合纤维的构建及应变不敏感导电性能研究. 高分子学报, 2022, 53(1), 46-55.
Xu R. D.; She M. H.; Liu J. X.; Zhao S. K.; Zhao J. S.; Zhang X. J.; Qu L. J.; Tian M. W. Skin-friendly and wearable iontronic touch panel for virtual-real handwriting interaction. ACS Nano, 2023, 17(9), 8293-8302. doi:10.1021/acsnano.2c12612http://dx.doi.org/10.1021/acsnano.2c12612
Li M.; Li Z. Q.; Ye X. R.; He W. Z.; Qu L. J.; Tian M. W. A smart self-powered rope for water/fire rescue. Adv. Funct. Mater., 2023, 33(3), 2210111. doi:10.1002/adfm.202210111http://dx.doi.org/10.1002/adfm.202210111
Zhang Y. F.; Zhou J. H.; Zhang Y.; Zhang D. S.; Yong K. T.; Xiong J. Q. Elastic fibers/fabrics for wearables and bioelectronics. Adv. Sci., 2022, 9(35), 2203808. doi:10.1002/advs.202203808http://dx.doi.org/10.1002/advs.202203808
Shen T. Y.; Liu S.; Yue X. Y.; Wang Z. Q.; Liu H.; Yin R.; Liu C. T.; Shen C. Y. High-performance fibrous strain sensor with synergistic sensing layer for human motion recognition and robot control. Adv. Compos. Hybrid Mater., 2023, 6(4), 127. doi:10.1007/s42114-023-00701-9http://dx.doi.org/10.1007/s42114-023-00701-9
Liu W. W.; Xue C.; Long X. Y.; Ren Y.; Chen Z.; Zhang W. Highly flexible and multifunctional CNTs/TPU fiber strain sensor formed in one-step via wet spinning. J. Alloys Compd., 2023, 948, 169641. doi:10.1016/j.jallcom.2023.169641http://dx.doi.org/10.1016/j.jallcom.2023.169641
Boland C. S.; Khan U.; Backes C.; O'Neill A.; McCauley J.; Duane S. N.; Shanker R.; Liu Y.; Jurewicz I.; Dalton A. B.; Coleman J. N. Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites. ACS Nano, 2014, 8(9), 8819-8830. doi:10.1021/nn503454hhttp://dx.doi.org/10.1021/nn503454h
Hu M. F.; Gao Y.; Jiang Y. J.; Zeng H. D.; Zeng S. S.; Zhu M. T.; Xu G. F.; Sun L. Y. High-performance strain sensors based on bilayer carbon black/PDMS hybrids. Adv. Compos. Hybrid Mater., 2021, 4(3), 514-520. doi:10.1007/s42114-021-00226-zhttp://dx.doi.org/10.1007/s42114-021-00226-z
Nie H.; Chen Z. W.; Tang H. M.; Ren Y.; Liu W. W. Strain sensor based on polyurethane/carbon nanotube elastic conductive spiral yarn with high strain range and sensitivity. Polym. Compos., 2024, 45(6), 5522-5531. doi:10.1002/pc.28144http://dx.doi.org/10.1002/pc.28144
Zhao X. X.; Guo H.; Ding P.; Zhai W.; Liu C. T.; Shen C. Y.; Dai K. Hollow-porous fiber-shaped strain sensor with multiple wrinkle-crack microstructure for strain visualization and wind monitoring. Nano Energy, 2023, 108, 108197. doi:10.1016/j.nanoen.2023.108197http://dx.doi.org/10.1016/j.nanoen.2023.108197
Zhang M. C.; Wang C. Y.; Wang Q.; Jian M. Q.; Zhang Y. Y. Sheath-core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors. ACS Appl. Mater. Interfaces, 2016, 8(32), 20894-20899. doi:10.1021/acsami.6b06984http://dx.doi.org/10.1021/acsami.6b06984
Jang S.; Kim J.; Kim D. W.; Kim J. W.; Chun S.; Lee H. J.; Yi G. R.; Pang C. Carbon-based, ultraelastic, hierarchically coated fiber strain sensors with crack-controllable beads. ACS Appl. Mater. Interfaces, 2019, 11(16), 15079-15087. doi:10.1021/acsami.9b03204http://dx.doi.org/10.1021/acsami.9b03204
You J. B.; Zhang J. P.; Zhang J. L.; Yang Z. H.; Zhang X. H. Stretchable and highly sensitive strain sensor based on a 2D MXene and 1D whisker carbon nanotube binary composite film. ACS Appl. Mater. Interfaces, 2022, 14(50), 55812-55820. doi:10.1021/acsami.2c18135http://dx.doi.org/10.1021/acsami.2c18135
Woo J.; Lee H.; Yi C.; Lee J.; Won C.; Oh S.; Jekal J.; Kwon C.; Lee S.; Song J.; Choi B.; Jang K. I.; Lee T. Ultrastretchable helical conductive fibers using percolated Ag nanoparticle networks encapsulated by elastic polymers with high durability in omnidirectional deformations for wearable electronics. Adv. Funct. Mater., 2020, 30(29), 1910026. doi:10.1002/adfm.201910026http://dx.doi.org/10.1002/adfm.201910026
Liang J. J.; Li L.; Tong K.; Ren Z.; Hu W.; Niu X. F.; Chen Y. S.; Pei Q. B. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano, 2014, 8(2), 1590-1600. doi:10.1021/nn405887khttp://dx.doi.org/10.1021/nn405887k
Guo Q.; Pang W. W.; Xie X.; Xu Y. L.; Yuan W. J. Stretchable, conductive and porous MXene-based multilevel structured fibers for sensitive strain sensing and gas sensing. J. Mater. Chem. A, 2022, 10(29), 15634-15646. doi:10.1039/d2ta02998ghttp://dx.doi.org/10.1039/d2ta02998g
Liu Y. Y.; Tang Y. L.; Guo X. Q.; Qu L. J.; Liu Y. C.; Zhang X. M.; Huang T.; Xu L. L.; Liu H.; Tian M. W. Template-free and stretchable conductive fiber with a built-In helical structure for strain-insensitive signal transmission. ACS Appl. Mater. Interfaces, 2023, 15(39), 46379-46387. doi:10.1021/acsami.3c10111http://dx.doi.org/10.1021/acsami.3c10111
Shi X. L.; Wang H. K.; Xie X. T.; Xue Q. W.; Zhang J. Y.; Kang S. Q.; Wang C. H.; Liang J. J.; Chen Y. S. Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale "brick-and-mortar" architecture. ACS Nano, 2019, 13(1), 649-659. doi:10.1021/acsnano.8b07805http://dx.doi.org/10.1021/acsnano.8b07805
Zhou J.; Xu X. Z.; Xin Y. Y.; Lubineau G. Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors. Adv. Funct. Mater., 2018, 28(16), 1705591. doi:10.1002/adfm.201870101http://dx.doi.org/10.1002/adfm.201870101
门海蛟, 宋健尧, 黄秉经, 李建昌. 柔性可穿戴电子应变传感器的研究进展. 材料导报, 2023, 37(21), 45-67.
