浏览全部资源
扫码关注微信
1.长沙理工大学,化学化工学院,长沙 410114
2.长沙理工大学,能源与动力工程学院,长沙 410114
E-mail: jlzeng@csust.edu.cn
纸质出版日期:2024-09-20,
网络出版日期:2024-05-23,
收稿日期:2024-02-19,
录用日期:2024-03-28
移动端阅览
张益弘, 陈羽阳, 涂龙龙, 左雪, 谭烨, 喻林萍, 李传常, 曾巨澜. 基于水凝胶的定形相变材料制备与性能研究. 高分子学报, 2024, 55(9), 1229-1240
Zhang, Y. H.; Chen, Y, Y.; Tu, L. L.; Zuo, X.; Tan, Y.; Yu, L. P.; Li, C. C.; Zeng, J. L. Preparation and characterization of form-stable phase change materials with hydrogel skeleton as supporting material. Acta Polymerica Sinica, 2024, 55(9), 1229-1240
张益弘, 陈羽阳, 涂龙龙, 左雪, 谭烨, 喻林萍, 李传常, 曾巨澜. 基于水凝胶的定形相变材料制备与性能研究. 高分子学报, 2024, 55(9), 1229-1240 DOI: 10.11777/j.issn1000-3304.2024.24048.
Zhang, Y. H.; Chen, Y, Y.; Tu, L. L.; Zuo, X.; Tan, Y.; Yu, L. P.; Li, C. C.; Zeng, J. L. Preparation and characterization of form-stable phase change materials with hydrogel skeleton as supporting material. Acta Polymerica Sinica, 2024, 55(9), 1229-1240 DOI: 10.11777/j.issn1000-3304.2024.24048.
在储冷控温用定形相变材料研究领域,水的相变储冷特性常被忽视. 本研究以丙烯酸和聚乙烯醇为原料,通过交联聚合,辅以冻融循环和表面干燥制备了一类基于聚乙烯醇和聚丙烯酸的水凝胶定形相变材料. 在氢键和冻融循环的作用下,聚乙烯醇和聚丙烯酸相互缠绕形成强大的氢键网络,赋予水凝胶极高的含水量和良好的塑形性能. 将该水凝胶用作定形相变材料,通过其中水的相变实现相变储冷,储冷容量达237 J/g,且50 ℃以下水不会挥发.该水凝胶定形相变材料具有极好的抗泄漏性能和良好的循环稳定性,50次冻融循环后储冷性能无变化,且可塑成任意形状,可应用于储冷、冷链控温和冷敷等领域. 此外,为充分利用水凝胶内部的孔隙,通过添加纳米石墨片增强水凝胶骨架的稳定性,并经冷冻干燥得到了一种高孔隙率支撑材料,然后以赤藓糖醇和PEG2000为相变材料,制备了2类定形相变材料. 它们均具有极高的相变材料含量和相变储热容量,证明基于水凝胶的聚合物网络骨架是一类良好的支撑材料. 本文所得结果对推进水凝胶材料在热能储存和温度控制领域的应用具有重要的价值.
Form-stable phase change materials (FSPCMs) are a kind of latent heat/cold energy storage materials and play key role in fields like new energy development
cold chain temperature control and healthcare. Lots of expensive chemicals have been investigated as phase change materials (PCMs) for FSPCMs
however
the application of water
a very cheap and abondance material in our planet
as a phase change cold energy storage material for FSPCMs is neglected. Herein
a kind of hydrogel based on poly(vinyl alcohol) and poly(acrylic acid) was prepared at first
and then novel FSPCMs with high latent cold energy storage capacity were obtained by solving the problem of water leakage in the hydrogel through simple surface freeze drying. The latent cold energy storage capacity of the obtained hydrogel-based FSPCMs attained 237 J/g
and the water in the FSPCMs would not volatilize when the temperature was not higher than 50 ℃. The FSPCMs also exhibited excellent anti-leakage performance even it was heavily pressed. Meanwhile
the FSPCMs possessed good long-term thermal reliability and its latent cold storage performance has not changed after 50 freeze-thaw cycles. The FSPCMs also had good temperature control and shaping properties
making it applicable to cold storage
cold chain temperature control
cold compress and other fields. In addition
in order to fully utilize the high porosity of dried hydrogel
exfoliated graphite nanoplatelets (xGnP) were applied to enhance the stability of the hydrogel skeleton with the largest water content
and a novel supporting material with high porosity was obtained by freeze-drying. Then
erythritol (ET) and PEG2000
two water-soluble PCMs
were selected as representatives
and two types of FSPCMs were prepared by melting impregnation. Both types of FSPCMs possessed very high content of PCMs and very high latent heat storage capacity
which proved that polymer network skeletons of hydrogels were perfect supporting materials for FSPCMs. Consequently
the results obtained in this study have important value for promoting the application of hydrogel itself and hydrogel materials in the fields of heat energy storage and temperature control.
