浏览全部资源
扫码关注微信
1.青岛科技大学,化工学院,青岛 266042
2.青岛科技大学,高分子科学与工程学院,青岛 266042
E-mail: zbli@qust.edu.cn
纸质出版日期:2024-08-20,
网络出版日期:2024-06-03,
收稿日期:2024-03-03,
录用日期:2024-04-12
移动端阅览
黄炳政, 韩瑞, 李峥, 李志波. 有机碱催化ω‑十五内酯开环聚合制备类聚乙烯性质的可降解塑料. 高分子学报, 2024, 55(8), 976-985
Huang, B. Z.; Han, R.; Li, Z.; Li, Z. B. Ring-opening polymerization of ω-pentadecalactone catalyzed by organobases toward degradable polyethylene-like plastics. Acta Polymerica Sinica, 2024, 55(8), 976-985
黄炳政, 韩瑞, 李峥, 李志波. 有机碱催化ω‑十五内酯开环聚合制备类聚乙烯性质的可降解塑料. 高分子学报, 2024, 55(8), 976-985 DOI: 10.11777/j.issn1000-3304.2024.24067.
Huang, B. Z.; Han, R.; Li, Z.; Li, Z. B. Ring-opening polymerization of ω-pentadecalactone catalyzed by organobases toward degradable polyethylene-like plastics. Acta Polymerica Sinica, 2024, 55(8), 976-985 DOI: 10.11777/j.issn1000-3304.2024.24067.
以环三磷腈碱(CTPB)为催化剂,以苄醇(BnOH)为引发剂,实现了
ω
-十五内酯(PDL)的高效可控开环聚合. 通过优化实验条件,得到了高分子量的聚
ω
-十五内酯(PPDL). 示差扫描量热法(DSC)表征证明了PPDL聚酯材料较好的结晶性. 高分子量的PPDL不仅有与聚乙烯相似的力学性质、结晶性和高熔点(
T
m
=95.5 ℃),而且还具有聚酯类材料的降解性. 合成了PDL与
ε
-己内酯(
ε
-CL)的无规共聚物,证明可以通过改变
ε
-CL的含量实现共聚物的熔点、力学性质和降解性可控调节. 进一步通过双官能团引发剂合成中低分子量的双羟基端PPDL,证明可以通过与二异氰酸酯进行扩链反应制备高分子量PPDL (PPDL-E),力学性能能够得到有效提升. 最后在碱性条件下实现了PPDL共聚酯的水解,验证了PPDL及其与
ε
-CL共聚物的水解性能.
This study reported that an efficient and controllable
ring-opening polymerization of
ω
‑pentadecalactone (PDL) by using cyclic trimeric phosphazene base (CTPB) as a catalyst and benzyl alcohol (BnOH) as an initiator. High molecular weight PPDL was obtained after optimizing the experimental conditions. The PPDL film with high molecular weight not only showed similar mechanical properties
crystallinity and high melting point (
T
m
=95.5 ℃) as polyethylene
but also exhibited the degradability of aliphatic polyesters. Differential scanning calorimetry (DSC) tests proved that PPDL had good crystallinity. Wide-angle X-ray scattering (WAXS) showed that PPDL had a unit cell structure similar to that of commercial high-density polyethylene (HDPE). Moreover
bishydroxyl-end-capped PPDL (PPDL-diol) can be easily prepared
via
ring opening polymerization (ROP) of PDL with 1
4-benzenedimethanol (BDM) as initiator. Then the PPDLs with high molecular weights were obtained by chain extension reactions with diisocyanates and showed enhanced mechanical properties. In addition
we synthesized a variety of random copolymers with different ratios of PDL to
ε
-caprolactone (
ε
-CL). The melting points and hydrolysis of the copolymers could be adjusted by changing the ratio of
ε
-CL. The melting points of the obtained random copolymers could be adjusted in the range of 53.0-95.5 ℃ by changing the ratio of
ε
-CL. Finally
the hydrolysis of PPDL copolyester was achieved under alkaline conditions. Compared with PPDL homopolymer
the hydrolysis of random copolymers showed faster hydrolysis rate and adjustability.
