浏览全部资源
扫码关注微信
1.哈尔滨工程大学材料科学与化学工程学院 哈尔滨 150001
2.铜陵学院机械工程学院 铜陵 244000
3.北京科技大学土木与资源工程学院 北京 100083
E-mail: wangfan@hrbeu.edu.cn
shenjun@hrbeu.edu.cn
纸质出版日期:2024-10-20,
网络出版日期:2024-05-23,
收稿日期:2024-02-23,
录用日期:2024-04-12
移动端阅览
王宇清, 王凡, 代枭, 王伟琪, 沈军. 含大体积侧基纤维素类衍生物的合成及其金属离子荧光识别性能研究. 高分子学报, 2024, 55(10), 1335-1345
Wang, Y. Q.; Wang, F.; Dai, X.; Wang, W. Q.; Shen, J. Synthesis of cellulose derivative bearing bulky substituents and fluorescence recognition property for metal ions. Acta Polymerica Sinica, 2024, 55(10), 1335-1345
王宇清, 王凡, 代枭, 王伟琪, 沈军. 含大体积侧基纤维素类衍生物的合成及其金属离子荧光识别性能研究. 高分子学报, 2024, 55(10), 1335-1345 DOI: 10.11777/j.issn1000-3304.2024.24055.
Wang, Y. Q.; Wang, F.; Dai, X.; Wang, W. Q.; Shen, J. Synthesis of cellulose derivative bearing bulky substituents and fluorescence recognition property for metal ions. Acta Polymerica Sinica, 2024, 55(10), 1335-1345 DOI: 10.11777/j.issn1000-3304.2024.24055.
以微晶纤维素为基质,通过6-位保护法和氨基甲酸酯化反应,合成了一种6-位具有大体积咔唑侧基的区域选择性取代纤维素类衍生物,即纤维素-[2
3-(3
5-二甲基)-6-(4-(4-(3-(9-乙基-9H-咔唑-3)脲基)苄基))
]
苯基氨基甲酸酯(Cel-1). 由核磁共振氢谱和元素分析结果表明所合成衍生物的结构规整,取代基本完全. 基于12种金属离子对Cel-1的荧光识别性能进行了详细评价. 结果表明,大体积纤维素衍生物Cel-1可在DMSO/H
2
O体系中对Fe
3+
和Cu
2+
实现高灵敏度和高选择性的双模式检测,同时对其他10种金属离子均有极好的抗干扰能力. 其中,在荧光模式和紫外可见光模式下,Cel-1对Fe
3+
和Cu
2+
的检测限均低于美国国家环境保护局(EPA)所规定的2种离子在饮用水中可接受的最高浓度. 证明所合成的大体积纤维素类衍生物具有对Fe
3+
和Cu
2+
的高效特异性荧光识别性能,可作为化学传感器用于这2种金属离子的快速识别与检测. 此外,基于Cel-1制备的荧光墨水在自然光下不显示,但在紫外光下则可观察到明亮的蓝色荧光,显示了其在防伪领域的应用潜能.
A regioselectively substituted cellulose derivative with bulky pendants at the 6-position
that is the cellulose-[2
3-(3
5-dimethyl)-6-(4-(4-(3-(9-ethyl-9H-carbazole-3)ureido)benzyl))
]
phenylcarbamate (Cel-1)
was successfully synthesized using cellulose as substrate by 6-position-protection method and carbamoylation. The
1
H-NMR spectrum and elemental analysis data indicated that the cellulose derivative was structurally regular with almost complete substitution as expected. The fluorescent recognition property of Cel-1 was then evaluated in detail based on twelve metal ions. The results indicated that the bulky cellulose derivative (Cel-1) could realize excellent dual-mode recognition to both Fe
3+
and Cu
2+
with high sensitivity and high selectivity in the DMSO/H
2
O system
together with high anti-counterfeiting ability to the other ten metal ions tested in the study. Especially
the limits of detection of Cel-1 for Fe
3+
and Cu
2+
in both fluorescence and UV
-visible modes were lower than the maximum acceptable concentrations of the two ions in drinking water as defined by the United States Environmental Protection Agency (EPA). It demonstrated that the obtained bulky cellulose derivative possessed high-efficient and specific fluorescent recognition ability for Fe
3+
and Cu
2+
which could be used as chemosensors for the rapid recognition and detection of the two metal ions. In addition
the fluorescent ink prepared based on Cel-1 could not be observed under natural light
whereas emitted bright blue fluorescence under ultraviolet light
suggesting its potential in the anti-counterfeiting related field.
