浏览全部资源
扫码关注微信
1.北京科技大学材料科学与工程学院 北京 100083
2.杭州格林达电子材料股份有限公司 杭州 310051
E-mail: wuzhen@ustb.edu.cn
guojie.wang@mater.ustb.edu.cn
纸质出版日期:2024-10-20,
网络出版日期:2024-06-14,
收稿日期:2024-03-19,
录用日期:2024-04-30
移动端阅览
马杰文, 张之钧, 李雅琪, 胡斌, 邢攸美, 尹云舰, 方伟华, 吴振, 王国杰. 低泡型非离子Gemini表面活性剂的合成及性能研究. 高分子学报, 2024, 55(10), 1356-1364
Ma, J. W.; Zhang, Z. J.; Li, Y. Q.; Hu, B.; Xing, Y. M.; Yin, Y. J.; Fang, W. H.; Wu, Z.; Wang, G. J. Synthesis and properties of low-foaming nonionic gemini surfactants. Acta Polymerica Sinica, 2024, 55(10), 1356-1364
马杰文, 张之钧, 李雅琪, 胡斌, 邢攸美, 尹云舰, 方伟华, 吴振, 王国杰. 低泡型非离子Gemini表面活性剂的合成及性能研究. 高分子学报, 2024, 55(10), 1356-1364 DOI: 10.11777/j.issn1000-3304.2024.24083.
Ma, J. W.; Zhang, Z. J.; Li, Y. Q.; Hu, B.; Xing, Y. M.; Yin, Y. J.; Fang, W. H.; Wu, Z.; Wang, G. J. Synthesis and properties of low-foaming nonionic gemini surfactants. Acta Polymerica Sinica, 2024, 55(10), 1356-1364 DOI: 10.11777/j.issn1000-3304.2024.24083.
低泡型非离子双子(Gemini)表面活性剂在工业清洗、光刻胶显影等领域有着广泛的应用. 以二叔戊基氢醌为母体在碱催化的条件下与环氧乙烷通过开环反应合成了3种(
P1
、
P2
和
P3
)不同聚氧乙烯链长度的非离子Gemini表面活性剂,通过表面张力仪、接触角测量仪等研究了不同聚氧乙烯链长度对表面张力、润湿性能、乳化性能、泡沫性能的影响. 在相同浓度下,随着聚氧乙烯链长度的增加,表面张力和接触角增加,乳化能力逐渐增强,发泡体积逐渐增加. 此外,3种非离子Gemini表面活性剂均具有优异的低泡性能,表面活性剂
P1
发泡量低于传统表面活性剂Tween-80的1%,在工业清洗、光刻胶显影等领域中具有巨大的应用潜力.
Low-foaming nonionic Gemini surfactants are widely used in industrial cleaning and photoresist development. In this study
three low-foaming nonionic Gem
ini surfactants are synthesized by using 2
5-di-tert-pentylbenzene-1
4-diol and ethylene oxide as raw materials
via
ring-opening reaction under alkali-catalyzed conditions. The surfactants
named
P1
P2
and
P3
have different polyoxyethylene chain lengths of 6
7
and 8
respectively. The surface tension
critical micelle concentration (CMC)
wettability
emulsifying
and foaming properties of the three Gemini nonionic surfactants are carefully investigated. The surface tension of
P1
P2
and
P3
decreases with increasing concentration and remains unchanged when CMC is reached. While at the same concentration
the surface tension increases with the increase of polyoxymethylene chain length due to increased hydrophilicity. The CMC of
P1
P2
and
P3
are 1.225 mmol/L
1.016 mmol/L
and 0.700 mmol/L
respectively
decreasing with the increment of polyoxymethylene chain length. The contact angle of
P1
P2
and
P3
decreases with increasing concentration and remains unchanged when the concentration is higher than CMC. The contact angle increases with the increase of polyoxymethylene chain length at the same concentration. The emulsion stability of
P1
P2
and
P3
increases with increasing concentration and it increases with the increasement of the polyoxyethylene chain length at the same time. The initial foaming volume of
P1
P2
and
P3
increases with increasing concentration and the chain length of polyoxymethylene at the same concentration. In particular
P1
has the lowest initial foaming volume
which is 1% of the conventional nonionic surfactant Tween-80
exhibiting excellent low-foaming properties.
