浏览全部资源
扫码关注微信
1.大连理工大学化工学院 高分子材料系 大连 116024
2.辽宁省高性能树脂工程技术研究中心 大连 116012
E-mail: wangjinyan@dlut.edu.cn
纸质出版日期:2024-10-20,
网络出版日期:2024-05-17,
收稿日期:2024-02-29,
录用日期:2024-03-20
移动端阅览
岳航宇, 韩飞龙, 张亚, 王程浩, 宗立率, 王锦艳, 蹇锡高. 聚多巴胺和SiO2界面改性对芳纶/聚氨酯复合材料防弹性能的影响研究. 高分子学报, 2024, 55(10), 1365-1380
Yue, H. Y.; Han, F. L.; Zhang, Y.; Wang, C. H.; Zong, L. S.; Wang, J. Y.; Jian, X. G. The effect of interfacial modification of polydopamine and silicane on ballistic performance of aramid/polyurethane composites. Acta Polymerica Sinica, 2024, 55(10), 1365-1380
岳航宇, 韩飞龙, 张亚, 王程浩, 宗立率, 王锦艳, 蹇锡高. 聚多巴胺和SiO2界面改性对芳纶/聚氨酯复合材料防弹性能的影响研究. 高分子学报, 2024, 55(10), 1365-1380 DOI: 10.11777/j.issn1000-3304.2024.24059.
Yue, H. Y.; Han, F. L.; Zhang, Y.; Wang, C. H.; Zong, L. S.; Wang, J. Y.; Jian, X. G. The effect of interfacial modification of polydopamine and silicane on ballistic performance of aramid/polyurethane composites. Acta Polymerica Sinica, 2024, 55(10), 1365-1380 DOI: 10.11777/j.issn1000-3304.2024.24059.
界面问题作为研究芳纶纤维增强聚氨酯(AF@PU)复合材料的重要挑战,往往容易被忽视. 本研究系统性地采用聚多巴胺(PDA)和经过
γ-
氨丙基三乙氧基硅烷改性的纳米SiO
2
(m-SiO
2
),对AF@PU复合材料进行界面改性处理,并深入探究了其防弹性能及弹道损伤机理. 通过界面改性,显著增强了纤维与树脂间的黏结力,使m-SiO
2
/PDA/AF@PU复合材料的界面剥离强度提升了244.1%,达到4.68 N/cm,层间剪切强度提高
了30.7%,达到6.09 MPa;同时,拉伸、弯曲和压缩强度分别提升了5.0%、91.4%和69.5%. 值得注意的是,m-SiO
2
的引入显著增加了界面粗糙度,从而使得m-SiO
2
/PDA/AF@PU在子弹冲击过程中具有最高的能量吸收能力,将其弹道极限速度从AF@PU原有的449.8 m/s提升到了481.9 m/s. 本研究深入探讨了界面改性在提升复合材料性能中的积极作用,为未来设计新一代高性能纤维增强聚合物基防弹复合材料提供了参考与启示.
The aramid fiber reinforced polyurethane composites (AF@PU)
which exhibit high strength and lightweight characteristics
have attracted widespread concerns for advanced personal protective systems. However
the interface has consistently been the scientific issue that permeates composite research and is frequently overlooked. In this work
polydopamine and
γ
-aminopropyltriethoxysilane modified SiO
2
(m-SiO
2
) were used to optimize the interfacial properties
and the effects on ballistic performance and ballistic damage mechanism of composites were deeply investigated. Attributing to the strong bonding strength between fibers and polymer resins improved by them at the interface
the interfacial peeling strength of m-SiO
2
/PDA/A
F@PU is increased by 244.1% (4.68 N/cm); the interlaminar shear strength is increased by 30.7% (6.09 MPa); the tensile
flexural and compressive strength of is maximally increased by 5.0%
91.4% and 69.5%
respectively. Notably
because the introduction of abundant m-SiO
2
enhances the interface roughness
m-SiO
2
/PDA/AF@PU demonstrates the maximal energy absorption value; the ballistic limit velocity is improved from 449.8 m/s of AF@PU to 481.9 m/s of m-SiO
2
/PDA/AF@PU. This work highlights the optimization of interfacial properties and provides an efficient guideline for the design of next-generation fiber reinforced polymer resin composites.
