浏览全部资源
扫码关注微信
纤维材料改性国家重点实验室 东华大学材料科学与工程学院 上海 201620
E-mail: lixiuting@dhu.edu.cn
qhzhang@dhu.edu.cn
纸质出版日期:2024-10-20,
网络出版日期:2024-06-11,
收稿日期:2024-03-12,
录用日期:2024-04-19
移动端阅览
白帆, 江怡雯, 李琇廷, 董杰, 赵昕, 张清华. 柔性显示盖板用耐弯折无色透明聚酰亚胺薄膜的制备与性能. 高分子学报, 2024, 55(10), 1393-1404
Bai, F.; Jiang, Y. W.; Li, X. T.; Dong, J.; Zhao, X.; Zhang, Q. H. Fabrication and characteristics of bend-durable, colorless transparent polyimide films for flexible display cover applications. Acta Polymerica Sinica, 2024, 55(10), 1393-1404
白帆, 江怡雯, 李琇廷, 董杰, 赵昕, 张清华. 柔性显示盖板用耐弯折无色透明聚酰亚胺薄膜的制备与性能. 高分子学报, 2024, 55(10), 1393-1404 DOI: 10.11777/j.issn1000-3304.2024.24077.
Bai, F.; Jiang, Y. W.; Li, X. T.; Dong, J.; Zhao, X.; Zhang, Q. H. Fabrication and characteristics of bend-durable, colorless transparent polyimide films for flexible display cover applications. Acta Polymerica Sinica, 2024, 55(10), 1393-1404 DOI: 10.11777/j.issn1000-3304.2024.24077.
随着显示领域的不断发展,柔性显示盖板用无色透明聚酰亚胺(CPI)薄膜的研发备受关注. 本研究中,通过使用商业化酸酐和二胺单体,调控主链结构、氟含量和分子间氢键,进而实现了薄膜透明性、尺寸稳定性、耐热性和机械性能之间的平衡;制备的CPI-2-TF薄膜有优异的平均光学透过率(
T
av
) (
>
88%),同时具有较低的线性膨胀系数(CTE) (
<
1.3×10
-5
K
-1
)、较高的玻璃化转变温度(
T
g
) (≥380 ℃)和优良的机械性能,为CPI的商业化进程和大规模制备提供基础. 此外,本研究重点考察了CPI-2-TF的耐弯折稳定性,弯折20万次后的薄膜基本没有任何变化,其
T
av
保持率在99%以上,力学性能仅下降4%;进一步弯折40万次后,薄膜的光学性能基本不变,力学性能保持率在92%以上,在折叠屏手机等领域展示出较高的应用潜力.
As the display industry evolves
the research and development of colorless transparent polyimide (CPI) films for use in flexible display covers have become increasingly prominent. This study leverages commercial anhydrides and diamine monomers to fine-tune the main chain structure
fluorine content
and intermolecular hydrogen bonding
thereby achieving an equilibrium among transparency
dimensional stability
thermal resistance
and mechanical strength of the films. The produced CPI-2-TF film showcases exceptional optical average transmittance (
T
av
>
88%)
along with minimal coefficients of thermal expansion (CTE) (
<
1.3×10
-5
K
-1
)
elevated glass transition temperatures (
T
g
) (≥380 ℃)
and superior mechanical properties. These attributes establish a robust foundation for the commercialization and mass production of CPI. Moreover
this study specifically examines the bend-durability of CPI-2-TF. After 2×10
5
bending cycles
the film maintained over 99% of their original average transmittance (
T
av
) and exhibited a mere 4% decrease in mechanical properties. Upon extending the bending to 400k cycles
the films retained virtually unchanged optical performance and over 92% of their mechanical integrity
demonstrating high potential for applications in folding screen smartphones and similar devices.