P2
and
P3
also show good low-foaming ability
with less than 20% of the foaming ability of conventional surfactant Tween-80. Overall
the three Gemini surfactants offer excellent low-foaming properties while reducing surface tension
making them well-suited for real-world applications such as industrial cleaning and developer fluids.
非离子Gemini表面活性剂低泡性表面张力润湿性能乳化性能
Nonionic Gemini surfactantsLow-foamingSurface tensionWettabilityEmulsifying property
Davis J. T.; Spada G. P. Supramolecular architectures generated by self-assembly of guanosine derivatives. Chem. Soc. Rev., 2007, 36(2), 296-313. doi:10.1039/b600282jhttp://dx.doi.org/10.1039/b600282j
Peters G. M.; Skala L. P.; Davis J. T. A molecular chaperone for G4-quartet hydrogels. J. Am. Chem. Soc., 2016, 138(1), 134-139. doi:10.1021/jacs.5b08769http://dx.doi.org/10.1021/jacs.5b08769
Poole H.; Jessop P. G.; Stubenrauch C. Foaming and defoaming properties of CO2-switchable surfactants. J. Surfactants Deterg., 2022, 25(4), 467-475. doi:10.1002/jsde.12597http://dx.doi.org/10.1002/jsde.12597
Abdulraheim A. M. Green polymeric surface active agents for crude oil demulsification. J. Mol. Liq., 2018, 271, 329-341. doi:10.1016/j.molliq.2018.08.153http://dx.doi.org/10.1016/j.molliq.2018.08.153
Feng B. B.; Wang Z. H.; Suo W. H.; Wang Y.; Wen J. C.; Li Y. F.; Suo H. L.; Liu M.; Ma L. Performance of graphene dispersion by using mixed surfactants. Mater. Res. Express, 2020, 7(9), 095009. doi:10.1088/2053-1591/abb2cahttp://dx.doi.org/10.1088/2053-1591/abb2ca
Melo R. P. F.; Barros Neto E. L.; Nunes S. K. S.; Castro Dantas T. N.; Dantas Neto A. A. Removal of reactive blue 14 dye using micellar solubilization followed by ionic flocculation of surfactants. Sep. Purif. Technol., 2018, 191, 161-166. doi:10.1016/j.seppur.2017.09.029http://dx.doi.org/10.1016/j.seppur.2017.09.029
Nwani B. N.; Azad M. S.; Trivedi J. Effect of various classes of surfactants on interfacial tension reduction and wettability alteration on smart-water-surfactant systems. Energy Fuels, 2022, 36(1), 251-261. doi:10.1021/acs.energyfuels.1c03284http://dx.doi.org/10.1021/acs.energyfuels.1c03284
Kuo Y. C.; Lee C. H.; Rajesh R. Iron oxide-entrapped solid lipid nanoparticles and poly(lactide-co-glycolide) nanoparticles with surfactant stabilization for antistatic application. J. Mater. Res. Technol., 2019, 8(1), 887-895. doi:10.1016/j.jmrt.2018.04.022http://dx.doi.org/10.1016/j.jmrt.2018.04.022
Hu X. Z.; Gong H. N.; Liu H. Y.; Wang X.; Wang W. M.; Liao M. R.; Li Z. Y.; Ma K.; Li P. X.; Rogers S.; Schweins R.; Liu X. Q.; Padia F.; Bell G.; Lu J. R. Contrasting impacts of mixed nonionic surfactant micelles on plant growth in the delivery of fungicide and herbicide. J. Colloid Interface Sci., 2022, 618, 78-87. doi:10.1016/j.jcis.2022.03.002http://dx.doi.org/10.1016/j.jcis.2022.03.002
Bento R. M. F.; Almeida M. R.; Bharmoria P.; Freire M. G.; Tavares A. P. M. Improvements in the enzymatic degradation of textile dyes using ionic-liquid-based surfactants. Sep. Purif. Technol., 2020, 235, 116191. doi:10.1016/j.seppur.2019.116191http://dx.doi.org/10.1016/j.seppur.2019.116191
Perinelli D. R.; Lucarini S.; Fagioli L.; Campana R.; Vllasaliu D.; Duranti A.; Casettari L. Lactose oleate as new biocompatible surfactant for pharmaceutical applications. Eur. J. Pharm. Biopharm., 2018, 124, 55-62. doi:10.1016/j.ejpb.2017.12.008http://dx.doi.org/10.1016/j.ejpb.2017.12.008
Guin M.; Roopa R. A.; Jain P.; Singh N. B. Heterocyclic surfactants and their applications in cosmetics. ChemistrySelect, 2022, 7(8), 989. doi:10.1002/slct.202103989http://dx.doi.org/10.1002/slct.202103989
Zhang X. L.; Li C. Z.; Hu W.; Abdel-Samie M. A.; Cui H. Y.; Lin L. An overview of tea saponin as a surfactant in food applications. Crit. Rev. Food Sci. Nutr., 2023, 58, 392. doi:10.1080/10408398.2023.2258392http://dx.doi.org/10.1080/10408398.2023.2258392
Xie J.; Du H. G.; Chen S. L.; Sun X. K.; Xin L. Chemical modification effect of compound solutions of surfactants with acetic acid on coal pores. ACS Omega, 2021, 6(51), 35342-35354. doi:10.1021/acsomega.1c04430http://dx.doi.org/10.1021/acsomega.1c04430
Beneventi D.; Lascar A.; Vaulot F. Flotation a mature technology in deinking processes: new challenges and applications. Pap. Biomater., 2013, 32(1), 30-42.
