浏览全部资源
扫码关注微信
浙江省吸附分离材料与应用技术重点实验室 浙江大学高分子科学与工程学系 杭州 310058
E-mail: xuzk@zju.edu.cn
纸质出版日期:2024-09-20,
网络出版日期:2024-07-03,
收稿日期:2024-02-23,
录用日期:2024-05-11
移动端阅览
徐知源, 朱城业, 徐志康. 基于LiCl调控界面聚合的聚酰胺薄层复合纳滤膜制备与性能研究. 高分子学报, 2024, 55(9), 1145-1154
Xu, Z. Y.; Zhu, C. Y.; Xu, Z K. Tailoring properties and performance of polyamide composite nanofiltration membranes by LiCl-added interfacial polymerization. Acta Polymerica Sinica, 2024, 55(9), 1145-1154
徐知源, 朱城业, 徐志康. 基于LiCl调控界面聚合的聚酰胺薄层复合纳滤膜制备与性能研究. 高分子学报, 2024, 55(9), 1145-1154 DOI: 10.11777/j.issn1000-3304.2024.24054.
Xu, Z. Y.; Zhu, C. Y.; Xu, Z K. Tailoring properties and performance of polyamide composite nanofiltration membranes by LiCl-added interfacial polymerization. Acta Polymerica Sinica, 2024, 55(9), 1145-1154 DOI: 10.11777/j.issn1000-3304.2024.24054.
针对传统界面聚合反应可控性差、相应聚酰胺薄层复合膜结构和性能难以调控的问题,本研究以经典的哌嗪/均苯三甲酰氯在烷烃-水界面发生的聚合反应为研究对象,以氯化锂为哌嗪水溶液的添加剂,调控了反应生成聚酰胺分离
层的结构,提升了聚酰胺薄层复合纳滤膜的分离性能. 在氯化锂最适浓度为1.25 g·L
-1
时,所制备聚酰胺分离层的调和酰胺键密度有所降低,孔径则由0.51 nm增大到0.59 nm,而其表面形貌、化学组成、表面亲水性及荷电性没有受到明显影响. 薄层复合纳滤膜的水通量提升了17%,达到216 L·m
-2
·h
-1
·MPa
-1
,同时对Na
2
SO
4
的截留率维持在98.8%以上. 此外,所制备的纳滤膜具有优异的耐压性、较宽的处理料液浓度范围以及较好的长期运行稳定性.
Polyamide composite nanofiltration membranes prepared by interfacial polymerization have been widely used in brackish water purification
wastewater treatment and solvent recovery. However
it remains a challenge to further enhance the membrane performances by optimizing their structure due to the rapid reaction rate and poor controllability of the conventional interfacial polymerization. In this work
we report a facile strategy to fabricate polyamide composite membranes with improved nanofiltration performance by using lithium chloride as an additive in interfacial polymerization to regulate the membrane structure. The synthesized polyamide layers show a reduced harmonic amide bond density and an increased pore size from 0.51 nm to 0.59 nm
while the morphology
chemical structure
surface charge
and surface hydrophilicity remain alm
ost unchanged under the optimal addition of lithium chloride at 1.25 g·L
-1
. The resulting structure endows the polyamide composite membrane with a 17% enhanced water permeance
reaching up to 216 L·m
-2
·h
-1
·MPa
-1
while maintaining a high rejection of Na
2
SO
4
above 98.8%. In addition
nanofiltration membranes prepared demonstrate excellent performance stability when operated under various applied pressures
across a wide concentration range of feed solution
and during a 120-h long-term filtration process
indicating the potential of our membranes in practical applications.
界面聚合聚酰胺氯化锂薄层复合膜纳滤
Interfacial polymerizationPolyamideLithium chloridePolyamide composite membraneNanofiltration
Wittbecker E. L.; Morgan P. W. Interfacial polycondensation. I. J. Polym. Sci. A Polym. Chem., 1996, 34(4), 521-529. doi:10.1002/pola.1996.815http://dx.doi.org/10.1002/pola.1996.815
Morgan P. W.; Kwolek S. L. Interfacial polycondensation. II. Fundamentals of polymer formation at liquid interfaces. J. Polym. Sci., 1959, 40(137), 299-327. doi:10.1002/pol.1959.1204013702http://dx.doi.org/10.1002/pol.1959.1204013702
Cadotte J. E.; Steuck M. J.; Petersen R. J. Research on in situ-formed condensation polymer for reverse osmosis membranes. NTIS Report, 1978, PB-288387.