水凝胶定形相变材料相变控温储冷支撑材料
HydrogelForm-stable phase change materialsPhase change temperature controlCold storageSupporting materials
Heinen S.; Mancarella P.; O'Dwyer C.; O'Malley M. Heat electrification: the latest research in europe. IEEE Power Energy Mag., 2018, 16(4), 69-78. doi:10.1109/mpe.2018.2822867http://dx.doi.org/10.1109/mpe.2018.2822867
王文涛, 耿伟纬, 郭小龙, 王康辉, 姚玉元, 丁黎明. 光/电-热转换柔性相变复合膜的制备及性能. 化学学报, 2023, 81(6), 595-603.
Xu J. Y.; Zhang X. L.; Zou L. G. A review: progress and perspectives of research on the functionalities of phase change materials. J. Energy Storage, 2022, 54, 105341. doi:10.1016/j.est.2022.105341http://dx.doi.org/10.1016/j.est.2022.105341
Feng T. P.; Ji J.; Zhang X. L. Research progress of phase change cold energy storage materials used in cold chain logistics of aquatic products. J. Energy Storage, 2023, 60, 106568. doi:10.1016/j.est.2022.106568http://dx.doi.org/10.1016/j.est.2022.106568
Zhan D. N.; Zhao L.; Yu Q. F.; Zhang Y.; Wang Y. F.; Li G. L.; Lu G. S.; Zhan D. Y.; Li M. Phase change material for the cold storage of perishable products: from material preparation to material evaluation. J. Mol. Liq., 2021, 342, 117455. doi:10.1016/j.molliq.2021.117455http://dx.doi.org/10.1016/j.molliq.2021.117455
Zhang N.; Yuan Y. P.; Cao X. L.; Du Y. X.; Zhang Z. L.; Gui Y. W. Latent heat thermal energy storage systems with solid-liquid phase change materials: a review. Adv. Eng. Mater., 2018, 20(6), 1700753. doi:10.1002/adem.201700753http://dx.doi.org/10.1002/adem.201700753
Zhao Y. X.; Zhang X. L.; Hua W. S. Review of preparation technologies of organic composite phase change materials in energy storage. J. Mol. Liq., 2021, 336, 115923. doi:10.1016/j.molliq.2021.115923http://dx.doi.org/10.1016/j.molliq.2021.115923
Umair M. M.; Zhang Y. A.; Iqbal K.; Zhang S. F.; Tang B. T. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage-a review. Appl. Energy, 2019, 235, 846-873. doi:10.1016/j.apenergy.2018.11.017http://dx.doi.org/10.1016/j.apenergy.2018.11.017
Fioretti R.; Principi P.; Copertaro B. A refrigerated container envelope with a PCM (phase change material) layer: experimental and theoretical investigation in a representative town in central italy. Energy Convers. Manag., 2016, 122, 131-141. doi:10.1016/j.enconman.2016.05.071http://dx.doi.org/10.1016/j.enconman.2016.05.071
Liu M.; Saman W.; Bruno F. Development of a novel refrigeration system for refrigerated trucks incorporating phase change material. Appl. Energy, 2012, 92, 336-342. doi:10.1016/j.apenergy.2011.10.015http://dx.doi.org/10.1016/j.apenergy.2011.10.015
Chandran R.; Hasanuzzaman M.; Arıcı M.; Kumar L. Energy, economic and environmental impact analysis of phase change materials for cold chain transportation in Malaysia. J. Energy Storage, 2022, 55, 105481. doi:10.1016/j.est.2022.105481http://dx.doi.org/10.1016/j.est.2022.105481
Liu C.; Chen Y. J.; Zhang C. C. An exfoliated montmorillonite as the nanosheet nucleating agent in the subzero phase change material. Int. J. Refrig., 2021, 129, 88-96. doi:10.1016/j.ijrefrig.2021.04.030http://dx.doi.org/10.1016/j.ijrefrig.2021.04.030
Wan X.; Chen C.; Tian S. Y.; Guo B. H. Thermal characterization of net-like and form-stable ML/SiO2 composite as novel PCM for cold energy storage. J. Energy Storage, 2020, 28, 101276. doi:10.1016/j.est.2020.101276http://dx.doi.org/10.1016/j.est.2020.101276
Chen J. J.; Ling Z. Y.; Fang X. M.; Zhang Z. G. Experimental and numerical investigation of form-stable dodecane/hydrophobic fumed silica composite phase change materials for cold energy storage. Energy Convers. Manag., 2015, 105, 817-825. doi:10.1016/j.enconman.2015.08.038http://dx.doi.org/10.1016/j.enconman.2015.08.038