开环聚合有机碱类聚乙烯高分子可降解聚酯
Ring-opening polymerizationOrganobasePolyethylene-like polymersDegradable polyester
Haider T.; Shyshov O.; Suraeva O.; Lieberwirth I.; von Delius M.; Wurm F. R. Long-chain polyorthoesters as degradable polyethylene mimics. Macromolecules, 2019, 52(6), 2411-2420. doi:10.1021/acs.macromol.9b00180http://dx.doi.org/10.1021/acs.macromol.9b00180
Stempfle F.; Ortmann P.; Mecking S. Long-chain aliphatic polymers to bridge the gap between semicrystalline polyolefins and traditional polycondensates. Chem. Rev., 2016, 116(7), 4597-4641. doi:10.1021/acs.chemrev.5b00705http://dx.doi.org/10.1021/acs.chemrev.5b00705
Gan L.; Dong Z. W.; Xu H. F.; Lv H. D.; Liu G. X.; Zhang F.; Huang Z. Beyond conventional degradation: catalytic solutions for polyolefin upcycling. CCS Chem., 2024, 6(2), 313-333. doi:10.31635/ccschem.023.202303538http://dx.doi.org/10.31635/ccschem.023.202303538
Kim M. S.; Chang H.; Zheng L.; Yan Q.; Pfleger B. F.; Klier J.; Nelson K.; Majumder E. L. W.; Huber G. W. A review of biodegradable plastics: chemistry, applications, properties, and future research needs. Chem. Rev., 2023, 123(16), 9915-9939. doi:10.1021/acs.chemrev.2c00876http://dx.doi.org/10.1021/acs.chemrev.2c00876
Alimi O. S.; Farner Budarz J.; Hernandez L. M.; Tufenkji N. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol., 2018, 52(4), 1704-1724. doi:10.1021/acs.est.7b05559http://dx.doi.org/10.1021/acs.est.7b05559
Li Z.; Shen Y.; Li Z. B. Ring-opening polymerization of lactones to prepare closed-loop recyclable polyesters. Macromolecules, 2024, 57(5), 1919-1940. doi:10.1021/acs.macromol.3c01912http://dx.doi.org/10.1021/acs.macromol.3c01912
冯澳, 段素华, 曹晓环, 谭睿, 黄智豪, 张晓华, 张正彪. 单一分子量γ-丁内酯齐聚物的合成及其结晶行为研究. 高分子学报, 2022, 53(9), 1131-1141. doi:10.11777/j.issn1000-3304.2022.22150http://dx.doi.org/10.11777/j.issn1000-3304.2022.22150
Martinez M. R.; Matyjaszewski K. Degradable and recyclable polymers by reversible deactivation radical polymerization. CCS Chem., 2022, 4(7), 2176-2211. doi:10.31635/ccschem.022.202201987http://dx.doi.org/10.31635/ccschem.022.202201987
Zhou T.; Guo Y. T.; Du F. S.; Li Z. C. Ring-opening polymerization of 2-oxabicyclo[2.2.2]octan-3-one and the influence of stereochemistry on the thermal properties of the polyesters. Chinese J. Polym. Sci., 2022, 40(10), 1173-1182. doi:10.1007/s10118-022-2725-1http://dx.doi.org/10.1007/s10118-022-2725-1
Häußler M.; Eck M.; Rothauer D.; Mecking S. Closed-loop recycling of polyethylene-like materials. Nature, 2021, 590(7846), 423-427. doi:10.1038/s41586-020-03149-9http://dx.doi.org/10.1038/s41586-020-03149-9
Eck M.; Schwab S. T.; Nelson T. F.; Wurst K.; Iberl S.; Schleheck D.; Link C.; Battagliarin G.; Mecking S. Biodegradable high-density polyethylene-like material. Angew. Chem. Int. Ed. 2023, 62(6), e202213438. doi:10.1002/anie.202213438http://dx.doi.org/10.1002/anie.202213438
