浏览全部资源
扫码关注微信
1.中国科学院大学化学科学学院 北京 100049
2.中国科学院有机固体重点实验室 中国科学院化学研究所 北京 100190
[ "张凤娇,女,1989年生. 中国科学院大学化学科学学院副教授,博士生导师. 2010年于福州大学获得学士学位,2015年于中国科学院化学研究所获博士学位,后赴美国伊利诺伊大学香槟分校化学与生物工程学院从事博士后工作,于2019年1月入职中国科学院大学化学科学学院. 曾获得唐敖庆化学奖(2014年)、中国科学院BHPB (2013年)和朱李月华奖学金(2013年),作为博士生代表参加第65届林岛诺贝尔奖获得者大会等. 2022年获中国分析测试协会科学技术奖一等奖. 现担任SmartMat和Chin. Chem. Lett.期刊青年编委. 主要研究方向为新型传感功能器件设计、开发与应用研究." ]
[ "狄重安,男,1981年生. 中国科学院化学研究所研究员,博士生导师. 2003年于曲阜师范大学获得学士学位,2008年于中国科学院化学研究所获得博士学位,后入职中国科学院化学研究所;先后在剑桥大学(2011年)和斯坦福大学(2013年)从事访问学者研究. 曾获中国化学会青年化学奖(2011年度)、中国分析测试协会科学技术奖一等奖(2022年度)和中国化学会-英国皇家化学会青年化学奖(2022年度). 先后于2014年和2018年获得基金委优秀青年基金和中组部青年拔尖项目资助,2021年获得国家杰出青年基金资助;入选2022爱思唯尔“中国高被引学者”;担任Chin. Chem. Lett.副主编,Adv. Mater. Tech.和J. Energ. Chem.期刊的顾问编委,中国化学会高级会员,International Thin-film Transistor Conference (ITC)技术委员,中国化学会有机固体专业委员会委员. 研究领域为有机半导体材料与器件." ]
纸质出版日期:2024-09-20,
网络出版日期:2024-06-06,
收稿日期:2024-03-02,
录用日期:2024-04-18
移动端阅览
项兰义, 张凤娇, 狄重安. 有机电化学晶体管分子材料与功能器件研究进展. 高分子学报, 2024, 55(9), 1111-1133
Xiang, L. Y.; Zhang, F. J.; Di, C. A. Advancements in semiconductor materials and functional devices of organic electrochemical transistors. Acta Polymerica Sinica, 2024, 55(9), 1111-1133
项兰义, 张凤娇, 狄重安. 有机电化学晶体管分子材料与功能器件研究进展. 高分子学报, 2024, 55(9), 1111-1133 DOI: 10.11777/j.issn1000-3304.2024.24066.
Xiang, L. Y.; Zhang, F. J.; Di, C. A. Advancements in semiconductor materials and functional devices of organic electrochemical transistors. Acta Polymerica Sinica, 2024, 55(9), 1111-1133 DOI: 10.11777/j.issn1000-3304.2024.24066.
有机电化学晶体管通过离子-电子耦合调控共轭分子的电子结构和导电能力,被认为是下一代柔性智能电子的理想载体. 本文结合电化学掺杂工作原理,总结了有机电化学晶体管分子材料在离子-电子耦合性能以及在可拉伸性、机械顺应性和生物黏性等力学特征的研究进展,并介绍了器件在互补逻辑电路、生物传感和仿生神经突触等方面的功能应用. 此外,从有机共轭分子设计、界面修饰、离子动力学调控和器件结构开发等方面入手,分析了提升器件性能和推动器件多功能化的研究策略,展示了有机电化学晶体管在智能电子方面的重要研究价值. 最后,详细探讨了有机电化学晶体管在面向传感-适应-反馈-处理的一体化智能感知器件和低成本商业化制备等方面的关键挑战与机遇.
Organic electrochemical transistors play a crucial role in modulating the electronic structure and conductivity of conjugated films through ion-electron coupling
making them highly promising for the advancement of flexible smart electronics. This article provides a comprehensive overview of the organic electrochemical transistors by integrating electrochemical doping principle. It discusses the recent advancements in ion-electron coupling performance and mechanical characteristics such as stretchability
mechanical conformability
and bioviscosity. In addition
it summarizes the multifunctional applications of the organic electrochemical transistors
including their role in complementary logic circuits
biosensing
and bionic neural synapses. Furthermore
special emphasis is placed on research strategies
aimed at enhancing device performance and enabling multifunctionality through approaches like organic conjugated molecule design
interface modification
ion dynamics control
and device structure optimization
underscoring the versatility of OECTs in smart electronics. Finally
the key challenges and opportunities of organic electrochemical transistors are discussed in detail concerning integrated intelligent sensing devices for sensing-adaptation-feedback-processing and low-cost commercial preparation.