复合材料界面改性聚多巴胺纳米二氧化硅防弹性能
CompositesInterfacial modificationPolydopamineNano silicaBallistic performance
Yan R. S.; Chen X. G. Aramid/epoxy composites with angle-laid reinforcement constructions for ballistic protection. J. Ind. Text., 2016, 45(5), 765-779. doi:10.1177/1528083714542823http://dx.doi.org/10.1177/1528083714542823
Abtew M. A.; Boussu F.; Bruniaux P.; Loghin C.; Cristian I. Ballistic impact mechanisms—a review on textiles and fibre-reinforced composites impact responses. Compos. Struct., 2019, 223, 110966. doi:10.1016/j.compstruct.2019.110966http://dx.doi.org/10.1016/j.compstruct.2019.110966
Luz F. S. D.; Garcia Filho F. D. C.; Oliveira M. S.; Nascimento L. F. C.; Monteiro S. N. Composites with natural fibers and conventional materials applied in a hard armor: a comparison. Polymers, 2020, 12(9), 1920. doi:10.3390/polym12091920http://dx.doi.org/10.3390/polym12091920
de Tomasi Tessari B.; Vargas N.; Rodrigues Dias R.; Miranda Pereira I.; Rossa Beltrami L. V.; Lavoratti A.; Poletto M.; Zattera A. J. Influence of the addition of graphene nanoplatelets on the ballistic properties of HDPE/aramid multi-laminar composites. Polym. Plast. Technol. Mater., 2022, 61(4), 363-373. doi:10.1080/25740881.2021.1988966http://dx.doi.org/10.1080/25740881.2021.1988966
Zhang Y. J.; Cui B.; Dong H.; Huang Y. J.; Li Z. W.; Jin T. Analysis of the influence of different constraints on the ballistic performance of B4C/C/UHMWPE composite armor. Ceram. Int., 2022, 48(18), 26758-26771. doi:10.1016/j.ceramint.2022.05.374http://dx.doi.org/10.1016/j.ceramint.2022.05.374
Bandaru A. K.; Ahmad S. Ballistic impact behaviour of thermoplastic kevlar composites: parametric studies. Procedia Eng., 2017, 173, 355-362. doi:10.1016/j.proeng.2016.12.029http://dx.doi.org/10.1016/j.proeng.2016.12.029
Lee Y. S.; Wetzel E. D.; Wagner N. J. The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid. J. Mater. Sci., 2003, 38(13), 2825-2833. doi:10.1023/a:1024424200221http://dx.doi.org/10.1023/a:1024424200221
Yahaya R.; Sapuan S. M.; Jawaid M.; Leman Z.; Zainudin E. S. Measurement of ballistic impact properties of woven kenaf-aramid hybrid composites. Measurement, 2016, 77, 335-343. doi:10.1016/j.measurement.2015.09.016http://dx.doi.org/10.1016/j.measurement.2015.09.016
Min S. N.; Chen X. G.; Chai Y.; Lowe T. Effect of reinforcement continuity on the ballistic performance of composites reinforced with multiply plain weave fabric. Compos. Part B Eng., 2016, 90, 30-36. doi:10.1016/j.compositesb.2015.12.001http://dx.doi.org/10.1016/j.compositesb.2015.12.001
Rubio I.; Rodríguez-Millán M.; Marco M.; Olmedo A.; Loya J. A. Ballistic performance of aramid composite combat helmet for protection against small projectiles. Compos. Struct., 2019, 226, 111153. doi:10.1016/j.compstruct.2019.111153http://dx.doi.org/10.1016/j.compstruct.2019.111153
Bandaru A. K.; Ahmad S.; Bhatnagar N. Ballistic performance of hybrid thermoplastic composite armors reinforced with Kevlar and basalt fabrics. Compos. Part A Appl. Sci. Manuf., 2017, 97, 151-165. doi:10.1016/j.compositesa.2016.12.007http://dx.doi.org/10.1016/j.compositesa.2016.12.007