陈玉成, 熊双莲, 熊治廷. 基于表面活性剂的重金属去除技术. 环境科学与技术, 2004, 27(S1), 162-165. doi:10.3969/j.issn.1003-6504.2004.z1.062http://dx.doi.org/10.3969/j.issn.1003-6504.2004.z1.062
Albijanic B.; Ozdemir O.; Nguyen A. V.; Bradshaw D. A review of induction and attachment times of wetting thin films between air bubbles and particles and its relevance in the separation of particles by flotation. Adv. Colloid Interface Sci., 2010, 159(1), 1-21. doi:10.1016/j.cis.2010.04.003http://dx.doi.org/10.1016/j.cis.2010.04.003
Dong Q. W.; Li X.; Dong J. X. Branched polyoxyethylene surfactants with different hydrophilic head groups from fatty acid derivatives. Colloids Surf. A Physicochem. Eng. Aspects, 2022, 649, 129419. doi:10.1016/j.colsurfa.2022.129419http://dx.doi.org/10.1016/j.colsurfa.2022.129419
武玉民, 张庆思, 刘伟, 王世泰. 造纸助剂乙撑双硬脂酸酰胺最佳合成条件的研究(Ⅱ). 造纸化学品, 1997, 9(3), 29-30.
倪芸岚, 邢攸美, 胡涛, 尹云舰, 李潇逸, 张之钧, 王小栋, 余红刚. 非离子型Gemini表面活性剂研究进展及其在半导体湿电子材料中的应用. 天津化工, 2021, 35(5), 87-90. doi:10.3969/j.issn.1008-1267.2021.05.031http://dx.doi.org/10.3969/j.issn.1008-1267.2021.05.031
Lee J.; Zhou Z. L.; Behrens S. H. Interfaces charged by a nonionic surfactant. J. Phys. Chem. B, 2018, 122(22), 6101-6106. doi:10.1021/acs.jpcb.8b02853http://dx.doi.org/10.1021/acs.jpcb.8b02853
Mustan F.; Politova-Brinkova N.; Vinarov Z.; Rossetti D.; Rayment P.; Tcholakova S. Interplay between bulk aggregates, surface properties and foam stability of nonionic surfactants. Adv. Colloid Interface Sci., 2022, 302, 102618. doi:10.1016/j.cis.2022.102618http://dx.doi.org/10.1016/j.cis.2022.102618
Sharma R.; Kamal A.; Abdinejad M.; Mahajan R. K.; Kraatz H. B. Advances in the synthesis, molecular architectures and potential applications of gemini surfactants. Adv. Colloid Interface Sci., 2017, 248, 35-68. doi:10.1016/j.cis.2017.07.032http://dx.doi.org/10.1016/j.cis.2017.07.032
唐永强, 朱琳一, 韩玉淳, 王毅琳. 支链醇对Gemini表面活性剂表面活性和胶束化行为的影响. 化学学报, 2014, 72(6), 673-681. doi:10.6023/A14020088http://dx.doi.org/10.6023/A14020088
Man Z. Q.; Wu W. X. Study on the synthesis, surface activity, and self-assembly behavior of anionic non-ionic gemini surfactants. Molecules, 2024, 29(8), 1725. doi:10.3390/molecules29081725http://dx.doi.org/10.3390/molecules29081725
Zhang Q.; Gao Z. N.; Xu F.; Tai S. X.; Liu X. G.; Mo S. B.; Niu F. Surface tension and aggregation properties of novel cationic gemini surfactants with diethylammonium headgroups and a diamido spacer. Langmuir, 2012, 28(33), 11979-11987. doi:10.1021/la3011212http://dx.doi.org/10.1021/la3011212
Zana R. Critical micellization concentration of surfactants in aqueous solution and free energy of micellization. Langmuir, 1996, 12(5), 1208-1211. doi:10.1021/la950691qhttp://dx.doi.org/10.1021/la950691q