有机电化学晶体管共轭分子电学性能力学特征多功能应用
Organic electrochemical transistorConjugated moleculesElectric performanceMechanical propertiesMultifunctional application
Paulsen B. D.; Tybrandt K.; Stavrinidou E.; Rivnay J. Organic mixed ionic-electronic conductors. Nat. Mater., 2020, 19, 13-26. doi:10.1038/s41563-019-0435-zhttp://dx.doi.org/10.1038/s41563-019-0435-z
Wang Y. Z.; Wustoni S.; Surgailis J.; Zhong Y. Z.; Koklu A.; Inal S. Designing organic mixed conductors for electrochemical transistor applications. Nat. Rev. Mater., 2024, 9, 249-265. doi:10.1038/s41578-024-00652-7http://dx.doi.org/10.1038/s41578-024-00652-7
Gkoupidenis P.; Zhang Y.; Kleemann H.; Ling H.; Santoro F.; Fabiano S.; Salleo A.; van de Burgt Y. Organic mixed conductors for bioinspired electronics. Nat. Rev. Mater., 2024, 9, 134-149. doi:10.1038/s41578-023-00622-5http://dx.doi.org/10.1038/s41578-023-00622-5
Rivnay J.; Inal S.; Salleo A.; Owens R. M.; Berggren M.; Malliaras G. G. Organic electrochemical transistors. Nat. Rev. Mater., 2018, 3(2), 17086. doi:10.1038/natrevmats.2017.86http://dx.doi.org/10.1038/natrevmats.2017.86
Torricelli F.; Adrahtas D. Z.; Bao Z. N.; Berggren M.; Biscarini F.; Bonfiglio A.; Bortolotti C. A.; Frisbie C. D.; Macchia E.; Malliaras G. G.; McCulloch I.; Moser M.; Nguyen T. Q.; Owens R. M.; Salleo A.; Spanu A.; Torsi L. Electrolyte-gated transistors for enhanced performance bioelectronics. Nat. Rev. Meth. Primers, 2021, 1, 66. doi:10.1038/s43586-021-00065-8http://dx.doi.org/10.1038/s43586-021-00065-8
Shahi M.; Le V. N.; Espejo P. A.; Alsufyani M.; Kousseff C. J.; McCulloch I.; Paterson A. F. The organic electrochemical transistor conundrum when reporting a mixed ionic-electronic transport figure of merit. Nat. Mater., 2024, 23(1), 2-8. doi:10.1038/s41563-023-01672-4http://dx.doi.org/10.1038/s41563-023-01672-4
Panzer M. J.; Frisbie C. D. Exploiting ionic coupling in electronic devices: electrolyte-gated organic field-effect transistors. Adv. Mater., 2008, 20(16), 3177-3180. doi:10.1002/adma.200800617http://dx.doi.org/10.1002/adma.200800617
Tropp J.; Meli D.; Rivnay J. Organic mixed conductors for electrochemical transistors. Matter, 2023, 6(10), 3132-3164. doi:10.1016/j.matt.2023.05.001http://dx.doi.org/10.1016/j.matt.2023.05.001
Wang D. P.; Zhao S. F.; Yin R. Y.; Li L. L.; Lou Z.; Shen G. Z. Recent advanced applications of ion-gel in ionic-gated transistor. NPJ Flex. Electron., 2021, 5, 13. doi:10.1038/s41528-021-00110-2http://dx.doi.org/10.1038/s41528-021-00110-2
Shen H. G.; Abtahi A.; Lussem B.; Boudouris B. W.; Mei J. G. Device engineering in organic electrochemical transistors toward multifunctional applications. ACS Appl. Electron. Mater., 2021, 3(6), 2434-2448. doi:10.1021/acsaelm.1c00312http://dx.doi.org/10.1021/acsaelm.1c00312
Inal S.; Malliaras G. G.; Rivnay J. Benchmarking organic mixed conductors for transistors. Nat. Commun., 2017, 8(1), 1767. doi:10.1038/s41467-017-01812-whttp://dx.doi.org/10.1038/s41467-017-01812-w
Ke Z. F.; Abtahi A.; Hwang J.; Chen K.; Chaudhary J.; Song I.; Perera K.; You L. Y.; Baustert K. N.; Graham K. R.; Mei J. G. Highly conductive and solution-processable n-doped transparent organic conductor. J. Am. Chem. Soc., 2023, 145(6), 3706-3715. doi:10.1021/jacs.2c13051http://dx.doi.org/10.1021/jacs.2c13051
Spyropoulos G. D.; Gelinas J. N.; Khodagholy D. Internal ion-gated organic electrochemical transistor: a building block for integrated bioelectronics. Sci. Adv., 2019, 5(2), eaau7378. doi:10.1126/sciadv.aau7378http://dx.doi.org/10.1126/sciadv.aau7378
Chen J. H.; Huang W.; Zheng D.; Xie Z. Q.; Zhuang X. M.; Zhao D.; Chen Y.; Su N.; Chen H. M.; Pankow R. M.; Gao Z.; Yu J. S.; Guo X. G.; Cheng Y. H.; Strzalka J.; Yu X. G.; Marks T. J.; Facchetti A. Highly stretchable organic electrochemical transistors with strain-resistant performance. Nat. Mater., 2022, 21(5), 564-571. doi:10.1038/s41563-022-01239-9http://dx.doi.org/10.1038/s41563-022-01239-9
Yao Y.; Huang W.; Chen J. H.; Liu X. X.; Bai L. B.; Chen W.; Cheng Y. H.; Ping J. F.; Marks T. J.; Facchetti A. Flexible and stretchable organic electrochemical transistors for physiological sensing devices. Adv. Mater., 2023, 35(35), e2209906. doi:10.1002/adma.202209906http://dx.doi.org/10.1002/adma.202209906
Campana A.; Cramer T.; Simon D. T.; Berggren M.; Biscarini F. Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold. Adv. Mater., 2014, 26(23), 3874-3878. doi:10.1002/adma.201400263http://dx.doi.org/10.1002/adma.201400263
Lee H.; Lee S.; Lee W.; Yokota T.; Fukuda K.; Someya T. Ultrathin organic electrochemical transistor with nonvolatile and thin gel electrolyte for long-term electrophysiological monitoring. Adv. Funct. Mater., 2019, 29(48), 1906982. doi:10.1002/adfm.201906982http://dx.doi.org/10.1002/adfm.201906982