无色透明聚酰亚胺耐弯折性能柔性显示盖板耐高温
Colorless transparent polyimideBend-durableFlexible display coversHigh temperature-resistance
Choi M. C.; Kim Y.; Ha C. S. Polymers for flexible displays: from material selection to device applications. Prog. Polym. Sci., 2008, 33(6), 581-630. doi:10.1016/j.progpolymsci.2007.11.004http://dx.doi.org/10.1016/j.progpolymsci.2007.11.004
Yi C. H.; Li W. M.; Shi S.; He K.; Ma P. C.; Chen M.; Yang C. L. High-temperature-resistant and colorless polyimide: preparations, properties, and applications. Sol. Energy, 2020, 195, 340-354. doi:10.1016/j.solener.2019.11.048http://dx.doi.org/10.1016/j.solener.2019.11.048
Wang Y. M.; Chen Q. M.; Zhang G. C.; Xiao C. Y.; Wei Y.; Li W. W. Ultrathin flexible transparent composite electrode via semi-embedding silver nanowires in a colorless polyimide for high-performance ultraflexible organic solar cells. ACS Appl. Mater. Interfaces, 2022, 14(4), 5699-5708. doi:10.1021/acsami.1c18866http://dx.doi.org/10.1021/acsami.1c18866
Nakano S.; Saito N.; Miura K.; Sakano T.; Ueda T.; Sugi K.; Yamaguchi H.; Amemiya I.; Hiramatsu M.; Ishida A. Highly reliable a-IGZO TFTs on a plastic substrate for flexible AMOLED displays. J. Soc. Inf. Disp., 2012, 20(9), 493-498. doi:10.1002/jsid.111http://dx.doi.org/10.1002/jsid.111
Wang J. X.; Yan C. Y.; Cai G. F.; Cui M. Q.; Lee-Sie Eh A.; Lee P. S. Extremely stretchable electroluminescent devices with ionic conductors. Adv. Mater., 2016, 28(22), 4490-4496. doi:10.1002/adma.201504187http://dx.doi.org/10.1002/adma.201504187
Dong Z. H.; He Q. P.; Shen D. W.; Gong Z.; Zhang D. Y.; Zhang W. Q.; Ono T.; Jiang Y. G. Microfabrication of functional polyimide films and microstructures for flexible MEMS applications. Microsyst. Nanoeng., 2023, 9, 31. doi:10.1038/s41378-023-00503-5http://dx.doi.org/10.1038/s41378-023-00503-5
Gouzman I.; Grossman E.; Verker R.; Atar N.; Bolker A.; Eliaz N. Advances in polyimide-based materials for space applications. Adv. Mater., 2019, 31(18), e1807738. doi:10.1002/adma.201807738http://dx.doi.org/10.1002/adma.201807738
Ke F. Y.; Song N. H.; Liang D. H.; Xu H. Y. A method to break charge transfer complex of polyimide: a study on solution behavior. J. Appl. Polym., 2012, 127(1), 797-803. doi:10.1002/app.37782http://dx.doi.org/10.1002/app.37782
Li D. D.; Wang C. Y.; Yan X. Y.; Ma S. Q.; Lu R.; Qian G. T.; Zhou H. W. Heat-resistant colorless polyimides from benzimidazole diamines: synthesis and properties. Polymer, 2022, 254, 125078. doi:10.1016/j.polymer.2022.125078http://dx.doi.org/10.1016/j.polymer.2022.125078
Xu Y. Z.; Zhang M. R.; Pang Y. Y.; Zheng T. Y.; Tian C.; Wang Z.; Yan J. L. Colorless polyimide copolymers derived from isomeric biphenyltetracarboxylic dianhydrides and 2,2'-bis(trifluoromethyl)benzidine. Eur. Polym. J., 2023, 193, 112099. doi:10.1016/j.eurpolymj.2023.112099http://dx.doi.org/10.1016/j.eurpolymj.2023.112099
Bao F.; Lei H. Y.; Zou B. Y.; Peng W. F.; Qiu L. H.; Ye F.; Song Y. H.; Qi F. L.; Qiu X. P.; Huang M. J. Colorless polyimides derived from rigid trifluoromethyl-substituted triphenylenediamines. Polymer, 2023, 273, 125883. doi:10.1016/j.polymer.2023.125883http://dx.doi.org/10.1016/j.polymer.2023.125883
Li X. H.; Wang M. Y.; Mushtaq N.; Chen G. F.; Li G. H.; Fang X. Z.; Zhang A. J. Colorless polyimide films with low birefringence and retardation: synthesis and characterization. Polymer, 2023, 265, 125579. doi:10.1016/j.polymer.2022.125579http://dx.doi.org/10.1016/j.polymer.2022.125579
Xu Y. Z.; Zhang M. R.; Pang Y. Y.; Zheng T. Y.; Zhang L.; Wang Z.; Yan J. L. Colorless polyimides from 2,2',3,3'- biphenyltetracarboxylic dianhydride and fluorinated diamines. Eur. Polym. J., 2022, 179, 111528. doi:10.1016/j.eurpolymj.2022.111528http://dx.doi.org/10.1016/j.eurpolymj.2022.111528
Seo C. H.; Lim S. W.; Min H. J.; Kim J. H.; Kim J. H. Preparation of semi-alicyclic homo- and blended polyimide membranes using alicyclic dianhydrides with kink structures and their gas separation properties. J. Ind. Eng. Chem., 2022, 114, 347-360. doi:10.1016/j.jiec.2022.07.025http://dx.doi.org/10.1016/j.jiec.2022.07.025