Witt T.; Mecking S. Large-ring lactones from plant oils. Green Chem., 2013, 15(9), 2361-2364. doi:10.1039/c3gc40905hhttp://dx.doi.org/10.1039/c3gc40905h
Nivinskienė O.; Butkienė R.; Mockutė D. The chemical composition of the essential oil of Angelica archangelical. Roots growing wild in Lithuania. J. Essent. Oil Res., 2005, 17(4), 373-377. doi:10.1080/10412905.2005.9698934http://dx.doi.org/10.1080/10412905.2005.9698934
Kalana U. L. D. I.; Datta P. P.; Hewawasam R. S.; Kiesewetter E. T.; Kiesewetter M. K. Organocatalytic ring-opening polymerization of thionolactones: anything O can do, S can do better. Polym. Chem., 2021, 12(10), 1458-1464. doi:10.1039/d0py01393ehttp://dx.doi.org/10.1039/d0py01393e
张昊天, 胡晨阳, 李莉莉, 庞烜. 开环聚合催化剂用于脂肪族聚酯合成的研究进展. 高分子学报, 2022, 53(9), 1057-1071. doi:10.11777/j.issn1000-3304.2022.22088http://dx.doi.org/10.11777/j.issn1000-3304.2022.22088
Pflughaupt R. L.; Hopkins S. A.; Wright P. M.; Dove A. P. Synthesis of poly(ω-pentadecalactone)-b-poly(acrylate) diblock copolymers via a combination of enzymatic ring-opening and RAFT polymerization techniques. J. Polym. Sci. Part A Polym. Chem., 2016, 54(20), 3326-3335. doi:10.1002/pola.28221http://dx.doi.org/10.1002/pola.28221
Spinella S.; Ganesh M.; Re G. L.; Zhang S.; Raquez J. M.; Dubois P.; Gross R. A. Enzymatic reactive extrusion: moving towards continuous enzyme-catalysed polyester polymerisation and processing. Green Chem., 2015, 17(8), 4146-4150. doi:10.1039/c5gc00992hhttp://dx.doi.org/10.1039/c5gc00992h
Amador A.; Watts A.; Neitzel A. E.; Hillmyer M. A. Entropically driven macrolide polymerizations for the synthesis of aliphatic polyester copolymers using titanium isopropoxide. Macromolecules, 2019, 52(6), 2371-2383. doi:10.1021/acs.macromol.9b00065http://dx.doi.org/10.1021/acs.macromol.9b00065
Myers D.; Witt T.; Cyriac A.; Bown M.; Mecking S.; Williams C. K. Ring opening polymerization of macrolactones: high conversions and activities using an yttrium catalyst. Polym. Chem., 2017, 8(37), 5780-5785. doi:10.1039/c7py00985bhttp://dx.doi.org/10.1039/c7py00985b
Fernández J.; Etxeberria A.; Sarasua J. R. Synthesis and properties of ω-pentadecalactone-co-δ-hexalactone copolymers: a biodegradable thermoplastic elastomer as an alternative to poly(ε-caprolactone). RSC Adv., 2016, 6(4), 3137-3149. doi:10.1039/c5ra23404bhttp://dx.doi.org/10.1039/c5ra23404b
Wang B.; Pan L.; Ma Z.; Li Y. S. Ring-opening polymerization with lewis pairs and subsequent nucleophilic substitution: a promising strategy to well-defined polyethylene-like polyesters without transesterification. Macromolecules, 2018, 51(3), 836-845. doi:10.1021/acs.macromol.7b02378http://dx.doi.org/10.1021/acs.macromol.7b02378
Walther P.; Naumann S. N-heterocyclic olefin-based (co)polymerization of a challenging monomer: homopolymerization of ω-pentadecalactone and its copolymers with γ-butyrolactone, δ-valerolactone, and ε-caprolactone. Macromolecules, 2017, 50(21), 8406-8416. doi:10.1021/acs.macromol.7b01678http://dx.doi.org/10.1021/acs.macromol.7b01678