Li N.; Li Y.; Cheng Z.; Liu Y. D.; Dai Y. H.; Kang S.; Li S. S.; Shan N. S.; Wai S.; Ziaja A.; Wang Y. F.; Strzalka J.; Liu W.; Zhang C.; Gu X. D.; Hubbell J. A.; Tian B. Z.; Wang S. H. Bioadhesive polymer semiconductors and transistors for intimate biointerfaces. Science, 2023, 381(6658), 686-693. doi:10.1126/science.adg8758http://dx.doi.org/10.1126/science.adg8758
Uguz I.; Ohayon D.; Arslan V.; Sheelamanthula R.; Griggs S.; Hama A.; Stanton J. W.; McCulloch I.; Inal S.; Shepard K. L. Flexible switch matrix addressable electrode arrays with organic electrochemical transistor and pn diode technology. Nat. Commun., 2024, 15, 533. doi:10.1038/s41467-023-44024-1http://dx.doi.org/10.1038/s41467-023-44024-1
Stein E.; Nahor O.; Stolov M.; Freger V.; Petruta I. M.; McCulloch I.; Frey G. L. Ambipolar blend-based organic electrochemical transistors and inverters. Nat. Commun., 2022, 13(1), 5548. doi:10.1038/s41467-022-33264-2http://dx.doi.org/10.1038/s41467-022-33264-2
Cho J. H.; Lee J.; Xia Y.; Kim B.; He Y. Y.; Renn M. J.; Lodge T. P.; Frisbie C. D. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater., 2008, 7(11), 900-906. doi:10.1038/nmat2291http://dx.doi.org/10.1038/nmat2291
Yang A. N.; Song J. J.; Liu H.; Zhao Z. Y.; Li L.; Yan F. Wearable organic electrochemical transistor array for skin-surface electrocardiogram mapping above a human heart. Adv. Funct. Mater., 2023, 33(17), 2215037. doi:10.1002/adfm.202215037http://dx.doi.org/10.1002/adfm.202215037
Xue M. T.; Mackin C.; Weng W. H.; Zhu J. D.; Luo Y. Y.; Luo S. X L.; Lu, A. Y.; Hempel, M.; McVay, E.; Kong, J.; Palacios, T. Integrated biosensor platform based on graphene transistor arrays for real-time high-accuracy ion sensing. Nat. Commun., 2022, 13(1), 5064. doi:10.1038/s41467-022-32749-4http://dx.doi.org/10.1038/s41467-022-32749-4
Tyrrell J. E.; Boutelle M. G.; Campbell A. J. Measurement of electrophysiological signals in vitro using high-performance organic electrochemical transistors. Adv. Funct. Mater., 2021, 31(1), 2007086. doi:10.1002/adfm.202007086http://dx.doi.org/10.1002/adfm.202007086
Yang C. S.; Shang D. S.; Liu N.; Fuller E. J.; Agrawal S.; Talin A. A.; Li Y. Q.; Shen B. G.; Sun Y. All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing. Adv. Funct. Mater., 2018, 28(42), 1804170. doi:10.1002/adfm.201804170http://dx.doi.org/10.1002/adfm.201804170
Gerasimov J. Y.; Gabrielsson R.; Forchheimer R.; Stavrinidou E.; Simon D. T.; Berggren M.; Fabiano S. An evolvable organic electrochemical transistor for neuromorphic applications. Adv. Sci., 2019, 6(7), 1801339. doi:10.1002/advs.201801339http://dx.doi.org/10.1002/advs.201801339
Xu X. Z.; Zhang H. Q.; Shao L.; Ma R.; Guo M.; Liu Y. Q.; Zhao Y. An aqueous electrolyte gated artificial synapse with synaptic plasticity selectively mediated by biomolecules. Angew. Chem. Int. Ed., 2023, 62(29), e202302723. doi:10.1002/anie.202302723http://dx.doi.org/10.1002/anie.202302723
Xiang L. Y.; Liu L. Y.; Zhang F. J.; Di C. A.; Zhu D. B. Ion-gating engineering of organic semiconductors toward multifunctional devices. Adv. Funct. Mater., 2021, 31(32), 2102149. doi:10.1002/adfm.202102149http://dx.doi.org/10.1002/adfm.202102149
Ko J.; Wu X. H.; Surendran A.; Muhammad B. T.; Leong W. L. Self-healable organic electrochemical transistor with high transconductance, fast response, and long-term stability. ACS Appl. Mater. Interfaces, 2020, 12(30), 33979-33988. doi:10.1021/acsami.0c07913http://dx.doi.org/10.1021/acsami.0c07913
Su X. Q.; Wu X. H.; Chen S.; Nedumaran A. M.; Stephen M.; Hou K. Q.; Czarny B.; Leong W. L. A highly conducting polymer for self-healable, printable, and stretchable organic electrochemical transistor arrays and near hysteresis-free soft tactile sensors. Adv. Mater., 2022, 34(19), e2200682. doi:10.1002/adma.202200682http://dx.doi.org/10.1002/adma.202200682
Pappa A. M.; Ohayon D.; Giovannitti A.; Maria I. P.; Savva A.; Uguz I.; Rivnay J.; McCulloch I.; Owens R. M.; Inal S. Direct metabolite detection with an n-type accumulation mode organic electrochemical transistor. Sci. Adv., 2018, 4(6), eaat0911. doi:10.1126/sciadv.aat0911http://dx.doi.org/10.1126/sciadv.aat0911
Wang W. C.; Jiang Y. W.; Zhong D. L.; Zhang Z. T.; Choudhury S.; Lai J. C.; Gong H. X.; Niu S. M.; Yan X. Z.; Zheng Y.; Shih C. C.; Ning R.; Lin Q.; Li D. L.; Kim Y. H.; Kim J.; Wang Y. X.; Zhao C. Z.; Xu C. Y.; Ji X. Z.; Nishio Y.; Lyu H.; Tok J. B. H.; Bao Z. N. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science, 2023, 380(6646), 735-742. doi:10.1126/science.ade0086http://dx.doi.org/10.1126/science.ade0086