Wu L.; Wu X.; Qi H. R.; An Y. C.; Jia Y. J.; Zhang Y.; Zhi X. X.; Liu J. G. Colorless and transparent semi-alicyclic polyimide films with intrinsic flame retardancy based on alicyclic dianhydrides and aromatic phosphorous-containing diamine: preparation and properties. Polym. Adv. Technol., 2021, 32(3), 1061-1074. doi:10.1002/pat.5153http://dx.doi.org/10.1002/pat.5153
Li D. X.; Wang X. H.; Xia L.; Luo Q. Y.; Xu Y. T.; Zeng B. R.; Luo W. A.; Dai L. Z. Semi aromatic colorless polyimide coatings for dual electrochromic and electrofluorochromic displays and its potential for information encryption. Prog. Org. Coat., 2023, 184, 107867. doi:10.1016/j.porgcoat.2023.107867http://dx.doi.org/10.1016/j.porgcoat.2023.107867
Liu T. Q.; Zheng F.; Ma X. R.; Ding T. M.; Chen S. S.; Jiang W.; Zhang S. Y.; Lu Q. H. High heat-resistant polyimide films containing quinoxaline moiety for flexible substrate applications. Polymer, 2020, 209, 122963. doi:10.1016/j.polymer.2020.122963http://dx.doi.org/10.1016/j.polymer.2020.122963
Ahn C.; Kim T. Y.; Hong P. H.; Choi S.; Lee Y. J.; Kwon H.; Jeon H.; Ko D. W.; Park I.; Han H.; Hong S. W. Highly transparent, colorless optical film with outstanding mechanical strength and folding reliability using mismatched charge-transfer complex intensification. Adv. Funct. Mater., 2022, 32(20), 2270116. doi:10.1002/adfm.202270116http://dx.doi.org/10.1002/adfm.202270116
Hasegawa M.; Watanabe Y.; Tsukuda S.; Ishii J. Solution-processable colorless polyimides with ultralow coefficients of thermal expansion for optoelectronic applications. Polym. Int., 2016, 65(9), 1063-1073. doi:10.1002/pi.5152http://dx.doi.org/10.1002/pi.5152
Chen G. F.; Xing J. L.; Lao H. J.; Zhang W.; Zhu G.; Fang X. Z. Synthesis of colorless transparent poly(amide-imide) with high modulus and low thermal expansion coefficient and its performance study. Polymer, 2024, 293, 126691. doi:10.1016/j.polymer.2024.126691http://dx.doi.org/10.1016/j.polymer.2024.126691
Xia X. J.; He X. J.; Zhang S. Y.; Zheng F.; Lu Q. H. Short-side-chain regulation of colorless and transparent polyamide-imides for flexible transparent displays. Eur. Polym. J., 2023, 191, 112030. doi:10.1016/j.eurpolymj.2023.112030http://dx.doi.org/10.1016/j.eurpolymj.2023.112030
Yang Z. H.; Guo H. Q.; Kang C. Q.; Gao L. X. Synthesis and characterization of amide-bridged colorless polyimide films with low CTE and high optical performance for flexible OLED displays. Polym. Chem., 2021, 12(37), 5364-5376. doi:10.1039/d1py00762ahttp://dx.doi.org/10.1039/d1py00762a
Liu Y.; Li J. K.; Kuang Y.; Liu Z.; Zhang Z.; Chen X. Effect of carbon nanotubes modification on bending fatigue properties of carbon fiber reinforced polyimide composites. Int. J. Fatigue, 2023, 175, 107814. doi:10.1016/j.ijfatigue.2023.107814http://dx.doi.org/10.1016/j.ijfatigue.2023.107814
Qiu G. H.; Ma S. Q.; Liu G.; Wang C. B.; Zhang D. J.; Gu Y. Y.; Zhang J. D.; Yao J. N. Shape memory effect in polyimide-based composites with multiple driving methods. React. Funct. Polym., 2023, 191, 105652. doi:10.1016/j.reactfunctpolym.2023.105652http://dx.doi.org/10.1016/j.reactfunctpolym.2023.105652
Zhou X. T.; Tian H. J.; Ling H. L.; Yang Y. L.; Luo J. Z.; Zong X. P.; Xue S. Thermally rearranged OH-containing polyimide composite membranes with enhanced gas separation performance and physical aging resistance. J. Environ., 2024, 12(20), 112275. doi:10.1016/j.jece.2024.112275http://dx.doi.org/10.1016/j.jece.2024.112275
Zuo H. T.; Chen Y. T.; Qian G. T.; Yao F.; Li H. B.; Dong J.; Zhao X.; Zhang Q. H. Effect of simultaneously introduced bulky pendent group and amide unit on optical transparency and dimensional stability of polyimide film. Eur. Polym. J., 2022, 173, 111317. doi:10.1016/j.eurpolymj.2022.111317http://dx.doi.org/10.1016/j.eurpolymj.2022.111317
Lei H. Y.; Bao F.; Peng W. F.; Qiu L. H.; Zou B. Y.; Huang M. J. Torsion effect of the imide ring on the performance of transparent polyimide films with methyl-substituted phenylenediamine. Polym. Chem., 2022, 13(48), 6606-6613. doi:10.1039/d2py01325hhttp://dx.doi.org/10.1039/d2py01325h
0
浏览量
295
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构