荧光传感大体积侧基纤维素类衍生物金属离子识别双模式检测
Fluorescent sensingBulky pendantsCellulose derivativesMetal ion recognitionDual mode detection
Carreira, E M; Yamamoto, H. Comprehensive Chirality. Amsterdam: Elsevier, 2012. 200-226.
Okamoto Y. Chiral polymers for resolution of enantiomers. J. Polym. Sci. A Polym. Chem., 2009, 47(7), 1731-1739. doi:10.1002/pola.23215http://dx.doi.org/10.1002/pola.23215
Yashima E.; Iida H.; Okamoto Y. Enantiomeric differentiation by synthetic helical polymers. Top. Curr. Chem., 2013, 340, 41-72. doi:10.1007/128_2013_439http://dx.doi.org/10.1007/128_2013_439
Ikai T.; Okamoto Y. Structure control of polysaccharide derivatives for efficient separation of enantiomers by chromatography. Chem. Rev., 2009, 109(11), 6077-6101. doi:10.1021/cr8005558http://dx.doi.org/10.1021/cr8005558
Chankvetadze B. Recent trends in preparation, investigation and application of polysaccharide-based chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. Trac Trends Anal. Chem., 2020, 122, 115709. doi:10.1016/j.trac.2019.115709http://dx.doi.org/10.1016/j.trac.2019.115709
Okamoto Y.; Ikai T. Chiral HPLC for efficient resolution of enantiomers. Chem. Soc. Rev., 2008, 37(12), 2593-2608. doi:10.1039/b808881khttp://dx.doi.org/10.1039/b808881k
Zou H.; Wu Q. L.; Zhou L.; Hou X. H.; Liu N.; Wu Z. Q. Chiral recognition and resolution based on helical polymers. Chinese J. Polym. Sci., 2021, 39(12), 1521-1527. doi:10.1007/s10118-021-2615-yhttp://dx.doi.org/10.1007/s10118-021-2615-y
Zou H.; Liang W. Q.; Wu Q. L.; Zhou L.; Hou X. H.; Liu N.; Wu Z. Q. Inducing enantioselective crystallization with and self-assembly of star-shaped hybrid polymers prepared via "grafting to" strategy. Chirality, 2022, 34(1), 61-69. doi:10.1002/chir.23387http://dx.doi.org/10.1002/chir.23387
Hou X. H.; Chen X. J.; Gao X.; Xu L.; Zou H.; Zhou L.; Wu Z. Q. Synthesis of cyclic polyolefin: ring-opening metathesis polymerization by binuclear vanadium complexes. Chin. J. Chem., 2021, 39(5), 1181-1187. doi:10.1002/cjoc.202000636http://dx.doi.org/10.1002/cjoc.202000636
Shen J.; Okamoto Y. Efficient separation of enantiomers using stereoregular chiral polymers. Chem. Rev., 2016, 116(3), 1094-1138. doi:10.1021/acs.chemrev.5b00317http://dx.doi.org/10.1021/acs.chemrev.5b00317
邓恩停, 毕婉莹, 刘博, 张丽丽, 沈军. 基于分子模拟对多糖类衍生物手性识别机理的探索. 高分子学报, 2020, 51(2), 214-220. doi:10.11777/j.issn1000-3304.2019.19116http://dx.doi.org/10.11777/j.issn1000-3304.2019.19116
Ikai T.; Suzuki D.; Kojima Y.; Yun C.; Maeda K.; Kanoh S. Chiral fluorescent sensors based on cellulose derivatives bearing terthienyl pendants. Polym. Chem., 2016, 7(29), 4793-4801. doi:10.1039/c6py00967khttp://dx.doi.org/10.1039/c6py00967k
Ikai T.; Suzuki D.; Shinohara K. I.; Maeda K.; Kanoh S. A cellulose-based chiral fluorescent sensor for aromatic nitro compounds with central, axial and planar chirality. Polym. Chem., 2017, 8(14), 2257-2265. doi:10.1039/c7py00285hhttp://dx.doi.org/10.1039/c7py00285h