Zhang B.; Jia L. H.; Tian M.; Ning N. Y.; Zhang L. Q.; Wang W. C. Surface and interface modification of aramid fiber and its reinforcement for polymer composites: a review. Eur. Polym. J., 2021, 147, 110352. doi:10.1016/j.eurpolymj.2021.110352http://dx.doi.org/10.1016/j.eurpolymj.2021.110352
Ding X. M.; Kong H. J.; Qiao M. M.; Zhang L. W.; Yu M. H. Surface modification of an aramid fiber via grafting epichlorohydrin assisted by supercritical CO2. RSC Adv., 2019, 9(53), 31062-31069. doi:10.1039/c9ra05395fhttp://dx.doi.org/10.1039/c9ra05395f
Yao S. S.; Jin F. L.; Rhee K. Y.; Hui D.; Park S. J. Recent advances in carbon-fiber-reinforced thermoplastic composites: a review. Compos. Part B Eng., 2018, 142, 241-250. doi:10.1016/j.compositesb.2017.12.007http://dx.doi.org/10.1016/j.compositesb.2017.12.007
Herbert Yeung K. K.; Rao K. P. Mechanical properties of kevlar-49 fibre reinforced thermoplastic composites. Polym. Polym. Compos., 2012, 20(5), 411-424. doi:10.1177/096739111202000501http://dx.doi.org/10.1177/096739111202000501
Kim H. J.; Song J. H. Improvement in the mechanical properties of carbon and aramid composites by fiber surface modification using polydopamine. Compos. Part B Eng., 2019, 160, 31-36. doi:10.1016/j.compositesb.2018.10.027http://dx.doi.org/10.1016/j.compositesb.2018.10.027
Wan Y. J.; Tang L. C.; Yan D.; Zhao L.; Li Y. B.; Wu L. B.; Jiang J. X.; Lai G. Q. Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process. Compos. Sci. Technol., 2013, 82, 60-68. doi:10.1016/j.compscitech.2013.04.009http://dx.doi.org/10.1016/j.compscitech.2013.04.009
Tang L. C.; Wan Y. J.; Yan D.; Pei Y. B.; Zhao L.; Li Y. B.; Wu L. B.; Jiang J. X.; Lai G. Q. The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon, 2013, 60, 16-27. doi:10.1016/j.carbon.2013.03.050http://dx.doi.org/10.1016/j.carbon.2013.03.050
Wan Y. J.; Tang L. C.; Gong L. X.; Yan D.; Li Y. B.; Wu L. B.; Jiang J. X.; Lai G. Q. Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon, 2014, 69, 467-480. doi:10.1016/j.carbon.2013.12.050http://dx.doi.org/10.1016/j.carbon.2013.12.050
Chhetri S.; Bougherara H. A comprehensive review on surface modification of UHMWPE fiber and interfacial properties. Compos. Part A Appl. Sci. Manuf., 2021, 140, 106146. doi:10.1016/j.compositesa.2020.106146http://dx.doi.org/10.1016/j.compositesa.2020.106146
Karger-Kocsis J.; Mahmood H.; Pegoretti A. Recent advances in fiber/matrix interphase engineering for polymer composites. Prog. Mater. Sci., 2015, 73, 1-43. doi:10.1016/j.pmatsci.2015.02.003http://dx.doi.org/10.1016/j.pmatsci.2015.02.003
Xu G. X.; Jin Y. H.; Song J. Improvement of the mechanical properties by surface modification of ZnCl2 and polydopamine in aramid fiber composites. Appl. Sci., 2022, 12(6), 3119. doi:10.3390/app12063119http://dx.doi.org/10.3390/app12063119
Nasser J.; Groo L.; Zhang L. S.; Sodano H. Laser induced graphene fibers for multifunctional aramid fiber reinforced composite. Carbon, 2020, 158, 146-156. doi:10.1016/j.carbon.2019.11.078http://dx.doi.org/10.1016/j.carbon.2019.11.078
Gong X. Y.; Liu Y. Y.; Wang Y. S.; Xie Z. M.; Dong Q. L.; Dong M. Y.; Liu H.; Shao Q.; Lu N.; Murugadoss V.; Ding T.; Guo Z. H. Amino graphene oxide/dopamine modified aramid fibers: preparation, epoxy nanocomposites and property analysis. Polymer, 2019, 168, 131-137. doi:10.1016/j.polymer.2019.02.021http://dx.doi.org/10.1016/j.polymer.2019.02.021
Gong K. L.; Zhou K. Q.; Qian X. D.; Shi C. L.; Yu B. MXene as emerging nanofillers for high-performance polymer composites: a review. Compos. Part B Eng., 2021, 217, 108867. doi:10.1016/j.compositesb.2021.108867http://dx.doi.org/10.1016/j.compositesb.2021.108867
Zheng H.; Zhang W. J.; Li B. W.; Zhu J. J.; Wang C. H.; Song G. J.; Wu G. S.; Yang X. P.; Huang Y. D.; Ma L. C. Recent advances of interphases in carbon fiber-reinforced polymer composites: a review. Compos. Part B Eng., 2022, 233, 109639. doi:10.1016/j.compositesb.2022.109639http://dx.doi.org/10.1016/j.compositesb.2022.109639
Tepeduzu B.; Karakuzu R. Ballistic performance of ceramic/composite structures. Ceram. Int., 2019, 45(2), 1651-1660. doi:10.1016/j.ceramint.2018.10.042http://dx.doi.org/10.1016/j.ceramint.2018.10.042
Ziółkowski G.; Pach J.; Pyka D.; Kurzynowski T.; Jamroziak K. X-ray computed tomography for the development of ballistic composite. Materials, 2020, 13(23), 5566. doi:10.3390/ma13235566http://dx.doi.org/10.3390/ma13235566
Bandaru A. K.; Ahmad S. Modeling of progressive damage for composites under ballistic impact. Compos. Part B Eng., 2016, 93, 75-87. doi:10.1016/j.compositesb.2016.02.053http://dx.doi.org/10.1016/j.compositesb.2016.02.053
Gilson L.; Imad A.; Rabet L.; Coghe F. On analysis of deformation and damage mechanisms of DYNEEMA composite under ballistic impact. Compos. Struct., 2020, 253, 112791. doi:10.1016/j.compstruct.2020.112791http://dx.doi.org/10.1016/j.compstruct.2020.112791
Palomar M.; Lozano-Mínguez E.; Rodríguez-Millán M.; Miguélez M. H.; Giner E. Relevant factors in the design of composite ballistic helmets. Compos. Struct., 2018, 201, 49-61. doi:10.1016/j.compstruct.2018.05.076http://dx.doi.org/10.1016/j.compstruct.2018.05.076
Ćwik T. K.; Iannucci L.; Curtis P.; Pope D. Design and ballistic performance of hybrid composite laminates. Appl. Compos. Mater., 2017, 24(3), 717-733. doi:10.1007/s10443-016-9536-xhttp://dx.doi.org/10.1007/s10443-016-9536-x
Chang L. J.; Guo Y. F.; Huang X. Y.; Xia Y.; Cai Z. H. Experimental study on the protective performance of bulletproof plate and padding materials under ballistic impact. Mater. Des., 2021, 207, 109841. doi:10.1016/j.matdes.2021.109841http://dx.doi.org/10.1016/j.matdes.2021.109841
Han F. L.; Zhang Y.; Wang C. H.; Wang Z. Y.; Yue H. Y.; Zong L. S.; Wang J. Y.; Jian X. G. Analysis of ballistic performance and penetration damage mechanisms of aramid woven fabric reinforced polycarbonate composites with different matrix content. Chem. Eng. J., 2023, 453, 139470. doi:10.1016/j.cej.2022.139470http://dx.doi.org/10.1016/j.cej.2022.139470
Demircioglu T. K.; Balikoglu F.; Beyaz S.; Bülbül B. Effect of lead metaborate as novel nanofiller on the ballistic impact behavior of Twaron®/epoxy composites. Compos. Commun., 2021, 27, 100832. doi:10.1016/j.coco.2021.100832http://dx.doi.org/10.1016/j.coco.2021.100832
Sun D. M.; Chen X. G. Plasma modification of Kevlar fabrics for ballistic applications. Text. Res. J., 2012, 82(18), 1928-1934. doi:10.1177/0040517512450765http://dx.doi.org/10.1177/0040517512450765
