浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
3.北京化工大学化学学院 北京 102202
E-mail: liubo@ciac.ac.cn
纸质出版日期:2024-09-20,
网络出版日期:2024-06-26,
收稿日期:2024-02-26,
录用日期:2024-04-30
移动端阅览
秦宇飞, 景帅然, 刘波. 限制几何构型三价钛金属配合物介导的可控自由基聚合. 高分子学报, 2024, 55(9), 1200-1206
Qin, Y. F.; Jing, S. R.;Liu, B. Controlled radical polymerization mediated by constrained geometry construction trivalent titanium complex. Acta Polymerica Sinica, 2024, 55(9), 1200-1206
秦宇飞, 景帅然, 刘波. 限制几何构型三价钛金属配合物介导的可控自由基聚合. 高分子学报, 2024, 55(9), 1200-1206 DOI: 10.11777/j.issn1000-3304.2024.24057.
Qin, Y. F.; Jing, S. R.;Liu, B. Controlled radical polymerization mediated by constrained geometry construction trivalent titanium complex. Acta Polymerica Sinica, 2024, 55(9), 1200-1206 DOI: 10.11777/j.issn1000-3304.2024.24057.
三价钛金属配合介导的自由基聚合因其可控性好、所得聚合物无需进一步纯化而受到广泛关注. 本工作利用限制几何构型三价钛金属配合物
1
作为控制剂,分别与1-溴-1-苯乙烷(
I
1
)、
α
α
-二甲基苄溴(
I
2
)、1-碘-1-苯乙烷(
I
3
)构成引发体系,引发甲基丙烯酸甲酯自由基聚合,研究了引发剂种类对聚合活性及所得聚合物的分子量及分子量分布的影响,进一步以
1
和
I
1
构成的二元引发体系为模型,研究了聚合动力学,同时对单体与引发剂比例以及聚合温度对单体转化率、所得聚合物分子量及分布的影响进行了研究,结合核磁技术和顺磁共振技术对
1
和
I
1
反应的跟踪,对聚合机理进行了推测.
Controlled radical polymerization has aroused considerable attentions during the past decades due to its ability to adjust the polymer chain structure such as molecular weight
molecular weight distribution
composition
and topology. Transition metals compounds such as copper
iron
ruthenium
nickel
etc
have been extensively explored. While the effect of the auxiliary ligands on the polymerization behaviour was rarely investigated. Especially for titanium complexes
only metallocene titanium chloride Cp
2
TiCl
2
was examined under the reduction by Zinc. Herein
the binary systems composed by constrain geometry construction trivalent titanium complex (
1
) and 1-bromo-1-phenylethane (
I
1
)
(2-bromo-2-propanyl)benzene (
I
2
) and 1-iodo-1-phenylethane (
I
3
)
respectively
were employed to catalyzed radical polymerization of methyl methacrylate (MMA). The influence of initiators on the molecular weight and molecular weight distribution was assayed. The kinetic study of MMA polymerization initiated by
1
/
I
1
indicated linear relationship between MMA conversion and polymerization time
suggesting zero order dependent on MMA concentration. While with the increase of monomer conversion
the molecular weights of the afforded polymers have no obvious change. In addition
with the increase of the ratio of MMA to
I
1
while keeping the MMA concentration as constant
the molecular weight of the corresponding polymer increased despite the MMA conversion decreased. Meanwhile
with the decrease of the polymerization temperature
the molecular weight of the afforded polymer increased. These results suggested that the polymerization performed in slow initiation
fast propagation. This is consistent with the typical radical polymerization mechanism
but different from those of at
om transfer radical polymerization (ATRP) and organometallic mediated radical polymerization (OMRP) which are mediated by organometallic complexes. The above results indicated that the auxiliary ligand has a significantly effect on a radical polymerization process.bromo-2-propanyl)benzene (
I
2
) and 1-iodo-1-phenylethane (
I
3
)
respectively
was employed to catalyze radical polymerization of methyl methacrylate. The influence of initiator on the molecular weight and molecular weight distribution was assayed. The kinetic study of MMA polymerization initiated by
1
/
I
1
was carried out. The influence of reaction conditions
such as the ratio of MMA to
1
temperature
was also investigated. Combined with the results of monitoring the reaction between
1
and
I
1
by nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR)
the mechanism was proposed.