Ikai T.; Yun C.; Kojima Y.; Suzuki D.; Maeda K.; Kanoh S. Development of amylose- and β-cyclodextrin-based chiral fluorescent sensors bearing terthienyl pendants. Molecules, 2016, 21(11), 1518. doi:10.3390/molecules21111518http://dx.doi.org/10.3390/molecules21111518
Nawaz H.; Chen S.; Zhang X.; Li X.; You T. T.; Zhang J.; Xu F. Cellulose-based fluorescent material for extreme pH sensing and smart printing applications. ACS Nano, 2023, 17(4), 3996-4008. doi:10.1021/acsnano.2c12846http://dx.doi.org/10.1021/acsnano.2c12846
Wu X. X.; Yuan X. S.; Liang E. T.; Liu L.; Lin Y. F.; Xie L. K.; Chai X. J.; Xu K. M.; Du G. B.; Zhang L. P. A flavonol-labelled cellulose fluorescent probe combined with composite fluorescent film imaging and smartphone technology for the detection of Fe3+. Int. J. Biol. Macromol., 2024, 259, 129373. doi:10.1016/j.ijbiomac.2024.129373http://dx.doi.org/10.1016/j.ijbiomac.2024.129373
Nan X. J.; Huyan Y. C.; Li H. J.; Sun S. G.; Xu Y. Q. Reaction-based fluorescent probes for Hg2+, Cu2+ and Fe3+/Fe2+. Coord. Chem. Rev., 2021, 426, 213580. doi:10.1016/j.ccr.2020.213580http://dx.doi.org/10.1016/j.ccr.2020.213580
Meynard D.; Babitt J. L.; Lin H. Y. The liver: conductor of systemic iron balance. Blood, 2014, 123(2), 168-176. doi:10.1182/blood-2013-06-427757http://dx.doi.org/10.1182/blood-2013-06-427757
Cappellini M. D.; Musallam K. M.; Taher A. T. Iron deficiency anaemia revisited. J. Intern. Med., 2020, 287(2), 153-170. doi:10.1111/joim.13004http://dx.doi.org/10.1111/joim.13004
Roemhild K.; von Maltzahn F.; Weiskirchen R.; Knüchel R.; von Stillfried S.; Lammers T. Iron metabolism: pathophysiology and pharmacology. Trends Pharmacol. Sci., 2021, 42(8), 640-656. doi:10.1016/j.tips.2021.05.001http://dx.doi.org/10.1016/j.tips.2021.05.001
Fang X. X.; Ardehali H.; Min J. X.; Wang F. D. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat. Rev. Cardiol., 2023, 20(1), 7-23. doi:10.1038/s41569-022-00735-4http://dx.doi.org/10.1038/s41569-022-00735-4
Yang L. F.; Yang P. P.; Lip G. Y. H.; Ren J. Copper homeostasis and cuproptosis in cardiovascular disease therapeutics. Trends Pharmacol. Sci., 2023, 44(9), 573-585. doi:10.1016/j.tips.2023.07.004http://dx.doi.org/10.1016/j.tips.2023.07.004
Dong C. L.; Li M. F.; Yang T.; Feng L.; Ai Y. W.; Ning Z. L.; Liu M. J.; Lai X.; Gao D. J. Controllable synthesis of Tb-based metal-organic frameworks as an efficient fluorescent sensor for Cu2+ detection. Rare Met., 2021, 40(2), 505-512. doi:10.1007/s12598-020-01621-zhttp://dx.doi.org/10.1007/s12598-020-01621-z
An Y. M.; Li S. N.; Huang X. Q.; Chen X. S.; Shan H. Y.; Zhang M. Y. The role of copper homeostasis in brain disease. Int. J. Mol. Sci., 2022, 23(22), 13850. doi:10.3390/ijms232213850http://dx.doi.org/10.3390/ijms232213850
Ma Y. Q.; Cheng X. J. Readily soluble cellulose-based fluorescent probes for the detection and removal of Fe3+ ion. Int. J. Biol. Macromol., 2023, 253, 127393. doi:10.1016/j.ijbiomac.2023.127393http://dx.doi.org/10.1016/j.ijbiomac.2023.127393
