浏览全部资源
扫码关注微信
天津大学材料科学与工程学院 天津 300350
E-mail: binwang@tju.edu.cn
收稿日期:2024-03-22,
录用日期:2024-05-13,
网络出版日期:2024-07-08,
纸质出版日期:2024-11-20
移动端阅览
林旭名, 王明倩, 傅晓艳, 丁志强, 王彬. 结晶性脂肪族聚碳酸酯催化解聚研究. 高分子学报, 2024, 55(11), 1476-1486
Lin, X. M.; Wang, M. Q.; Fu, X. Y; