浏览全部资源
扫码关注微信
郑州大学 橡塑模具国家工程研究中心 郑州 450000
E-mail: mihaoyang@zzu.edu.cn
纸质出版日期:2024-10-20,
网络出版日期:2024-06-19,
收稿日期:2024-04-09,
录用日期:2024-05-10
移动端阅览
崔文豪, 顾瑞星, 米皓阳. 超临界二氧化碳流场作用下线型聚乙烯剪切塑化行为的分子动力学模拟研究. 高分子学报, 2024, 55(10), 1414-1429
Cui, W. H.; Gu, R. X.; Mi, H. Y. Molecular dynamics simulation study on the shear plasticizing behavior of linear polyethylene under the influence of supercritical carbon dioxide flow field. Acta Polymerica Sinica, 2024, 55(10), 1414-1429
崔文豪, 顾瑞星, 米皓阳. 超临界二氧化碳流场作用下线型聚乙烯剪切塑化行为的分子动力学模拟研究. 高分子学报, 2024, 55(10), 1414-1429 DOI: 10.11777/j.issn1000-3304.2024.24076.
Cui, W. H.; Gu, R. X.; Mi, H. Y. Molecular dynamics simulation study on the shear plasticizing behavior of linear polyethylene under the influence of supercritical carbon dioxide flow field. Acta Polymerica Sinica, 2024, 55(10), 1414-1429 DOI: 10.11777/j.issn1000-3304.2024.24076.
通过非平衡分子动力学模拟探讨了聚乙烯(PE)及其与超临界二氧化碳(scCO
2
)共混体系在剪切流下的热力学和构象性质. 发现scCO
2
的增塑作用可显著改变PE的热力学和构象性质,如降低分子间作用力、减少体系剪切应力、降低体系黏度、减少分子链构象参数、提
高PE链gauche plus构象,从而增加分子链的卷曲和自由体积,减少剪切下的分子取向排列. scCO
2
还显著降低了体系的弛豫时间,加强了PE分子链抵抗剪切的能力,从而增强了动态性质和热稳定性. 这些发现为scCO
2
在PE体系中的作用提供了微观见解,为调控scCO
2
辅助聚合物加工工艺,开发高性能聚合物材料提供了理论依据.
This research comprehensively examines the thermodynamic behavior and conformational changes in polyethylene (PE) and its blends with supercritical carbon dioxide (scCO
2
) under shear flow conditions using non-equilibrium molecular dynamics (NEMD) simulations
which uncovers the influence of scCO
2
acting as a plasticizer
on the thermodynamic and conformational properties of PE. The study reveals that scCO
2
diminishes intermolecular forces and shear stress within the system
leading to a reduction in viscosity and alterations in the conformational parameters of PE molecular chains. These changes result in an increased free volume and curling of the molecular chains
with a notable decrease in molecular orientation alignment under shear
thereby
enhancing the system's dynamic properties and thermal stability. By analyzing parameters such as stress (
τ
xy
and
σ
v
)-strain(
γ
) curves
mean square end-to-end distance (
R
ete
)
radius of gyration (
R
g
)
orientation parameters (
P
2
θ
)
and the autocorrelation function of the relaxation process under three shear flow
the peak shear stress
τ
xy
decreased from 0.18 in the PE system to 0.068 in the PE+scCO
2
system at
<math id="M1"><mover accent="true"><mi>γ</mi><mo>˙</mo></mover></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=69098189&type=
3.21733332
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=69098164&type=
1.43933344
=4.686×10
-1
τ
-1
and both
R
ete
and
R
g
decreased. The persistence length
l
p
of the PE chains is three times that of the PE+scCO
2
system. Additionally
the distribution of the molecular chain dihedral angle's gauche plus conformation is reduced
and the
trans
conformation distribution has increased. The research elucidates that the presence of scCO
2
reduces the system's Rouse time
τ
R
by approximately 3.9 times
highlighting the plasticizing effect of scCO
2
which could effectively promote the conformational freedom and mechanical adaptability of PE under shear flow. This work not only provides deep insights into the complex interactions between PE and scCO
2
but also showcases the potential of utilizing scCO
2
as a sustainable processing
aid in the development of high-performance polymer materials. The findings offer a theoretical foundation for regulating scCO
2
-assisted polymer processing techniques and advancing the understanding of the dynamic response of polymer systems to external shear.
线型聚合物超临界二氧化碳非平衡分子动力学剪切取向剪切流增塑作用
Linear polymerSupercritical carbon dioxideNon-equilibrium molecular dynamicsShear orientationShear flowPlasticizing effect
Hyatt J. A. Liquid and supercritical carbon dioxide as organic solvents. J. Org. Chem., 1984, 49(26), 5097-5101. doi:10.1021/jo00200a016http://dx.doi.org/10.1021/jo00200a016
Ramsey E.; Sun Q. B.; Zhang Z. Q.; Zhang C. M.; Gou W. Mini-review: green sustainable processes using supercritical fluid carbon dioxide. J. Environ. Sci., 2009, 21(6), 720-726. doi:10.1016/s1001-0742(08)62330-xhttp://dx.doi.org/10.1016/s1001-0742(08)62330-x
Kendall J. L.; Canelas D. A.; Young J. L.; DeSimone J. M. Polymerizations in supercritical carbon dioxide. Chem. Rev., 1999, 99(2), 543-564. doi:10.1021/cr9700336http://dx.doi.org/10.1021/cr9700336
Raveendran P.; Ikushima Y.; Wallen S. L. Polar attributes of supercritical carbon dioxide. Acc. Chem. Res., 2005, 38(6), 478-485. doi:10.1021/ar040082mhttp://dx.doi.org/10.1021/ar040082m
Arumugham T.; Rambabu K.; Hasan S. W.; Show P. L.; Rinklebe J.; Banat F. Supercritical carbon dioxide extraction of plant phytochemicals for biological and environmental applications‒a review. Chemosphere, 2021, 271, 129525. doi:10.1016/j.chemosphere.2020.129525http://dx.doi.org/10.1016/j.chemosphere.2020.129525
Erkey C. Supercritical carbon dioxide extraction of metals from aqueous solutions: a review. J. Supercrit. Fluids, 2000, 17(3), 259-287. doi:10.1016/s0896-8446(99)00047-9http://dx.doi.org/10.1016/s0896-8446(99)00047-9
Sauceau M.; Fages J.; Common A.; Nikitine C.; Rodier E. New challenges in polymer foaming: a review of extrusion processes assisted by supercritical carbon dioxide. Prog. Polym. Sci., 2011, 36(6), 749-766. doi:10.1016/j.progpolymsci.2010.12.004http://dx.doi.org/10.1016/j.progpolymsci.2010.12.004
Dörr D.; Standau T.; Murillo Castellón S.; Bonten C.; Altstädt V. Rheology in the presence of carbon dioxide (CO2) to study the melt behavior of chemically modified polylactide (PLA). Polymers, 2020, 12(5), 1108. doi:10.3390/polym12051108http://dx.doi.org/10.3390/polym12051108
Kemmere M. F.; Meyer T. Supercritical Carbon Dioxide in Polymer Reaction Engineering. Weinheim: John Wiley & Sons, 2006. 1-11. doi:10.1002/3527606726http://dx.doi.org/10.1002/3527606726
Nalawade S. P.; Picchioni F.; Janssen L. P. B. M. Supercritical carbon dioxide as a green solvent for processing polymer melts: processing aspects and applications. Prog. Polym. Sci., 2006, 31(1), 19-43. doi:10.1016/j.progpolymsci.2005.08.002http://dx.doi.org/10.1016/j.progpolymsci.2005.08.002
Smith D. E.; Babcock H. P.; Chu S. Single-polymer dynamics in steady shear flow. Science, 1999, 283(5408), 1724-1727. doi:10.1126/science.283.5408.1724http://dx.doi.org/10.1126/science.283.5408.1724
LeDuc P.; Haber C.; Bao G.; Wirtz D. Dynamics of individual flexible polymers in a shear flow. Nature, 1999, 399(6736), 564-566. doi:10.1038/21148http://dx.doi.org/10.1038/21148
Huang C. C.; Winkler R. G.; Sutmann G.; Gompper G. Semidilute polymer solutions at equilibrium and under shear flow. Macromolecules, 2010, 43(23), 10107-10116. doi:10.1021/ma101836xhttp://dx.doi.org/10.1021/ma101836x
Cromer M.; Fredrickson G. H.; Leal L. G. A study of shear banding in polymer solutions. Phys. Fluids, 2014, 26(6), 063101. doi:10.1063/1.4878842http://dx.doi.org/10.1063/1.4878842
Tu M. Q.; Lee M. G.; Robertson-Anderson R. M.; Schroeder C. M. Direct observation of ring polymer dynamics in the flow-gradient plane of shear flow. Macromolecules, 2020, 53(21), 9406-9419. doi:10.1021/acs.macromol.0c01362http://dx.doi.org/10.1021/acs.macromol.0c01362