Shakil U. A.; Bin Abu Hassan S.; Yahya M. Y.; Mujiyono, Nurhadiyanto D. A review of properties and fabrication techniques of fiber reinforced polymer nanocomposites subjected to simulated accidental ballistic impact. Thin Walled Struct., 2021, 158, 107150. doi:10.1016/j.tws.2020.107150http://dx.doi.org/10.1016/j.tws.2020.107150
Lee H.; Dellatore S. M.; Miller W. M.; Messersmith P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007, 318(5849), 426-430. doi:10.1126/science.1147241http://dx.doi.org/10.1126/science.1147241
Boddu V. M.; Brenner M. W.; Patel J. S.; Kumar A.; Mantena P. R.; Tadepalli T.; Pramanik B. Energy dissipation and high-strain rate dynamic response of E-glass fiber composites with anchored carbon nanotubes. Compos. Part B Eng., 2016, 88, 44-54. doi:10.1016/j.compositesb.2015.10.028http://dx.doi.org/10.1016/j.compositesb.2015.10.028
Zhang J. L.; Guo Z. C.; Zhi X.; Tang H. Q. Surface modification of ultrafine precipitated silica with 3-methacryloxypropyltrimethoxysilane in carbonization process. Colloids Surf. A Physicochem. Eng. Aspects, 2013, 418, 174-179. doi:10.1016/j.colsurfa.2012.11.057http://dx.doi.org/10.1016/j.colsurfa.2012.11.057
Purcar V.; Cinteza O.; Donescu D.; Bala D.; Ghiurea M.; Petcu C.; Caprarescu S. Surface modification of silica particles assisted by CO2. J. Supercrit. Fluids, 2014, 87, 34-39. doi:10.1016/j.supflu.2013.12.025http://dx.doi.org/10.1016/j.supflu.2013.12.025
Jia H.; Liu C.; Qiao Y.; Zhang Y.; Dang X. X.; Chen Y. S.; Jian X. G. Enhanced interfacial and mechanical properties of basalt fiber reinforced poly(aryl ether nitrile ketone) composites by amino-silane coupling agents. Polymer, 2021, 230, 124028. doi:10.1016/j.polymer.2021.124028http://dx.doi.org/10.1016/j.polymer.2021.124028
Chu Y. Y.; Rahman R.; He H. N.; Huang W. H.; Chen X. G. Increasing inter-yarn friction to ultra-high molecular weight polyethylene yarns for ballistic application by sol-gel treatment. J. Ind. Text., 2022, 51(3_suppl), 4931S-4948S. doi:10.1177/1528083720942960http://dx.doi.org/10.1177/1528083720942960
Wang Y.; Chen X. G.; Young R.; Kinloch I. Finite element analysis of effect of inter-yarn friction on ballistic impact response of woven fabrics. Compos. Struct., 2016, 135, 8-16. doi:10.1016/j.compstruct.2015.08.099http://dx.doi.org/10.1016/j.compstruct.2015.08.099
Zhao M.; Meng L. H.; Ma L. C.; Wu G. S.; Wang Y. W.; Xie F.; Huang Y. D. Interfacially reinforced carbon fiber/epoxy composites by grafting melamine onto carbon fibers in supercritical methanol. RSC Adv., 2016, 6(35), 29654-29662. doi:10.1039/c6ra00570ehttp://dx.doi.org/10.1039/c6ra00570e
Cheng S.; Li N.; Pan Y. X.; Wang B.; Hao H. Y.; Hu F. Y.; Liu C.; Chen Y. S.; Jian X. G. Establishment of silane/GO multistage hybrid interface layer to improve interfacial and mechanical properties of carbon fiber reinforced poly(phthalazinone ether ketone) thermoplastic composites. Materials, 2021, 15(1), 206. doi:10.3390/ma15010206http://dx.doi.org/10.3390/ma15010206
Odesanya K. O.; Ahmad R.; Jawaid M.; Bingol S.; Adebayo G. O.; Wong Y. H. Natural fibre-reinforced composite for ballistic applications: a review. J. Polym. Environ., 2021, 29(12), 3795-3812. doi:10.1007/s10924-021-02169-4http://dx.doi.org/10.1007/s10924-021-02169-4