Qi X. J.; Zhao H. T.; Wang L. H.; Sun F. Q.; Ye X. R.; Zhang X. J.; Tian M. W.; Qu L. J. Underwater sensing and warming E-textiles with reversible liquid metal electronics. Chem. Eng. J., 2022, 437, 135382. doi:10.1016/j.cej.2022.135382http://dx.doi.org/10.1016/j.cej.2022.135382
Qu S. X.; Jiang X. R.; Li Q. W.; Gao L. M.; Zhou G. H.; Zhang D. X.; Gong W. B.; Lu W. B. Developing strong and tough carbon nanotube films by a proper dispersing strategy and enhanced interfacial interactions. Carbon, 2019, 149, 117-124. doi:10.1016/j.carbon.2019.04.033http://dx.doi.org/10.1016/j.carbon.2019.04.033
Wu H.; Wang L.; Lou H. Y.; Wan J. M.; Pu X. One-step coaxial spinning of core-sheath hydrogel fibers for stretchable ionic strain sensors. Chem. Eng. J., 2023, 458, 141393. doi:10.1016/j.cej.2023.141393http://dx.doi.org/10.1016/j.cej.2023.141393
Amjadi M.; Pichitpajongkit A.; Lee S. J.; Ryu S.; Park I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano, 2014, 8(5), 5154-5163. doi:10.1021/nn501204thttp://dx.doi.org/10.1021/nn501204t
Li Z.; Qi X. M.; Xu L.; Lu H. H.; Wang W. J.; Jin X. X.; Md Z. I.; Zhu Y. F.; Fu Y. Q.; Ni Q. Q.; Dong Y. B. Self-repairing, large linear working range shape memory carbon nanotubes/ethylene vinyl acetate fiber strain sensor for human movement monitoring. ACS Appl. Mater. Interfaces, 2020, 12(37), 42179-42192. doi:10.1021/acsami.0c12425http://dx.doi.org/10.1021/acsami.0c12425
Sun H. L.; Dai K.; Zhai W.; Zhou Y. J.; Li J. W.; Zheng G. Q.; Li B.; Liu C. T.; Shen C. Y. A highly sensitive and stretchable yarn strain sensor for human motion tracking utilizing a wrinkle-assisted crack structure. ACS Appl. Mater. Interfaces, 2019, 11(39), 36052-36062. doi:10.1021/acsami.9b09229http://dx.doi.org/10.1021/acsami.9b09229
Wang W.; Ma Y. Y.; Wang T. Y.; Ding K.; Zhao W.; Jiao L.; Shu D. K.; Li C. Y.; Hua F. G.; Jiang H.; Tong S. H.; Yang S.; Ni Y. H.; Cheng B. W. Double-layered conductive network design of flexible strain sensors for high sensitivity and wide working range. ACS Appl. Mater. Interfaces, 2022, 14(32), 36611-36621. doi:10.1021/acsami.2c08285http://dx.doi.org/10.1021/acsami.2c08285
Wang J. Y.; Ren S. H.; Jia X. T.; Jia Y. F. Liquid metal and carbon nanofiber-based strain sensor for monitoring gesture, voice, and physiological signals. ACS Appl. Nano Mater., 2024, 7(2), 1664-1673. doi:10.1021/acsanm.3c04764http://dx.doi.org/10.1021/acsanm.3c04764
Gao J. L.; Li X. M.; Xu L. N.; Yan M. Q.; Bi H.; Wang Q. Y. Transparent multifunctional cellulose-based conductive hydrogel for wearable strain sensors and arrays. Carbohydr. Polym., 2024, 329, 121784. doi:10.1016/j.carbpol.2024.121784http://dx.doi.org/10.1016/j.carbpol.2024.121784
Gao Y. Y.; Yu L. G.; Li Y. M.; Wei L. Q.; Yin J.; Wang F. J.; Wang L.; Mao J. F. Maple leaf inspired conductive fiber with hierarchical wrinkles for highly stretchable and integratable electronics. ACS Appl. Nano Mater., 2022, 14(43), 49059-49071. doi:10.1021/acsami.2c12746http://dx.doi.org/10.1021/acsami.2c12746
Lee C.; Jug L.; Meng E. High strain biocompatible polydimethylsiloxane-based conductive graphene and multiwalled carbon nanotube nanocomposite strain sensors. Appl. Phys. Lett., 2013, 102(18), 183511. doi:10.1063/1.4804580http://dx.doi.org/10.1063/1.4804580
Zhang Y. X.; Li Y. D.; Du A. K.; Wu Y. P.; Zeng J. B. Layer-by-layer assembly of chitosan and carbon nanotube on cotton fabric for strain and temperature sensing. J. Mater. Sci. Technol., 2024, 173, 114-120. doi:10.1016/j.jmst.2023.07.025http://dx.doi.org/10.1016/j.jmst.2023.07.025
Li Y. M.; Shan M. Q.; Peng J. M.; Lan L. Z.; Wei L. Q.; Guo L. M.; Wang F. J.; Zhang Z.; Wang L.; Mao J. F. A highly stretchable and conductive continuous composite filament with buckled polypyrrole coating for stretchy electronic textiles. Appl. Surf. Sci., 2023, 610, 155515. doi:10.1016/j.apsusc.2022.155515http://dx.doi.org/10.1016/j.apsusc.2022.155515
0
浏览量
286
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构