Kulichikhin V. G.; Malkin A. Y. The role of structure in polymer rheology: review. Polymers, 2022, 14(6), 1262. doi:10.3390/polym14061262http://dx.doi.org/10.3390/polym14061262
Kwon H. J.; Jar P., Y B. Fracture toughness of polymers in shear mode. Polymer, 2005, 46(26), 12480-12492. doi:10.1016/j.polymer.2005.10.074http://dx.doi.org/10.1016/j.polymer.2005.10.074
Skrzeszewska P. J.; Sprakel J.; de Wolf F. A.; Fokkink R.; Cohen Stuart M. A.; van der Gucht J. Fracture and self-healing in a well-defined self-assembled polymer network. Macromolecules, 2010, 43(7), 3542-3548. doi:10.1021/ma1000173http://dx.doi.org/10.1021/ma1000173
Gurina D. L.; Budkov Y. A.; Kiselev M. G. A molecular insight into poly(methyl methacrylate) impregnation with mefenamic acid in supercritical carbon dioxide: a computational simulation. J. Mol. Liq., 2021, 337, 116424. doi:10.1016/j.molliq.2021.116424http://dx.doi.org/10.1016/j.molliq.2021.116424
Sun W. C.; Sun B. J.; Li Y.; Huang X. N.; Fan H. M.; Zhao X. X.; Sun H. Y.; Sun W. X. Thickening supercritical CO2 with π-stacked co-polymers: molecular insights into the role of intermolecular interaction. Polymers, 2018, 10(3), 268. doi:10.3390/polym10030268http://dx.doi.org/10.3390/polym10030268
Aoyagi T.; Doi M. Molecular dynamics simulation of entangled polymers in shear flow. Comput. Theor. Polym. Sci., 2000, 10(3-4), 317-321. doi:10.1016/s1089-3156(99)00041-0http://dx.doi.org/10.1016/s1089-3156(99)00041-0
Aust C.; Kröger M.; Hess S. Structure and dynamics of dilute polymer solutions under shear flow via nonequilibrium molecular dynamics. Macromolecules, 1999, 32(17), 5660-5672. doi:10.1021/ma981683uhttp://dx.doi.org/10.1021/ma981683u
Baig C.; Mavrantzas V. G.; Kröger M. Flow effects on melt structure and entanglement network of linear polymers: results from a nonequilibrium molecular dynamics simulation study of a polyethylene melt in steady shear. Macromolecules, 2010, 43(16), 6886-6902. doi:10.1021/ma100826uhttp://dx.doi.org/10.1021/ma100826u
Kim J. M.; Locker R.; Rutledge G. C. Plastic deformation of semicrystalline polyethylene under extension, compression, and shear using molecular dynamics simulation. Macromolecules, 2014, 47(7), 2515-2528. doi:10.1021/ma402297ahttp://dx.doi.org/10.1021/ma402297a
Li H. X.; Tian H.; Chen Y. W.; Xiao S. A.; Zhao X. Y.; Gao Y. Y.; Zhang L. Q. Analyzing and predicting the viscosity of polymer nanocomposites in the conditions of temperature, shear rate, and nanoparticle loading with molecular dynamics simulations and machine learning. J. Phys. Chem. B, 2023, 127(15), 3596-3605. doi:10.1021/acs.jpcb.3c01697http://dx.doi.org/10.1021/acs.jpcb.3c01697
Mercier Franco L. F.; Firoozabadi A. Computation of shear viscosity by a consistent method in equilibrium molecular dynamics simulations: applications to 1-decene oligomers. J. Phys. Chem. B, 2023, 127(46), 10043-10051. doi:10.1021/acs.jpcb.3c04994http://dx.doi.org/10.1021/acs.jpcb.3c04994
王栋栋, 徐晓雷. 梳形聚合物在启动剪切下的分子动力学模拟研究. 高分子学报, 2022, 53(12), 1543-1551. doi:10.11777/j.issn1000-3304.2022.22149http://dx.doi.org/10.11777/j.issn1000-3304.2022.22149
Yang G.; Zheng T.; Cheng Q. H.; Zhang H. C. Molecular dynamics simulation on shear thinning characteristics of non-Newtonian fluids. Acta Phys. Sin., 2021, 70(12), 124701. doi:10.7498/aps.70.20202116http://dx.doi.org/10.7498/aps.70.20202116
Jeong S.; Kim J. M.; Baig C. Effect of chain orientation and stretch on the stress overshoot of entangled polymeric materials under start-up shear. Macromolecules, 2017, 50(8), 3424-3429. doi:10.1021/acs.macromol.7b00288http://dx.doi.org/10.1021/acs.macromol.7b00288