Ladelta V.; Kim J. D.; Bilalis P.; Gnanou Y.; Hadjichristidis N. Block copolymers of macrolactones/small lactones by a "catalyst-switch" organocatalytic strategy. Thermal properties and phase behavior. Macromolecules, 2018, 51(7), 2428-2436. doi:10.1021/acs.macromol.8b00153http://dx.doi.org/10.1021/acs.macromol.8b00153
Ladelta V.; Bilalis P.; Gnanou Y.; Hadjichristidis N. Ring-opening polymerization of ω-pentadecalactone catalyzed by phosphazene superbases. Polym. Chem., 2017, 8(3), 511-515. doi:10.1039/c6py01983hhttp://dx.doi.org/10.1039/c6py01983h
Todd R.; Tempelaar S.; Lo Re G.; Spinella S.; McCallum S. A.; Gross R. A.; Raquez J. M.; Dubois P. Poly(ω- pentadecalactone)-b-poly(l-lactide) block copolymers via organic-catalyzed ring opening polymerization and potential applications. ACS Macro Lett., 2015, 4(4), 408-411. doi:10.1021/acsmacrolett.5b00021http://dx.doi.org/10.1021/acsmacrolett.5b00021
沈勇, 李志波. 有机磷腈碱催化环内酯开环聚合制备可降解聚酯研究进展. 高分子学报, 2020, 51(8), 777-790. doi:10.11777/j.issn1000-3304.2020.20050http://dx.doi.org/10.11777/j.issn1000-3304.2020.20050
Liu S. F.; Ren C. L.; Zhao N.; Shen Y.; Li Z. B. Phosphazene bases as organocatalysts for ring-opening polymerization of cyclic esters. Macromol. Rapid Commun., 2018, 39(24), e1800485. doi:10.1002/marc.201800485http://dx.doi.org/10.1002/marc.201800485
Song Q. L.; Hu S. Y.; Zhao J. P.; Zhang G. Z. Organocatalytic copolymerization of mixed type monomers. Chinese J. Polym. Sci., 2017, 35(5), 581-601. doi:10.1007/s10118-017-1925-6http://dx.doi.org/10.1007/s10118-017-1925-6
Zhao N.; Ren C. L.; Li H. K.; Li Y. X.; Liu S. F.; Li Z. B. Selective ring-opening polymerization of non-strained γ-butyrolactone catalyzed by A cyclic trimeric phosphazene base. Angew. Chem. Int. Ed., 2017, 56(42), 12987-12990. doi:10.1002/anie.201707122http://dx.doi.org/10.1002/anie.201707122
Li H. K.; Zhao N.; Ren C. L.; Liu S. F.; Li Z. B. Synthesis of linear and star poly(ε-caprolactone) with controlled and high molecular weights via cyclic trimeric phosphazene base catalyzed ring-opening polymerization. Polym. Chem., 2017, 8(47), 7369-7374. doi:10.1039/c7py01673ehttp://dx.doi.org/10.1039/c7py01673e
Liu S. F.; Li H. K.; Zhao N.; Li Z. B. Stereoselective ring-opening polymerization of rac-lactide using organocatalytic cyclic trimeric phosphazene base. ACS Macro Lett., 2018, 7(6), 624-628. doi:10.1021/acsmacrolett.8b00353http://dx.doi.org/10.1021/acsmacrolett.8b00353
Li Y. X.; Zhao N.; Wei C. Z.; Sun A. B.; Liu S. F.; Li Z. B. Binary organocatalytic system for ring-opening polymerization of ε-caprolactone and δ-valerolactone: synergetic effects for enhanced selectivity. Eur. Polym. J., 2019, 111, 11-19. doi:10.1016/j.eurpolymj.2018.12.012http://dx.doi.org/10.1016/j.eurpolymj.2018.12.012