Ozmen P.; Demir Z.; Karagoz B. An easy way to prepare reusable rhodamine-based chemosensor for selective detection of Cu2+ and Hg2+ ions. Eur. Polym. J., 2022, 162, 110922. doi:10.1016/j.eurpolymj.2021.110922http://dx.doi.org/10.1016/j.eurpolymj.2021.110922
Wang F.; Wang W. Q.; Wang Y. Q.; Zhang L. L.; Okamoto Y.; Shen J. Cellulose/amylose derivatives bearing bulky substituents as reversible fluorescent sensors for detection of Fe3. Carbohydr. Polym., 2023, 320, 121249. doi:10.1016/j.carbpol.2023.121249http://dx.doi.org/10.1016/j.carbpol.2023.121249
Wang F.; Wang W. Q.; Wang Y. Q.; Zheng W.; Zheng T.; Zhang L. L.; Okamoto Y.; Shen J. Synthesis of amylose and cellulose derivatives bearing bulky pendants for high-efficient chiral fluorescent sensing. Carbohydr. Polym., 2023, 311, 120769. doi:10.1016/j.carbpol.2023.120769http://dx.doi.org/10.1016/j.carbpol.2023.120769
Wang F.; Wang Y. Q.; Min Y. X.; Li J. Q.; Zhang L. L.; Zheng T.; Shen J.; Okamoto Y. Preparation of cellulose derivative bearing bulky 4-(2-benzothienyl)phenylcarbamate substituents as chiral stationary phase for enantioseparation. Chirality, 2022, 34(5), 701-710. doi:10.1002/chir.23425http://dx.doi.org/10.1002/chir.23425
Kaida Y.; Okamoto Y. Optical resolution on regioselectively carbamoylated cellulose and amylose with 3,5-dimethylphenyl and 3,5-dichlorophenyl isocyanates. Bull. Chem. Soc. Jpn., 1993, 66(8), 2225-2232. doi:10.1246/bcsj.66.2225http://dx.doi.org/10.1246/bcsj.66.2225
Shen J.; Wang F.; Bi W. Y.; Liu B.; Liu S. Y.; Okamoto Y. Synthesis of cellulose carbamates bearing regioselective substituents at 2,3- and 6-positions for efficient chromatographic enantioseparation. J. Chromatogr. A, 2018, 1572, 54-61. doi:10.1016/j.chroma.2018.08.032http://dx.doi.org/10.1016/j.chroma.2018.08.032
Dai X.; Bi W. Y.; Sun M. C.; Wang F.; Shen J.; Okamoto Y. Chiral recognition ability of amylose derivatives bearing regioselectively different carbamate pendants at 2,3- and 6-positions. Carbohydr. Polym., 2019, 218, 30-36. doi:10.1016/j.carbpol.2019.03.052http://dx.doi.org/10.1016/j.carbpol.2019.03.052
Johnson G. E. Spectroscopic study of carbazole by photoselection. J. Phys. Chem., 1974, 78(15), 1512-1521. doi:10.1021/j100608a014http://dx.doi.org/10.1021/j100608a014
Pundi A.; Chang C. J.; Chen J.; Hsieh S. R.; Lee M. C. A chiral carbazole based sensor for sequential "on-off-on" fluorescence detection of Fe3+ and tryptophan/histidine. Sens. Actuat. B Chem., 2021, 328, 129084. doi:10.1016/j.snb.2020.129084http://dx.doi.org/10.1016/j.snb.2020.129084
Nawaz H.; Chen S.; Li X.; Zhang X.; Zhang X. M.; Wang J. Q.; Xu F. Cellulose-based environment-friendly smart materials for colorimetric and fluorescent detection of Cu2+/Fe3+ ions and their anti-counterfeiting applications. Chem. Eng. J., 2022, 438, 135595. doi:10.1016/j.cej.2022.135595http://dx.doi.org/10.1016/j.cej.2022.135595