Ohayon D.; Druet V.; Inal S. A guide for the characterization of organic electrochemical transistors and channel materials. Chem. Soc. Rev., 2023, 52(3), 1001-1023. doi:10.1039/d2cs00920jhttp://dx.doi.org/10.1039/d2cs00920j
Wu R. H.; Matta M.; Paulsen B. D.; Rivnay J. Operando characterization of organic mixed ionic/electronic conducting materials. Chem. Rev., 2022, 122(4), 4493-4551. doi:10.1021/acs.chemrev.1c00597http://dx.doi.org/10.1021/acs.chemrev.1c00597
Kim S. M.; Kim C. H.; Kim Y.; Kim N.; Lee W. J.; Lee E. H.; Kim D.; Park S.; Lee K.; Rivnay J.; Yoon M. H. Influence of PEDOT:PSS crystallinity and composition on electrochemical transistor performance and long-term stability. Nat. Commun., 2018, 9(1), 3858. doi:10.1038/s41467-018-06084-6http://dx.doi.org/10.1038/s41467-018-06084-6
Gkoupidenis P.; Schaefer N.; Garlan B.; Malliaras G. G. Neuromorphic functions in PEDOT:PSS organic electrochemical transistors. Adv. Mater., 2015, 27(44), 7176-7180. doi:10.1002/adma.201503674http://dx.doi.org/10.1002/adma.201503674
Tumová Š.; Malečková R.; Kubáč L.; Akrman J.; Enev V.; Kalina L.; Vojtková E.; Pešková M.; Víteček J.; Vala M.; Weiter M. Novel highly stable conductive polymer composite PEDOT:DBSA for bioelectronic applications. Polym. J., 2023, 55, 983-995. doi:10.1038/s41428-023-00784-7http://dx.doi.org/10.1038/s41428-023-00784-7
Delavari N.; Gladisch J.; Petsagkourakis I.; Liu X. J.; Modarresi M.; Fahlman M.; Stavrinidou E.; Linares M.; Zozoulenko I. Water intake and ion exchange in PEDOT:Tos films upon cyclic voltammetry: experimental and molecular dynamics investigation. Macromolecules, 2021, 54(13), 6552-6562. doi:10.1021/acs.macromol.1c00723http://dx.doi.org/10.1021/acs.macromol.1c00723
Carli S.; Bianchi M.; Di Lauro M.; Prato M.; Toma A.; Leoncini M.; De Salvo A.; Murgia M.; Fadiga L.; Biscarini F. Multifunctionally-doped PEDOT for organic electrochemical transistors. Front. Mater., 2022, 9, 1063763. doi:10.3389/fmats.2022.1063763http://dx.doi.org/10.3389/fmats.2022.1063763
Zhang S. M.; Kumar P.; Nouas A. S.; Fontaine L.; Tang H.; Cicoira F. Solvent-induced changes in PEDOT:PSS films for organic electrochemical transistors. APL Mater., 2015, 3, 014911. doi:10.1063/1.4905154http://dx.doi.org/10.1063/1.4905154
Wu X. H.; Surendran A.; Ko J.; Filonik O.; Herzig E. M.; Müller-Buschbaum P.; Leong W. L. Ionic-liquid doping enables high transconductance, fast response time, and high ion sensitivity in organic electrochemical transistors. Adv. Mater., 2019, 31(2), e1805544. doi:10.1002/adma.201805544http://dx.doi.org/10.1002/adma.201805544
Rivnay J.; Inal S.; Collins B. A.; Sessolo M.; Stavrinidou E.; Strakosas X.; Tassone C.; Delongchamp D. M.; Malliaras G. G. Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun., 2016, 7, 11287. doi:10.1038/ncomms11287http://dx.doi.org/10.1038/ncomms11287
Inal S.; Rivnay J.; Leleux P.; Ferro M.; Ramuz M.; Brendel J. C.; Schmidt M. M.; Thelakkat M.; Malliaras G. G. A high transconductance accumulation mode electrochemical transistor. Adv. Mater., 2014, 26(44), 7450-7455. doi:10.1002/adma.201403150http://dx.doi.org/10.1002/adma.201403150
Zhang F. J.; Zang Y. P.; Huang D. Z.; Di C. A.; Gao X. K.; Sirringhaus H.; Zhu D. B. Modulated thermoelectric properties of organic semiconductors using field-effect transistors. Adv. Funct. Mater., 2015, 25(20), 3004-3012. doi:10.1002/adfm.201404397http://dx.doi.org/10.1002/adfm.201404397
Yuen J. D.; Dhoot A. S.; Namdas E. B.; Coates N. E.; Heeney M.; McCulloch I.; Moses D.; Heeger A. J. Electrochemical doping in electrolyte-gated polymer transistors. J. Am. Chem. Soc., 2007, 129(46), 14367-14371. doi:10.1021/ja0749845http://dx.doi.org/10.1021/ja0749845
Duong D. T.; Tuchman Y.; Chakthranont P.; Cavassin P.; Colucci R.; Jaramillo T. F.; Salleo A.; Faria G. C. A universal platform for fabricating organic electrochemical devices. Adv. Electron. Mater., 2018, 4(7), 1800090. doi:10.1002/aelm.201800090http://dx.doi.org/10.1002/aelm.201800090
Zhang X. N.; Wang B. H.; Huang L. Z.; Huang W.; Wang Z.; Zhu W. G.; Chen Y.; Mao Y. L.; Facchetti A.; Marks T. J. Breath figure-derived porous semiconducting films for organic electronics. Sci. Adv., 2020, 6(13), eaaz1042. doi:10.1126/sciadv.aaz1042http://dx.doi.org/10.1126/sciadv.aaz1042
Giovannitti A.; Sbircea D. T.; Inal S.; Nielsen C. B.; Bandiello E.; Hanifi D. A.; Sessolo M.; Malliaras G. G.; McCulloch I.; Rivnay J. Controlling the mode of operation of organic transistors through side-chain engineering. Proc. Natl. Acad. Sci. USA, 2016, 113(43), 12017-12022. doi:10.1073/pnas.1608780113http://dx.doi.org/10.1073/pnas.1608780113