Raaijmakers M. J. T.; Benes N. E. Current trends in interfacial polymerization chemistry. Prog. Polym. Sci., 2016, 63, 86-142. doi:10.1016/j.progpolymsci.2016.06.004http://dx.doi.org/10.1016/j.progpolymsci.2016.06.004
Werber J. R.; Deshmukh A.; Elimelech M. The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ. Sci. Technol. Lett., 2016, 3(4), 112-120. doi:10.1021/acs.estlett.6b00050http://dx.doi.org/10.1021/acs.estlett.6b00050
Park H. B.; Kamcev J.; Robeson L. M.; Elimelech M.; Freeman B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science, 2017, 356(6343), eaab0530. doi:10.1126/science.aab0530http://dx.doi.org/10.1126/science.aab0530
Jin X. G.; Tang M. M.; Tang X.; Yu M.; Ren T. X.; Ma X. H.; Xu Z. L. Crown ether modulated high-performance nanofiltration membrane for water purification. Chem. Eng. Sci., 2023, 280, 119064. doi:10.1016/j.ces.2023.119064http://dx.doi.org/10.1016/j.ces.2023.119064
Fang Y.; Jiang B.; Hao Y. F.; Yang N.; Zhang L. F.; Zhang C. C.; Sun Y. L.; Xiao X. M.; Zhang L. H. Engineering highly permeable thin-film composite nanofiltration membranes by strengthening the diffusion control of amine monomer via deep eutectic solvent. J. Membr. Sci., 2023, 678, 121689. doi:10.1016/j.memsci.2023.121689http://dx.doi.org/10.1016/j.memsci.2023.121689
Liu S. Q.; Wang Z. G.; Zhao L.; Fang W. X.; Zhang F.; Jin J. Tröger's base-regulated interfacial polymerization of polyamide nanofiltration membranes with enhanced performance. J. Membr. Sci., 2023, 682, 121787. doi:10.1016/j.memsci.2023.121787http://dx.doi.org/10.1016/j.memsci.2023.121787
Dai R. B.; Yang Z.; Qiu Z. W.; Long L.; Tang C. Y.; Wang Z. W. Distinct impact of substrate hydrophilicity on performance and structure of TFC NF and RO polyamide membranes. J. Membr. Sci., 2022, 662, 120966. doi:10.1016/j.memsci.2022.120966http://dx.doi.org/10.1016/j.memsci.2022.120966
Qiu Z. W.; Han H. Y.; Wang T. L.; Dai R. B.; Wang Z. W. Nanofoaming by surfactant tunes morphology and performance of polyamide nanofiltration membrane. Desalination, 2023, 552, 116457. doi:10.1016/j.desal.2023.116457http://dx.doi.org/10.1016/j.desal.2023.116457
Hu A. R.; Liu Y. L.; Zheng J. F.; Wang X. M.; Xia S. J.; van der Bruggen B. Tailoring properties and performance of thin-film composite membranes by salt additives for water treatment: a critical review. Water Res., 2023, 234, 119821. doi:10.1016/j.watres.2023.119821http://dx.doi.org/10.1016/j.watres.2023.119821
Cui Y.; Liu X. Y.; Chung T. S. Ultrathin polyamide membranes fabricated from free-standing interfacial polymerization: synthesis, modifications, and post-treatment. Ind. Eng. Chem. Res., 2017, 56(2), 513-523. doi:10.1021/acs.iecr.6b04283http://dx.doi.org/10.1021/acs.iecr.6b04283
Tang B. B.; Zou C.; Wu P. Y. Study on a novel polyester composite nanofiltration membrane by interfacial polymerization. II. The role of lithium bromide in the performance and formation of composite membrane. J. Membr. Sci., 2010, 365(1-2), 276-285. doi:10.1016/j.memsci.2010.09.015http://dx.doi.org/10.1016/j.memsci.2010.09.015
Shen L.; Cheng R. H.; Yi M.; Hung W. S.; Japip S.; Tian L.; Zhang X.; Jiang S. D.; Li S.; Wang Y. Polyamide-based membranes with structural homogeneity for ultrafast molecular sieving. Nat. Commun., 2022, 13(1), 500. doi:10.1038/s41467-022-28183-1http://dx.doi.org/10.1038/s41467-022-28183-1