Xu Z. P.; Sun R. K.; Lu W.; Patil S.; Mays J.; Schweizer K. S.; Cheng S. W. Nature of steady-state fast flow in entangled polymer melts: chain stretching, shear thinning, and viscosity scaling. Macromolecules, 2022, 55(23), 10737-10750. doi:10.1021/acs.macromol.2c01345http://dx.doi.org/10.1021/acs.macromol.2c01345
Li Y.; Tang S.; Abberton B. C.; Kröger M.; Burkhart C.; Jiang B.; Papakonstantopoulos G. J.; Poldneff M.; Liu W. K. A predictive multiscale computational framework for viscoelastic properties of linear polymers. Polymer, 2012, 53(25), 5935-5952. doi:10.1016/j.polymer.2012.09.055http://dx.doi.org/10.1016/j.polymer.2012.09.055
Likhtman A. E.; McLeish T. C. B. Quantitative theory for linear dynamics of linear entangled polymers. Macromolecules, 2002, 35(16), 6332-6343. doi:10.1021/ma0200219http://dx.doi.org/10.1021/ma0200219
Thompson A. P.; Aktulga H. M.; Berger R.; Bolintineanu D. S.; Brown W. M.; Crozier P. S.; in't Veld P. J.; Kohlmeyer A.; Moore S. G.; Nguyen T. D.; Shan R.; Stevens M. J.; Tranchida J.; Trott C.; Plimpton S. J. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun., 2022, 271, 108171. doi:10.1016/j.cpc.2021.108171http://dx.doi.org/10.1016/j.cpc.2021.108171
Jewett A. I.; Stelter D.; Lambert J.; Saladi S. M.; Roscioni O. M.; Ricci M.; Autin L.; Maritan M.; Bashusqeh S. M.; Keyes T.; Dame R. T.; Shea J. E.; Jensen G. J.; Goodsell D. S. Moltemplate: a tool for coarse-grained modeling of complex biological matter and soft condensed matter physics. J. Mol. Biol., 2021, 433(11), 166841. doi:10.1016/j.jmb.2021.166841http://dx.doi.org/10.1016/j.jmb.2021.166841
Lees A. W.; Edwards S. F. The computer study of transport processes under extreme conditions. J. Phys. C Solid State Phys., 1972, 5(15), 1921-1928. doi:10.1088/0022-3719/5/15/006http://dx.doi.org/10.1088/0022-3719/5/15/006
Braga C.; Travis K. P. A configurational temperature Nosé-Hoover thermostat. J. Chem. Phys., 2005, 123(13), 134101. doi:10.1063/1.2013227http://dx.doi.org/10.1063/1.2013227
Baig C.; Edwards B. J.; Keffer D. J.; Cochran H. D. A proper approach for nonequilibrium molecular dynamics simulations of planar elongational flow. J. Chem. Phys., 2005, 122(11), 114103. doi:10.1063/1.1819869http://dx.doi.org/10.1063/1.1819869
De Gennes P. G. Dynamics of entangled polymer solutions. I. The rouse model. Macromolecules, 1976, 9(4), 587-593. doi:10.1021/ma60052a011http://dx.doi.org/10.1021/ma60052a011
Kalathi J. T.; Kumar S. K.; Rubinstein M.; Grest G. S. Rouse mode analysis of chain relaxation in homopolymer melts. Macromolecules, 2014, 47(19), 6925-6931. doi:10.1021/ma500900bhttp://dx.doi.org/10.1021/ma500900b
Kremer K.; Grest G. S. Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J. Chem. Phys., 1990, 92(8), 5057-5086. doi:10.1063/1.458541http://dx.doi.org/10.1063/1.458541
Jorgensen W. L.; Tirado-Rives J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc. Natl. Acad. Sci. USA, 2005, 102(19), 6665-6670. doi:10.1073/pnas.0408037102http://dx.doi.org/10.1073/pnas.0408037102
Siu S. W. I.; Pluhackova K.; Böckmann R. A. Optimization of the OPLS-AA force field for long hydrocarbons. J. Chem. Theory Comput., 2012, 8(4), 1459-1470. doi:10.1021/ct200908rhttp://dx.doi.org/10.1021/ct200908r
Jorgensen W. L.; Maxwell D. S.; Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc., 1996, 118(45), 11225-11236. doi:10.1021/ja9621760http://dx.doi.org/10.1021/ja9621760
Vrabec J.; Stoll J.; Hasse H. A set of molecular models for symmetric quadrupolar fluids. J. Phys. Chem. B, 2001, 105(48), 12126-12133. doi:10.1021/jp012542ohttp://dx.doi.org/10.1021/jp012542o