Flagg L. Q.; Bischak C. G.; Onorato J. W.; Rashid R. B.; Luscombe C. K.; Ginger D. S. Polymer crystallinity controls water uptake in glycol side-chain polymer organic electrochemical transistors. J. Am. Chem. Soc., 2019, 141(10), 4345-4354. doi:10.1021/jacs.8b12640http://dx.doi.org/10.1021/jacs.8b12640
Moser M.; Hidalgo T. C.; Surgailis J.; Gladisch J.; Ghosh S.; Sheelamanthula R.; Thiburce Q.; Giovannitti A.; Salleo A.; Gasparini N.; Wadsworth A.; Zozoulenko I.; Berggren M.; Stavrinidou E.; Inal S.; McCulloch I. Side chain redistribution as a strategy to boost organic electrochemical transistor performance and stability. Adv. Mater., 2020, 32(37), e2002748. doi:10.1002/adma.202002748http://dx.doi.org/10.1002/adma.202002748
Moser M.; Savva A.; Thorley K.; Paulsen B. D.; Hidalgo T. C.; Ohayon D.; Chen H.; Giovannitti A.; Marks A.; Gasparini N.; Wadsworth A.; Rivnay J.; Inal S.; McCulloch I. Polaron delocalization in donor-acceptor polymers and its impact on organic electrochemical transistor performance. Angew. Chem. Int. Ed., 2021, 60(14), 7777-7785. doi:10.1002/anie.202014078http://dx.doi.org/10.1002/anie.202014078
Lei Y. Q.; Li P. Y.; Zheng Y. T.; Lei T. Materials design and applications of n-type and ambipolar organic electrochemical transistors. Mater. Chem. Front., 2024, 8(1), 133-158. doi:10.1039/d3qm00828bhttp://dx.doi.org/10.1039/d3qm00828b
Giovannitti A.; Nielsen C. B.; Sbircea D. T.; Inal S.; Donahue M.; Niazi M. R.; Hanifi D. A.; Amassian A.; Malliaras G. G.; Rivnay J.; McCulloch I. N-type organic electrochemical transistors with stability in water. Nat. Commun., 2016, 7, 13066. doi:10.1038/ncomms13066http://dx.doi.org/10.1038/ncomms13066
Maria I. P.; Paulsen B. D.; Savva A.; Ohayon D.; Wu R. H.; Hallani R.; Basu A.; Du W. Y.; Anthopoulos T. D.; Inal S.; Rivnay J.; McCulloch I.; Giovannitti A. The effect of alkyl spacers on the mixed ionic-electronic conduction properties of N-type polymers. Adv. Funct. Mater., 2021, 31(14), 2008718. doi:10.1002/adfm.202008718http://dx.doi.org/10.1002/adfm.202008718
Li P. Y.; Shi J. W.; Lei Y. Q.; Huang Z.; Lei T. Switching p-type to high-perfor mance n-type organic electrochemical transistors via doped state engineering. Nat. Commun., 2022, 13(1), 5970. doi:10.1038/s41467-022-33553-whttp://dx.doi.org/10.1038/s41467-022-33553-w
Tang H. R.; Liang Y. Y.; Liu C. C.; Hu Z. C.; Deng Y. F.; Guo H.; Yu Z. D.; Song A.; Zhao H. Y.; Zhao D. K.; Zhang Y. Z.; Guo X. G.; Pei J.; Ma Y. G.; Cao Y.; Huang F. A solution-processed n-type conducting polymer with ultrahigh conductivity. Nature, 2022, 611(7935), 271-277. doi:10.1038/s41586-022-05295-8http://dx.doi.org/10.1038/s41586-022-05295-8
Kim J.; Campbell A. S.; de Ávila B. E. F.; Wang J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol., 2019, 37(4), 389-406. doi:10.1038/s41587-019-0045-yhttp://dx.doi.org/10.1038/s41587-019-0045-y
Ates H. C.; Nguyen P. Q.; Gonzalez-Macia L.; Morales-Narváez E.; Güder F.; Collins J. J.; Dincer C. End-to-end design of wearable sensors. Nat. Rev. Mater., 2022, 7(11), 887-907. doi:10.1038/s41578-022-00460-xhttp://dx.doi.org/10.1038/s41578-022-00460-x
Li Y. Z.; Wang N. X.; Yang A. N.; Ling H. F.; Yan F. Biomimicking stretchable organic electrochemical transistor. Adv. Electron. Mater., 2019, 5(10), 1900566. doi:10.1002/aelm.201900566http://dx.doi.org/10.1002/aelm.201900566
Nguyen T. D.; Trung T. Q.; Lee Y.; Lee N. E. Stretchable and stable electrolyte-gated organic electrochemical transistor synapse with a nafion membrane for enhanced synaptic properties. Adv. Eng. Mater., 2022, 24(4), 2100918. doi:10.1002/adem.202100918http://dx.doi.org/10.1002/adem.202100918
Xue X.; Li C.; Shangguan Z.; Gao C.; Chenchai K.; Liao J.; Zhang X.; Zhang G.; Zhang D. Intrinsically stretchable and healable polymer semiconductors. Adv. Sci., 2024, 11(8), e2305800. doi:10.1002/advs.202305800http://dx.doi.org/10.1002/advs.202305800
Lee Y.; Oh J. Y.; Xu W. T.; Kim O.; Kim T. R.; Kang J.; Kim Y.; Son D.; Tok J. B. H.; Park M. J.; Bao Z. N.; Lee T. W. Stretchable organic optoelectronic sensorimotor synapse. Sci. Adv., 2018, 4(11), eaat7387. doi:10.1126/sciadv.aat7387http://dx.doi.org/10.1126/sciadv.aat7387
Dai Y. H.; Dai S. L.; Li N.; Li Y.; Moser M.; Strzalka J.; Prominski A.; Liu Y. D.; Zhang Q. T.; Li S. S.; Hu H. W.; Liu W.; Chatterji S.; Cheng P.; Tian B. Z.; McCulloch I.; Xu J.; Wang S. H. Stretchable redox-active semiconducting polymers for high-performance organic electrochemical transistors. Adv. Mater., 2022, 34(23), e2201178. doi:10.1002/adma.202201178http://dx.doi.org/10.1002/adma.202201178