Leng X.; Wang D.; Mi Z. X.; Zhang Y. C.; Yang B. Q.; Chen F. L. Novel fluorescence probe toward Cu2+ based on fluorescein derivatives and its bioimaging in cells. Biosensors, 2022, 12(9), 732. doi:10.3390/bios12090732http://dx.doi.org/10.3390/bios12090732
He Y. Q.; Sun X. F.; Yan X. M.; Li Y.; Zhong K. L.; Tang L. J. A colorimetric, NIR, ultrafast fluorescent probe for ferric iron detection based on the PET mechanism and its multiple applications. J. Mater. Chem. C, 2022, 10(23), 9009-9016. doi:10.1039/d2tc00727dhttp://dx.doi.org/10.1039/d2tc00727d
Ruan L. M.; Zhao Y. J.; Chen Z. H.; Zeng W.; Wang S. L.; Liang D.; Zhao J. L. Ethylenediamine-assisted hydrothermal method to fabricate MoS2 quantum dots in aqueous solution as a fluorescent probe for Fe3+ ion detection. Appl. Surf. Sci., 2020, 528, 146811. doi:10.1016/j.apsusc.2020.146811http://dx.doi.org/10.1016/j.apsusc.2020.146811
Nagaraj M.; Ramalingam S.; Murugan C.; Aldawood S.; Jin J. O.; Choi I.; Kim M. Detection of Fe3+ ions in aqueous environment using fluorescent carbon quantum dots synthesized from endosperm of Borassus flabellifer. Environ. Res., 2022, 212PtB), 113273. doi:10.1016/j.envres.2022.113273http://dx.doi.org/10.1016/j.envres.2022.113273
Zhou W. Y.; Mo F. W.; Sun Z. S.; Luo J. B.; Fan J. Q.; Zhu H. N.; Zhu Z. P.; Huang J. Q.; Zhang X. G. Bright red-emitting P, Br Co-doped carbon dots as "OFF-ON" fluorescent probe for Cu2+ and L-cysteine detection. J. Alloys Compd., 2022, 897, 162731. doi:10.1016/j.jallcom.2021.162731http://dx.doi.org/10.1016/j.jallcom.2021.162731
Yu X. B.; Xu Y. T.; Liu F.; Zhang W.; Sun Y.; Fang Y. J.; Fang L. Y.; He X. F.; Na H. N.; Zhu J. One-pot in situ functionalization of cellulose in a CO2 switchable solvent for the fluorescent detection of Fe3+. J. Mater. Chem. A, 2023, 11(43), 23511-3522. doi:10.1039/d3ta05000ahttp://dx.doi.org/10.1039/d3ta05000a
Gupta H.; Kaur K.; Singh R.; Kaur V. Chitosan Schiff base for the spectrofluorimetric analysis of E-waste toxins: pentabromophenol, Fe3+, and Cu2+ ions. Cellulose, 2023, 30(3), 1381-1397. doi:10.1007/s10570-022-04966-zhttp://dx.doi.org/10.1007/s10570-022-04966-z
Xiong S. Y.; Sun W.; Chen R.; Yuan Z. Q.; Cheng X. J. Fluorescent dialdehyde-BODIPY chitosan hydrogel and its highly sensing ability to Cu2+ ion. Carbohydr. Polym., 2021, 273, 118590. doi:10.1016/j.carbpol.2021.118590http://dx.doi.org/10.1016/j.carbpol.2021.118590
Guo C. M.; Zhou Y. F.; Chen X.; Wang Y.; Shan J. H.; Hou J. Q. Fluorescent sensors and rapid detection films for Fe3+ and Cu2+ based on naphthalene and cholesterol derivative organogels. Colloids Surf. A Physicochem. Eng. Aspects, 2023, 663, 131045. doi:10.1016/j.colsurfa.2023.131045http://dx.doi.org/10.1016/j.colsurfa.2023.131045
Qian D.; Wang Z.; Xiao Z. X.; Fang C. J. A fluorescent probe for the detection of Cu(II) in water and tumor cells. Inorg. Chem. Commun., 2021, 126, 108471. doi:10.1016/j.inoche.2021.108471http://dx.doi.org/10.1016/j.inoche.2021.108471
0
浏览量
162
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构