Zhao N.; Ren C. L.; Shen Y.; Liu S. F.; Li Z. B. Facile synthesis of aliphatic ω-pentadecalactone containing diblock copolyesters via sequential ROP with l-lactide, ε-caprolactone, and δ-valerolactone catalyzed by cyclic trimeric phosphazene base with inherent tribasic characteristics. Macromolecules, 2019, 52(3), 1083-1091. doi:10.1021/acs.macromol.8b02690http://dx.doi.org/10.1021/acs.macromol.8b02690
van der Meulen I.; de Geus M.; Antheunis H.; Deumens R.; Joosten E. A. J.; Koning C. E.; Heise A. Polymers from functional macrolactones as potential biomaterials: enzymatic ring opening polymerization, biodegradation, and biocompatibility. Biomacromolecules, 2008, 9(12), 3404-3410. doi:10.1021/bm800898chttp://dx.doi.org/10.1021/bm800898c
Wilson J. A.; Hopkins S. A.; Wright P. M.; Dove A. P. Synthesis of ω-pentadecalactone copolymers with independently tunable thermal and degradation behavior. Macromolecules, 2015, 48(4), 950-958. doi:10.1021/ma5022049http://dx.doi.org/10.1021/ma5022049
Guo Z. W.; Lu X. Y.; Wang X. H.; Li X.; Li J.; Sun J. Q. Engineering of chain rigidity and hydrogen bond cross-linking toward ultra-strong, healable, recyclable, and water-resistant elastomers. Adv. Mater., 2023, 35(21), e2300286. doi:10.1002/adma.202300286http://dx.doi.org/10.1002/adma.202300286
Gnanasekar P.; Chen H. Y.; Luo Q.; Tanguy N.; Li L. C.; Chen J.; Yan N. Mechanically robust, degradable, catalyst-free fully bio-based shape memory polyurethane: influence of a novel vanillin-alaninol chain extender. ACS Sustainable Chem. Eng., 2022, 10(16), 5203-5211. doi:10.1021/acssuschemeng.2c00053http://dx.doi.org/10.1021/acssuschemeng.2c00053
Shi L.; Zhang R. Y.; Ying W. B.; Hu H.; Wang Y. B.; Guo Y. Q.; Wang W. Q.; Tang Z. B.; Zhu J. Polyether-polyester and HMDI based polyurethanes: effect of PLLA content on structure and property. Chinese J. Polym. Sci., 2019, 37(11), 1152-1161. doi:10.1007/s10118-019-2283-3http://dx.doi.org/10.1007/s10118-019-2283-3
Bouyahyi M.; Pepels M. P. F.; Heise A.; Duchateau R. ω-Pentandecalactone polymerization and ω-pentadecalactone/ε-caprolactone copolymerization reactions using organic catalysts. Macromolecules, 2012, 45(8), 3356-3366. doi:10.1021/ma3001675http://dx.doi.org/10.1021/ma3001675
Mohamed A.; Finkenstadt V. L.; Gordon S. H.; Biresaw G.; Palmquist D. E.; Rayas-Duarte P. Thermal properties of PCL/gluten bioblends characterized by TGA, DSC, SEM, and infrared-PAS. J. Appl. Polym. Sci., 2008, 110(5), 3256-3266. doi:10.1002/app.28914http://dx.doi.org/10.1002/app.28914
Cai J. L.; Hsiao B. S.; Gross R. A. Polypentadecalactone prepared by lipase catalysis: crystallization kinetics and morphology. Polym. Int., 2009, 58(8), 944-953. doi:10.1002/pi.2624http://dx.doi.org/10.1002/pi.2624
0
浏览量
119
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构