自由基聚合三价钛配合物甲基丙烯酸甲酯
Radical polymerizationTrivalent titanium complexMethyl methacrylate
de Matos H. T.; Cruz T. F. C.; Lemos M. A. N. D. A.; Gomes P. T. The role of 2-iminopyrrolyl copper(I) complexes in the reversible-deactivation radical polymerization of methyl methacrylate. Appl. Organomet. Chem., 2023, 37(12), e7268. doi:10.1002/aoc.7268http://dx.doi.org/10.1002/aoc.7268
Goto A.; Fukuda T. Kinetics of living radical polymerization. Prog. Polym. Sci., 2004, 29(4), 329-385. doi:10.1016/j.progpolymsci.2004.01.002http://dx.doi.org/10.1016/j.progpolymsci.2004.01.002
Pintauer T.; Matyjaszewski K. Structural aspects of copper catalyzed atom transfer radical polymerization. Coord. Chem. Rev., 2005, 249(11-12), 1155-1184. doi:10.1016/j.ccr.2004.11.010http://dx.doi.org/10.1016/j.ccr.2004.11.010
Wang X. Y.; Sun X. L.; Wang F.; Tang Y. SaBOX/copper catalysts for highly syndio-specific atom transfer radical polymerization of methyl methacrylate. ACS Catal., 2017, 7(7), 4692-4696. doi:10.1021/acscatal.7b01079http://dx.doi.org/10.1021/acscatal.7b01079
Sosnowski S.; Szymanski R.; Lorandi F.; Olszewski M.; Sobieski J.; Yin R. G.; Bockstaller M. R.; Matyjaszewski K. Distribution of alternating sequences in methyl methacrylate/n-butyl acrylate copolymers prepared by atom transfer radical polymerization. Macromolecules, 2021, 54(21), 9837-9849. doi:10.1021/acs.macromol.1c01930http://dx.doi.org/10.1021/acs.macromol.1c01930
Chen X. X.; Khan M. Y.; Noh S. K. PPM amount of Fe(III)-mediated ATRP of MMA with phosphorus-containing ligands in the absence of any additives. Polym. Chem., 2012, 3(8), 1971. doi:10.1039/C2PY20182Hhttp://dx.doi.org/10.1039/C2PY20182H
Ando T.; Kamigaito M.; Sawamoto M. Metal alkoxides as additives for ruthenium(II)-catalyzed living radical polymerization. Macromolecules, 2000, 33(18), 6732-6737. doi:10.1021/ma992158dhttp://dx.doi.org/10.1021/ma992158d
O'Reilly R. K.; Shaver M. P.; Gibson V. C. Nickel(II) α-diimine catalysts for the atom transfer radical polymerization of styrene. Inorg. Chim. Acta, 2006, 359(13), 4417-4420. doi:10.1016/j.ica.2006.06.026http://dx.doi.org/10.1016/j.ica.2006.06.026
Kabachii Y. A.; Kochev S. Y.; Bronstein L. M.; Blagodatskikh I. B.; Valetsky P. M. Atom transfer radical polymerization with Ti(III) halides and alkoxides. Polym. Bull., 2003, 50(4), 271-278. doi:10.1007/s00289-003-0157-9http://dx.doi.org/10.1007/s00289-003-0157-9
Grishin D. F.; Semyonycheva L. L.; Telegina E. V.; Smirnov A. S.; Nevodchikov V. I. Dicyclopentadienyl complexes of titanium, niobium, and tungsten in the controlled synthesis of poly(methyl methacrylate). Russ. Chem. Bull., 2003, 52(2), 505-507. doi:10.1023/A:1023456210266http://dx.doi.org/10.1023/A:1023456210266
Kwark Y. J.; Kim J.; Novak B. M. Titanium complexes: a possible catalyst for controlled radical polymerization. Macromol. Res., 2007, 15(1), 31-38. doi:10.1007/bf03218749http://dx.doi.org/10.1007/bf03218749
Grishin D. F.; Ignatov S. K.; Shchepalov A. A.; Razuvaev A. G. Mechanism of the controlled radical polymerization of styrene and methyl methacrylate in the presence of dicyclopentadienyltitanium dichloride. Appl. Organomet. Chem., 2004, 18(6), 271-276. doi:10.1002/aoc.631http://dx.doi.org/10.1002/aoc.631