Zhang S. Y.; Qian S. H.; Zhao G. X.; Pan Q. C.; Song R. H.; Zhang T.; Zhang S. H.; Geng Z.; Huang J.; Wang L. J.; Zhu B. Intrinsically antifouling, soft and conformal bioelectronic from scalable fabrication of thin-film OECT arrays by zwitterionic polymers. Chem. Eng. J., 2024, 483, 148980. doi:10.1016/j.cej.2024.148980http://dx.doi.org/10.1016/j.cej.2024.148980
White H. S.; Kittlesen G. P.; Wrighton M. S. Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor. J. Am. Chem. Soc., 1984, 106(18), 5375-5377. doi:10.1021/ja00330a070http://dx.doi.org/10.1021/ja00330a070
Kim S. H.; Hong K.; Xie W.; Lee K. H.; Zhang S. P.; Lodge T. P.; Frisbie C. D. Electrolyte-gated transistors for organic and printed electronics. Adv. Mater., 2013, 25(13), 1822-1846. doi:10.1002/adma.201202790http://dx.doi.org/10.1002/adma.201202790
Hong K.; Kim Y. H.; Kim S. H.; Xie W.; Xu W. D.; Kim C. H.; Frisbie C. D. Aerosol jet printed, sub-2 V complementary circuits constructed from P- and N-type electrolyte gated transistors. Adv. Mater., 2014, 26(41), 7032-7037. doi:10.1002/adma.201401330http://dx.doi.org/10.1002/adma.201401330
Andersson Ersman P.; Lassnig R.; Strandberg J.; Tu D. Y.; Keshmiri V.; Forchheimer R.; Fabiano S.; Gustafsson G.; Berggren M. All-printed large-scale integrated circuits based on organic electrochemical transistors. Nat. Commun., 2019, 10(1), 5053. doi:10.1038/s41467-019-13079-4http://dx.doi.org/10.1038/s41467-019-13079-4
Eckel C.; Weitz R. T. Bioelectronics goes vertical. Nat. Mater., 2023, 22(10), 1165-1166. doi:10.1038/s41563-023-01650-whttp://dx.doi.org/10.1038/s41563-023-01650-w
Cea C.; Zhao Z. F.; Wisniewski D. J.; Spyropoulos G. D.; Polyravas A.; Gelinas J. N.; Khodagholy D. Integrated internal ion-gated organic electrochemical transistors for stand-alone conformable bioelectronics. Nat. Mater., 2023, 22(10), 1227-1235. doi:10.1038/s41563-023-01599-whttp://dx.doi.org/10.1038/s41563-023-01599-w
Zhao Z. Y.; Tian Z. Y.; Yan F. Flexible organic electrochemical transistors for bioelectronics. Cell Rep. Phys. Sci., 2023, 4(11), 101673. doi:10.1016/j.xcrp.2023.101673http://dx.doi.org/10.1016/j.xcrp.2023.101673
Bonafè F.; Decataldo F.; Zironi I.; Remondini D.; Cramer T.; Fraboni B. AC amplification gain in organic electrochemical transistors for impedance-based single cell sensors. Nat. Commun., 2022, 13, 5423. doi:10.1038/s41467-022-33094-2http://dx.doi.org/10.1038/s41467-022-33094-2
Wu J.; Liu H.; Chen W. W.; Ma B.; Ju H. X. Device integration of electrochemical biosensors. Nat. Rev. Bioeng., 2023, 1(5), 346-360. doi:10.1038/s44222-023-00032-whttp://dx.doi.org/10.1038/s44222-023-00032-w
Ohayon D.; Nikiforidis G.; Savva A.; Giugni A.; Wustoni S.; Palanisamy T.; Chen X. X.; Maria I. P.; Di Fabrizio E.; Costa P. M. F. J.; McCulloch I.; Inal S. Biofuel powered glucose detection in bodily fluids with an n-type conjugated polymer. Nat. Mater., 2020, 19(4), 456-463. doi:10.1038/s41563-019-0556-4http://dx.doi.org/10.1038/s41563-019-0556-4
Guo K. Y.; Wustoni S.; Koklu A.; Díaz-Galicia E.; Moser M.; Hama A.; Alqahtani A. A.; Ahmad A. N.; Alhamlan F. S.; Shuaib M.; Pain A.; McCulloch I.; Arold S. T.; Grünberg R.; Inal S. Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors. Nat. Biomed. Eng., 2021, 5(7), 666-677. doi:10.1038/s41551-021-00734-9http://dx.doi.org/10.1038/s41551-021-00734-9
Inal S. Fast and sensitive electromechanical sensing. Nat. Biomed. Eng., 2022, 6(3), 223-224. doi:10.1038/s41551-021-00841-7http://dx.doi.org/10.1038/s41551-021-00841-7
Wang L. Q.; Wang X. J.; Wu Y. G.; Guo M. Q.; Gu C. J.; Dai C. H.; Kong D. R.; Wang Y.; Zhang C.; Qu D.; Fan C. H.; Xie Y. H.; Zhu Z. Q.; Liu Y. Q.; Wei D. C. Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples. Nat. Biomed. Eng., 2022, 6(3), 276-285. doi:10.1038/s41551-021-00833-7http://dx.doi.org/10.1038/s41551-021-00833-7
Cea C.; Spyropoulos G. D.; Jastrzebska-Perfect P.; Ferrero J. J.; Gelinas J. N.; Khodagholy D. Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nat. Mater., 2020, 19(6), 679-686. doi:10.1038/s41563-020-0638-3http://dx.doi.org/10.1038/s41563-020-0638-3
Liu G. C.; Wen W.; Zhao Z. Y.; Huang X.; Li Y. F.; Qin M. C.; Pan Z. C.; Guo Y. L.; Liu Y. Q. Bionic tactile-gustatory receptor for object identification based on all-polymer electrochemical transistor. Adv. Mater., 2023, 35(24), e2300242. doi:10.1002/adma.202370173http://dx.doi.org/10.1002/adma.202370173
van de Burgt Y.; Melianas A.; Keene S. T.; Malliaras G.; Salleo A. Organic electronics for neuromorphic computing. Nat. Electron., 2018, 1, 386-397. doi:10.1038/s41928-018-0103-3http://dx.doi.org/10.1038/s41928-018-0103-3
Ho D. H.; Roe D. G.; Choi Y. Y.; Kim S.; Choi Y. J.; Kim D. H.; Jo S. B.; Cho J. H. Non-von Neumann multi-input spike signal processing enabled by an artificial synaptic multiplexer. Sci. Adv., 2022, 8(25), eabn1838. doi:10.1126/sciadv.abn1838http://dx.doi.org/10.1126/sciadv.abn1838