Rosen M. J.; Aronson S. Standard free energies of adsorption of surfactants at the aqueous solution/air interface from surface tension data in the vicinity of the critical micelle concentration. Colloids Surf., 1981, 3(3), 201-208. doi:10.1016/0166-6622(81)80037-6http://dx.doi.org/10.1016/0166-6622(81)80037-6
Shaban S. M.; Elsamad S. A.; Tawfik S. M.; Abdel-Rahman A. A. H.; Aiad I. Studying surface and thermodynamic behavior of a new multi-hydroxyl gemini cationic surfactant and investigating their performance as corrosion inhibitor and biocide. J. Mol. Liq., 2020, 316, 113881. doi:10.1016/j.molliq.2020.113881http://dx.doi.org/10.1016/j.molliq.2020.113881
Alami E.; Beinert G.; Marie P.; Zana R. Alkanediyl-.alpha., .omega.-bis(dimethylalkylammonium bromide) surfactants. 3. Behavior at the air-water interface. Langmuir, 1993, 9(6), 1465-1467. doi:10.1021/la00030a006http://dx.doi.org/10.1021/la00030a006
Liu X. G.; Xing X. J.; Gao Z. N. Synthesis and physicochemical properties of star-like cationic trimeric surfactants. Colloids Surf. A Physicochem. Eng. Aspects, 2014, 457, 374-381. doi:10.1016/j.colsurfa.2014.06.019http://dx.doi.org/10.1016/j.colsurfa.2014.06.019
Li Y. B.; He T. S.; Hu Z. M.; Zhang Y. Q.; Luo Q.; Pu W. F.; Zhao J. Z. Study on the mathematical model for predicting settling of water-in-oil emulsion. J. Petrol. Sci. Eng., 2021, 206, 109070. doi:10.1016/j.petrol.2021.109070http://dx.doi.org/10.1016/j.petrol.2021.109070
肖进新, 赵振国. 表面活性剂应用原理. 第二版. 北京: 化学工业出版社, 2015. 155-158.
You Y.; Wu X. N.; Zhao J. X.; Ye Y. Z.; Zou W. S. Effect of alkyl tail length of quaternary ammonium gemini surfactants on foaming properties. Colloids Surf. A Physicochem. Eng. Aspects, 2011, 384(1-3), 164-171. doi:10.1016/j.colsurfa.2011.03.050http://dx.doi.org/10.1016/j.colsurfa.2011.03.050
Lunkenheimer K.; Malysa K. Simple and generally applicable method of determination and evaluation of foam properties. J. Surfactants Deterg., 2003, 6(1), 69-74. doi:10.1007/s11743-003-0251-8http://dx.doi.org/10.1007/s11743-003-0251-8
Mata J.; Varade D.; Bahadur P. Aggregation behavior of quaternary salt based cationic surfactants. Thermochim. Acta, 2005, 428(1-2), 147-155. doi:10.1016/j.tca.2004.11.009http://dx.doi.org/10.1016/j.tca.2004.11.009
Pradhan A.; Bhattacharyya A. Quest for an eco-friendly alternative surfactant: surface and foam characteristics of natural surfactants. J. Clean. Prod., 2017, 150, 127-134. doi:10.1016/j.jclepro.2017.03.013http://dx.doi.org/10.1016/j.jclepro.2017.03.013
Si K. W.; Xu Z. W.; Zhou X. D. Synthesis and application of nonionic Gemini surfactants based on grape seed oil. Color. Technol., 2024, 140(1), 42-51. doi:10.1111/cote.12689http://dx.doi.org/10.1111/cote.12689
Rosen M. J.; Joy T. K. Surfactants and interfacial phenomena. 4th ed. Canada: John Wiley & Sons, Inc., 2012. 308-335.
0
浏览量
280
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构