RajanBabu T. V.; Nugent W. A. Selective generation of free radicals from epoxides using a transition-metal radical. A powerful new tool for organic synthesis. J. Am. Chem. Soc., 1994, 116(3), 986-997. doi:10.1021/ja00082a021http://dx.doi.org/10.1021/ja00082a021
Gansäuer A.; Bluhm H.; Lauterbach T. Titanocene-catalysed enantioselective opening of meso-epoxides. Adv. Synth. Catal., 2001, 343(8), 785-787. doi:10.1002/1615-4169(20011231)343:8<785::aid-adsc785>3.0.co;2-qhttp://dx.doi.org/10.1002/1615-4169(20011231)343:8<785::aid-adsc785>3.0.co;2-q
RajanBabu T. V.; Nugent W. A. Intermolecular addition of epoxides to activated olefins: a new reaction. J. Am. Chem. Soc., 1989, 111(12), 4525-4527. doi:10.1021/ja00194a073http://dx.doi.org/10.1021/ja00194a073
Asandei, A. D.; Moran, I. W. TiCp2Cl-catalyzed living radical polymerization of styrene initiated by oxirane radical ring opening. J. Am. Chem. Soc., 2004, 126(49), 15932-15933. doi:10.1021/ja046936fhttp://dx.doi.org/10.1021/ja046936f
Salzmann J. J. Charakterisierung einer neuen organo-metallischen titan-zink-verbindung. Helv. Chim. Acta, 1968, 51(3), 526-529. doi:10.1002/hlca.19680510315http://dx.doi.org/10.1002/hlca.19680510315
Ajvazi N.; Stavber S. Direct halogenation of alcohols with halosilanes under catalyst- and organic solvent-free reaction conditions. Tetrahedron Lett., 2016, 57(22), 2430-2433. doi:10.1016/j.tetlet.2016.04.083http://dx.doi.org/10.1016/j.tetlet.2016.04.083
Bandgar B. P.; Sadavarte V. S.; Uppalla L. S. An expedient and highly selective iodination of alcohols using a KI/BF3·Et2O system. Tetrahedron Lett., 2001, 42(5), 951-953. doi:10.1016/s0040-4039(00)01953-5http://dx.doi.org/10.1016/s0040-4039(00)01953-5
Eberle T.; Spaniol T. P.; Okuda J. Titanium complexes with a linked amido-cyclopentadienyl ligand and a bidentate organyl group: synthesis, structure, and ethene polymerization activity. Eur. J. Inorg. Chem., 1998, 1998(2), 237-244. doi:10.1002/(sici)1099-0682(199802)1998:2<237::aid-ejic237>3.0.co;2-phttp://dx.doi.org/10.1002/(sici)1099-0682(199802)1998:2<237::aid-ejic237>3.0.co;2-p
Enemaerke R. J.; Larsen J.; Skrydstrup T.; Daasbjerg K. Revelation of the nature of the reducing species in titanocene halide-promoted reductions. J. Am. Chem. Soc., 2004, 126(25), 7853-7864. doi:10.1021/ja0491230http://dx.doi.org/10.1021/ja0491230
Lloyd R. V.; Wood D. E. E.P.R. of free radicals in an adamantane matrix. Mol. Phys., 1971, 20(4), 735-746. doi:10.1080/00268977100100701http://dx.doi.org/10.1080/00268977100100701
Asandei A. D.; Moran I. W. The ligand effect in Ti-mediated living radical styrene polymerizations initiated by epoxide radical ring opening. 2. Scorpionate and half-sandwich LTiCl3 complexes. J. Polym. Sci. A Polym. Chem., 2005, 43(23), 6039-6047. doi:10.1002/pola.20970http://dx.doi.org/10.1002/pola.20970
Zhao Y. G.; Yu M. M.; Liu Y. C.; Fu X. F. Recent progress in organometallic mediated radical polymerization. Sci. Sin. Chim., 2014, 44(2), 236-253. doi:10.1360/n032013-00039http://dx.doi.org/10.1360/n032013-00039
0
浏览量
168
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构