Nishioka D.; Tsuchiya T.; Namiki W.; Takayanagi M.; Imura M.; Koide Y.; Higuchi T.; Terabe K. Edge-of-chaos learning achieved by ion-electron-coupled dynamics in an ion-gating reservoir. Sci. Adv., 2022, 8(50), eade1156. doi:10.1126/sciadv.ade1156http://dx.doi.org/10.1126/sciadv.ade1156
Kim Y.; Chortos A.; Xu W. T.; Liu Y. X.; Oh J. Y.; Son D.; Kang J.; Foudeh A. M.; Zhu C. X.; Lee Y.; Niu S. M.; Liu J.; Pfattner R.; Bao Z. N.; Lee T. W. A bioinspired flexible organic artificial afferent nerve. Science, 2018, 360(6392), 998-1003. doi:10.1126/science.aao0098http://dx.doi.org/10.1126/science.aao0098
Melianas A.; Quill T. J.; LeCroy G.; Tuchman Y.; Loo H. V.; Keene S. T.; Giovannitti A.; Lee H. R.; Maria I. P.; McCulloch I.; Salleo A. Temperature-resilient solid-state organic artificial synapses for neuromorphic computing. Sci. Adv., 2020, 6(27), eabb2958. doi:10.1126/sciadv.abb2958http://dx.doi.org/10.1126/sciadv.abb2958
van de Burgt Y.; Lubberman E.; Fuller E. J.; Keene S. T.; Faria G. C.; Agarwal S.; Marinella M. J.; Alec Talin A.; Salleo A. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater., 2017, 16(4), 414-418. doi:10.1038/nmat4856http://dx.doi.org/10.1038/nmat4856
Wang H. L.; Zhao Q.; Ni Z. J.; Li Q. Y.; Liu H. T.; Yang Y. C.; Wang L. F.; Ran Y.; Guo Y. L.; Hu W. P.; Liu Y. Q. A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv. Mater., 2018, 30(46), e1803961. doi:10.1002/adma.201870349http://dx.doi.org/10.1002/adma.201870349
Lenz J.; del Giudice F.; Geisenhof F. R.; Winterer F.; Weitz R. T. Vertical, electrolyte-gated organic transistors show continuous operation in the MA cm-2 and artificial synaptic behaviour. Nat. Nanotechnol., 2019, 14(6), 579-585. doi:10.1038/s41565-019-0407-0http://dx.doi.org/10.1038/s41565-019-0407-0
Fuller E. J.; Keene S. T.; Melianas A.; Wang Z. R.; Agarwal S.; Li Y. Y.; Tuchman Y.; James C. D.; Marinella M. J.; Yang J. J.; Salleo A.; Talin A. A. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Sci. Adv., 2019, 364(6440), 570-574. doi:10.1126/science.aaw5581http://dx.doi.org/10.1126/science.aaw5581
Chen S.; Surendran A.; Wu X. H.; Leong W. L. Contact modulated ionic transfer doping in all-solid-state organic electrochemical transistor for ultra-high sensitive tactile perception at low operating voltage. Adv. Funct. Mater., 2020, 30(51), 2006186. doi:10.1002/adfm.202070340http://dx.doi.org/10.1002/adfm.202070340
Druet V.; Ohayon D.; Petoukhoff C. E.; Zhong Y. Z.; Alshehri N.; Koklu A.; Nayak P. D.; Salvigni L.; Almulla L.; Surgailis J.; Griggs S.; McCulloch I.; Laquai F.; Inal S. A single n-type semiconducting polymer-based photo-electrochemical transistor. Nat. Commun., 2023, 14(1), 5481. doi:10.1038/s41467-023-41313-7http://dx.doi.org/10.1038/s41467-023-41313-7
Zang Y. P.; Shen H. G.; Huang D. Z.; Di C. A.; Zhu D. B. A dual-organic-transistor-based tactile-perception system with signal-processing functionality. Adv. Mater., 2017, 29(18), 1606088. doi:10.1002/adma.201606088http://dx.doi.org/10.1002/adma.201606088
Chouhdry H. H.; Lee D. H.; Bag A.; Lee N. E. A flexible artificial chemosensory neuronal synapse based on chemoreceptive ionogel-gated electrochemical transistor. Nat. Commun., 2023, 14(1), 821. doi:10.1038/s41467-023-36480-6http://dx.doi.org/10.1038/s41467-023-36480-6
Wang S. J.; Chen X.; Zhao C.; Kong Y. X.; Lin B. J.; Wu Y. Y.; Bi Z. Z.; Xuan Z. Y.; Li T.; Li Y. X.; Zhang W.; Ma E.; Wang Z. R.; Ma W. An organic electrochemical transistor for multi-modal sensing, memory and processing. Nat. Electron., 2023, 6, 281-291. doi:10.1038/s41928-023-00950-yhttp://dx.doi.org/10.1038/s41928-023-00950-y
Liu R. P.; Zhu X. Y.; Duan J. Y.; Chen J. X.; Xie Z.; Chen C. Y.; Xie X.; Zhang Y. X.; Yue W. Versatile neuromorphic modulation and biosensing based on N-type small-molecule organic mixed ionic-electronic conductors. Angew. Chem. Int. Ed., 2024, 63(5), e202315537. doi:10.1002/anie.202315537http://dx.doi.org/10.1002/anie.202315537
Tan S. T. M.; Gumyusenge A.; Quill T. J.; LeCroy G. S.; Bonacchini G. E.; Denti I.; Salleo A. Mixed ionic-electronic conduction, a multifunctional property in organic conductors. Adv. Mater., 2022, 34(21), e2110406. doi:10.1002/adma.202110406http://dx.doi.org/10.1002/adma.202110406
Giovannitti A.; Rashid R. B.; Thiburce Q.; Paulsen B. D.; Cendra C.; Thorley K.; Moia D.; Mefford J. T.; Hanifi D.; Du W. Y.; Moser M.; Salleo A.; Nelson J.; McCulloch I.; Rivnay J. Energetic control of redox-active polymers toward safe organic bioelectronic materials. Adv. Mater., 2020, 32(16), e1908047.