Lu Y.; Wang R. Y.; Zhu Y. Z.; Wang Z. Y.; Fang W. X.; Lin S. H.; Jin J. Two-dimensional fractal nanocrystals templating for substantial performance enhancement of polyamide nanofiltration membrane. Proc. Natl. Acad. Sci. USA, 2021, 118(37), e2019891118. doi:10.1073/pnas.2019891118http://dx.doi.org/10.1073/pnas.2019891118
Fan X. C.; Dong Y. N.; Su Y. L.; Zhao X. T.; Li Y. F.; Liu J. Z.; Jiang Z. Y. Improved performance of composite nanofiltration membranes by adding calcium chloride in aqueous phase during interfacial polymerization process. J. Membr. Sci., 2014, 452, 90-96. doi:10.1016/j.memsci.2013.10.026http://dx.doi.org/10.1016/j.memsci.2013.10.026
Lau W. J.; Ismail A. F.; Misdan N.; Kassim M. A. A recent progress in thin film composite membrane: a review. Desalination, 2012, 287, 190-199. doi:10.1016/j.desal.2011.04.004http://dx.doi.org/10.1016/j.desal.2011.04.004
王艳, 申亮, 田炼. 采用无机盐添加剂制备的聚酰胺复合膜、其制备和应用. 中国专利. CN110394069A, 2019-11-01.
刘志晓, 米智明. 一种基于热诱导无机盐晶体生长制备纳滤膜的方法. 中国专利. CN111921391A, 2020-11-13.
Ma Z. Y.; Liu C.; Xue Y. R.; Zhu C. Y.; Wu J.; Xu Z. K. Demystifying viscous isoalkanes as the organic solvent in interfacial polymerization for manufacturing desalination membranes. Desalination, 2023, 545, 116166. doi:10.1016/j.desal.2022.116166http://dx.doi.org/10.1016/j.desal.2022.116166
Zhu C. Y.; Li H. N.; Yang J.; Li J. J.; Ye J. R.; Xu Z. K. Vacuum-assisted diamine monomer distribution for synthesizing polyamide composite membranes by interfacial polymerization. J. Membr. Sci., 2020, 616, 118557. doi:10.1016/j.memsci.2020.118557http://dx.doi.org/10.1016/j.memsci.2020.118557
Xue Y. R.; Liu C.; Ma Z. Y.; Zhu C. Y.; Wu J.; Liang H. Q.; Yang H. C.; Zhang C.; Xu Z. K. Harmonic amide bond density as a game-changer for deciphering the crosslinking puzzle of polyamide. Nat. Commun., 2024, 15(1), 1539. doi:10.1038/s41467-024-45918-4http://dx.doi.org/10.1038/s41467-024-45918-4
Du Y.; Zhang C.; Zhong Q. Z.; Yang X.; Wu J.; Xu Z. K. Ultrathin alginate coatings as selective layers for nanofiltration membranes with high performance. ChemSusChem, 2017, 10(13), 2788-2795. doi:10.1002/cssc.201700519http://dx.doi.org/10.1002/cssc.201700519
Singh S.; Khulbe K. C.; Matsuura T.; Ramamurthy P. Membrane characterization by solute transport and atomic force microscopy. J. Membr. Sci., 1998, 142(1), 111-127. doi:10.1016/s0376-7388(97)00329-3http://dx.doi.org/10.1016/s0376-7388(97)00329-3
Huang S.; Wu M. B.; Zhu C. Y.; Ma M. Q.; Yang J.; Wu J.; Xu Z. K. Polyamide nanofiltration membranes incorporated with cellulose nanocrystals for enhanced water flux and chlorine resistance. ACS Sustain. Chem. Eng., 2019, 7(14), 12315-12322. doi:10.1021/acssuschemeng.9b01651http://dx.doi.org/10.1021/acssuschemeng.9b01651
Wang X. L.; Tsuru T.; Nakao S. I.; Kimura S. The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes. J. Membr. Sci., 1997, 135(1), 19-32. doi:10.1016/s0376-7388(97)00125-7http://dx.doi.org/10.1016/s0376-7388(97)00125-7
Ouyang L.; Malaisamy R.; Bruening M. L. Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations. J. Membr. Sci., 2008, 310(1-2), 76-84. doi:10.1016/j.memsci.2007.10.031http://dx.doi.org/10.1016/j.memsci.2007.10.031
0
浏览量
350
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构