Cheeseman B. A.; Bogetti T. A. Ballistic impact into fabric and compliant composite laminates. Compos. Struct., 2003, 61(1-2), 161-173. doi:10.1016/s0263-8223(03)00029-1http://dx.doi.org/10.1016/s0263-8223(03)00029-1
Mou H. L.; Xie J.; Pei H.; Feng Z. Y.; Geng H. Z. Ballistic impact tests and stacked shell simulation analysis of aramid fabric containment system. Aerosp. Sci. Technol., 2020, 107, 106344. doi:10.1016/j.ast.2020.106344http://dx.doi.org/10.1016/j.ast.2020.106344
Wu C. L.; Zhang M. Q.; Rong M. Z.; Friedrich K. Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos. Sci. Technol., 2002, 62(10-11), 1327-1340. doi:10.1016/s0266-3538(02)00079-9http://dx.doi.org/10.1016/s0266-3538(02)00079-9
Zhang Q. F.; Li K.; Fang Y.; Guo Z. H.; Yang X. F.; Sheng K. C. Improvements in compatibility and properties of biocomposites modified through nanosilica attachment. Iran. Polym. J., 2022, 31(11), 1387-1398. doi:10.1007/s13726-022-01084-2http://dx.doi.org/10.1007/s13726-022-01084-2
Zhou W.; Yin H. F.; Shang Y. J.; Zhang P. F. Failure behavior and damage visualization of thick carbon/aramid hybrid woven composites under flexural loading conditions. Nondestruct. Test. Eval., 2020, 35(2), 139-157. doi:10.1080/10589759.2019.1662902http://dx.doi.org/10.1080/10589759.2019.1662902
Li Y. H.; Xiong Y. Z.; Zhang Q. P. Rivet-inspired modification of aramid fiber by decorating with silica particles to enhance the interfacial interaction and mechanical properties of rubber composites. Materials, 2020, 13(11), 2665. doi:10.3390/ma13112665http://dx.doi.org/10.3390/ma13112665
Rankin S. M.; Moody M. K.; Naskar A. K.; Bowland C. C. Enhancing functionalities in carbon fiber composites by titanium dioxide nanoparticles. Compos. Sci. Technol., 2021, 201, 108491. doi:10.1016/j.compscitech.2020.108491http://dx.doi.org/10.1016/j.compscitech.2020.108491
Lemessa S. C.; Karunakar D. B. Characterization and mechanical properties of 2024/Y2O3 composite developed by stir rheocasting. Recent Advances in Mechanical Engineering. Singapore: Springer, 2020, 439-453. doi:10.1007/978-981-15-1071-7_37http://dx.doi.org/10.1007/978-981-15-1071-7_37
Liu Y. F.; Wang Z. Q.; Li H.; Sun M.; Wang F. X.; Chen B. J. Influence of embedding SMA fibres and SMA fibre surface modification on the mechanical performance of BFRP composite laminates. Materials, 2018, 11(1), 70. doi:10.3390/ma11010070http://dx.doi.org/10.3390/ma11010070
Yang W. C.; Huang R. X.; Liu J. Y.; Liu J. X.; Huang W. Ballistic impact responses and failure mechanism of composite double-arrow auxetic structure. Thin Walled Struct., 2022, 174, 109087. doi:10.1016/j.tws.2022.109087http://dx.doi.org/10.1016/j.tws.2022.109087
Naik N. K.; Shrirao P. Composite structures under ballistic impact. Compos. Struct., 2004, 66(1-4), 579-590. doi:10.1016/j.compstruct.2004.05.006http://dx.doi.org/10.1016/j.compstruct.2004.05.006
吴彤. SiC颗粒增强铝基复合材料的组织与力学性能研究. 吉林大学博士学位论文, 2022.
Sudhir Sastry Y. B.; Budarapu P. R.; Krishna Y.; Devaraj S. Studies on ballistic impact of the composite panels. Theor. Appl. Fract. Mech., 2014, 72, 2-12. doi:10.1016/j.tafmec.2014.07.010http://dx.doi.org/10.1016/j.tafmec.2014.07.010
0
浏览量
146
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构