Fang Y. T.; Zou T.; Liang X. H.; Wang S. F.; Liu X.; Gao X. N.; Zhang Z. G. Self-assembly synthesis and properties of microencapsulated n-tetradecane phase change materials with a calcium carbonate shell for cold energy storage. ACS Sustainable Chem. Eng., 2017, 5(4), 3074-3080. doi:10.1021/acssuschemeng.6b02758http://dx.doi.org/10.1021/acssuschemeng.6b02758
Ahmed E. M. Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res., 2015, 6(2), 105-121. doi:10.1016/j.jare.2013.07.006http://dx.doi.org/10.1016/j.jare.2013.07.006
Ni C.; Takahashi R.; Levins P. Toxic dermatitis caused by ammonium nitrate released by a cold pack. Contact Dermatitis, 2016, 74(4), 255-256. doi:10.1111/cod.12517http://dx.doi.org/10.1111/cod.12517
Wang B.; Fu Q. X.; Yi X. Y.; Wang L.; Li D. D.; Liu K.; Zheng Y. Z.; Su X.; Wang D. G.; Jiao X. J.; Zhang K.; Yan S. D. Phase change materials for a blood transport container to support long-term storage and transportation of red blood cells in extreme conditions. J. Energy Storage, 2023, 73, 109170. doi:10.1016/j.est.2023.109170http://dx.doi.org/10.1016/j.est.2023.109170
Wang T.; Wu N.; Li H.; Lu Q. L.; Jiang Y. Preparation and properties of a form-stable phase-change hydrogel for thermal energy storage. J. Appl. Polym. Sci., 2016, 133(34), 43836. doi:10.1002/app.43836http://dx.doi.org/10.1002/app.43836
Qi S. Y.; Yuan W. Z. Robust and adhesive double-solvent phase change hydrogel with reversible transparency and shape memory for thermal management and information encryption. Chem. Eng. J., 2023, 473, 145329. doi:10.1016/j.cej.2023.145329http://dx.doi.org/10.1016/j.cej.2023.145329
Yang J. W.; Yu W.; Liu C. Q.; Xie H. Q.; Xu H. P. Phase change mediated graphene hydrogel-based thermal interface material with low thermal contact resistance for thermal management. Compos. Sci. Technol., 2022, 219, 109223. doi:10.1016/j.compscitech.2021.109223http://dx.doi.org/10.1016/j.compscitech.2021.109223
Yin C. X.; Weng L.; Fei Z. X.; Shi L. Y.; Yang K. K. Form-Stable phase change composites based on porous carbon derived from polyacrylonitrile hydrogel. Chem. Eng. J., 2022, 431, 134206. doi:10.1016/j.cej.2021.134206http://dx.doi.org/10.1016/j.cej.2021.134206
Cheng P.; Tang Z. D.; Chen X.; Xu J. H.; Liu P. P.; Zhang X. W.; Wang G. Advanced phase change hydrogel integrating metal-organic framework for self-powered thermal management. Nano Energy, 2023, 105, 108009. doi:10.1016/j.nanoen.2022.108009http://dx.doi.org/10.1016/j.nanoen.2022.108009
Wang Y. F.; Zhang J. C.; Han X. L.; Jiang Y. Preparation and characterization of a form-stable phase change hydrogel for heat-protective clothing. New J. Chem., 2023, 47(4), 1818-1824. doi:10.1039/d2nj05096jhttp://dx.doi.org/10.1039/d2nj05096j
Cheng Y. Z.; Hu Y. C.; Xu M. J.; Qin M.; Lan W. W.; Huang D.; Wei Y.; Chen W. Y. High strength polyvinyl alcohol/polyacrylic acid (PVA/PAA) hydrogel fabricated by Cold-Drawn method for cartilage tissue substitutes. J. Biomater. Sci. Polym. Ed., 2020, 31(14), 1836-1851. doi:10.1080/09205063.2020.1782023http://dx.doi.org/10.1080/09205063.2020.1782023
Yao R. S.; You Q. D.; Liu P. J.; Xu Y. F. Synthesis and pH-induced phase transition behavior of PAA/PVA nanogels in aqueous media. J. Appl. Polym. Sci., 2009, 111(1), 358-362. doi:10.1002/app.29078http://dx.doi.org/10.1002/app.29078
0
浏览量
386
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构