Flagg L. Q.; Giridharagopal R.; Guo J. J.; Ginger D. S. Anion-dependent doping and charge transport in organic electrochemical transistors. Chem. Mater., 2018, 30(15), 5380-5389. doi:10.1021/acs.chemmater.8b02220http://dx.doi.org/10.1021/acs.chemmater.8b02220
Romele P.; Ghittorelli M.; Kovács-Vajna Z. M.; Torricelli F. Ion buffering and interface charge enable high performance electronics with organic electrochemical transistors. Nat. Commun., 2019, 10(1), 3044. doi:10.1038/s41467-019-11073-4http://dx.doi.org/10.1038/s41467-019-11073-4
Liu H.; Yang A. N.; Song J. J.; Wang N. X.; Lam P.; Li Y.; Law H. K. W.; Yan F. Ultrafast, sensitive, and portable detection of COVID-19 IgG using flexible organic electrochemical transistors. Sci. Adv., 2021, 7(38), eabg8387. doi:10.1126/sciadv.abg8387http://dx.doi.org/10.1126/sciadv.abg8387
Laiho A.; Herlogsson L.; Forchheimer R.; Crispin X.; Berggren M. Controlling the dimensionality of charge transport in organic thin-film transistors. Proc. Natl. Acad. Sci. USA, 2011, 108(37), 15069-15073. doi:10.1073/pnas.1107063108http://dx.doi.org/10.1073/pnas.1107063108
Palazzo G.; De Tullio D.; Magliulo M.; Mallardi A.; Intranuovo F.; Mulla M. Y.; Favia P.; Vikholm-Lundin I.; Torsi L. Detection beyond Debye's length with an electrolyte-gated organic field-effect transistor. Adv. Mater., 2015, 27(5), 911-916. doi:10.1002/adma.201403541http://dx.doi.org/10.1002/adma.201403541
Tan S. T. M.; Giovannitti A.; Melianas A.; Moser M.; Cotts B. L.; Singh D.; McCulloch I.; Salleo A. High-gain chemically gated organic electrochemical transistor. Adv. Funct. Mater., 2021, 31(19), 2010868. doi:10.1002/adfm.202010868http://dx.doi.org/10.1002/adfm.202010868
Bischak C. G.; Flagg L. Q.; Ginger D. S. Ion exchange gels allow organic electrochemical transistor operation with hydrophobic polymers in aqueous solution. Adv. Mater., 2020, 32(32), e2002610. doi:10.1002/adma.202002610http://dx.doi.org/10.1002/adma.202002610
Brodský J.; Gablech I.; Migliaccio L.; Havlíček M.; Donahue M. J.; Głowacki E. D. Downsizing the channel length of vertical organic electrochemical transistors. ACS Appl. Mater. Interfaces, 2023, 15(22), 27002-27009. doi:10.1021/acsami.3c02049http://dx.doi.org/10.1021/acsami.3c02049
Jeong S. Y.; Moon J. W.; Lee S.; Wu Z. A.; Park S. H.; Cho J. H.; Woo H. Y. Ion gel-gated quasi-solid-state vertical organic electrochemical transistor and inverter. Adv. Electron. Mater., 2023, 9(6), 2300053. doi:10.1002/aelm.202300053http://dx.doi.org/10.1002/aelm.202300053
Lim D. U.; Jo S. B.; Cho J. H. Monolithic tandem vertical electrochemical transistors for printed multi-valued logic. Adv. Mater., 2023, 35(9), e2208757. doi:10.1002/adma.202208757http://dx.doi.org/10.1002/adma.202208757
Rashid R. B.; Du W. Y.; Griggs S.; Maria I. P.; McCulloch I.; Rivnay J. Ambipolar inverters based on cofacial vertical organic electrochemical transistor pairs for biosignal amplification. Sci. Adv., 2021, 7(37), eabh1055. doi:10.1126/sciadv.abh1055http://dx.doi.org/10.1126/sciadv.abh1055
Huang W.; Chen J. H.; Yao Y.; Zheng D.; Ji X. D.; Feng L. W.; Moore D.; Glavin N. R.; Xie M.; Chen Y.; Pankow R. M.; Surendran A.; Wang Z.; Xia Y.; Bai L. B.; Rivnay J.; Ping J. F.; Guo X. G.; Cheng Y. H.; Marks T. J.; Facchetti A. Vertical organic electrochemical transistors for complementary circuits. Nature, 2023, 613(7944), 496-502. doi:10.1038/s41586-022-05592-2http://dx.doi.org/10.1038/s41586-022-05592-2
Kim J.; Pankow R. M.; Cho Y.; Duplessis I. D.; Qin F.; Meli D.; Daso R.; Zheng D.; Huang W.; Rivnay J.; Marks T. J.; Facchetti A. Monolithically integrated high-density vertical organic electrochemical transistor arrays and complementary circuits. Nat. Electron., 2024, 7, 234-243. doi:10.1038/s41928-024-01127-xhttp://dx.doi.org/10.1038/s41928-024-01127-x
Cunin C.; Gumyusenge A. Vertical architecture improves transistor family. News & Views, 2023, 613, 444-445. doi:10.1038/d41586-023-00026-zhttp://dx.doi.org/10.1038/d41586-023-00026-z
0
浏览量
754
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构