Kashefolgheta S.; Wang S. Z.; Acree W. E.; Hünenberger P. H. Evaluation of nine condensed-phase force fields of the GROMOS, CHARMM, OPLS, AMBER, and OpenFF families against experimental cross-solvation free energies. Phys. Chem. Chem. Phys., 2021, 23(23), 13055-13074. doi:10.1039/d1cp00215ehttp://dx.doi.org/10.1039/d1cp00215e
Hoffmann M. M.; Too M. D.; Paddock N. A.; Horstmann R.; Kloth S.; Vogel M.; Buntkowsky G. On the behavior of the ethylene glycol components of polydisperse polyethylene glycol PEG200. J. Phys. Chem. B, 2023, 127(5), 1178-1196. doi:10.1021/acs.jpcb.2c06773http://dx.doi.org/10.1021/acs.jpcb.2c06773
Pervaje A. K.; Tilly J. C.; Inglefield D. L. Jr, Spontak, R. J.; Khan, S. A.; Santiso, E. E. Modeling polymer glass transition properties from empirical monomer data with the SAFT-γ Mie force field. Macromolecules, 2018, 51(23), 9526-9537. doi:10.1021/acs.macromol.8b01734http://dx.doi.org/10.1021/acs.macromol.8b01734
van der Vegt, N F A. Temperature dependence of gas transport in polymer melts: molecular dynamics simulations of CO2 in polyethylene. Macromolecules, 2000, 33(8), 3153-3160. doi:10.1021/ma991737fhttp://dx.doi.org/10.1021/ma991737f
Dutta R. C.; Bhatia S. K. Transport diffusion of light gases in polyethylene using atomistic simulations. Langmuir, 2017, 33(4), 936-946. doi:10.1021/acs.langmuir.6b04037http://dx.doi.org/10.1021/acs.langmuir.6b04037
McCrackin F. L.; Mazur J.; Guttman C. M. Monte Carlo studies of self-interacting polymer chains with excluded volume. I. Squared radii of gyration and mean-square end-to-end distances and their moments. Macromolecules, 1973, 6(6), 859-871. doi:10.1021/ma60036a015http://dx.doi.org/10.1021/ma60036a015
Doi M.; Edwards S. F. The Theory of Polymer Dynamics. Qxford: Oxford University Press, 1988. 55-59.
Sarmiento-Gomez E.; Santamaría-Holek I.; Castillo R. Mean-square displacement of particles in slightly interconnected polymer networks. J. Phys. Chem. B, 2014, 118(4), 1146-1158. doi:10.1021/jp4105344http://dx.doi.org/10.1021/jp4105344
Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys., 1995, 117(1), 1-19. doi:10.1006/jcph.1995.1039http://dx.doi.org/10.1006/jcph.1995.1039
Mitchell G. R.; Davis F. J.; Ashman A. Structural studies of side-chain liquid crystal polymers and elastomers. Polymer, 1987, 28(4), 639-647. doi:10.1016/0032-3861(87)90481-2http://dx.doi.org/10.1016/0032-3861(87)90481-2
McLeish T. C. B. Tube theory of entangled polymer dynamics. Adv. Phys., 2002, 51(6), 1379-1527. doi:10.1080/00018730210153216http://dx.doi.org/10.1080/00018730210153216
Cao J.; Likhtman A. E. Shear banding in molecular dynamics of polymer melts. Phys. Rev. Lett., 2012, 108(2), 028302. doi:10.1103/physrevlett.108.028302http://dx.doi.org/10.1103/physrevlett.108.028302
Hsiao P. Y. Chain morphology, swelling exponent, persistence length, like-charge attraction, and charge distribution around a chain in polyelectrolyte solutions: effects of salt concentration and ion size studied by molecular dynamics simulations. Macromolecules, 2006, 39(20), 7125-7137. doi:10.1021/ma0609782http://dx.doi.org/10.1021/ma0609782
Keunings R. On the high weissenberg number problem. J. Non Newton. Fluid Mech., 1986, 20, 209-226. doi:10.1016/0377-0257(86)80022-2http://dx.doi.org/10.1016/0377-0257(86)80022-2
Hautman J.; Klein M. L. Molecular dynamics simulation of the effects of temperature on a dense monolayer of long-chain molecules. J. Chem. Phys., 1990, 93(10), 7483-7492. doi:10.1063/1.459423http://dx.doi.org/10.1063/1.459423
Duan X. H.; Li Z. H.; Liu J.; Chen G.; Li X. B. Roles of kink on the thermal transport in single polyethylene chains. J. Appl. Phys., 2019, 125(16), 164303. doi:10.1063/1.5086453http://dx.doi.org/10.1063/1.5086453
0
浏览量
279
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构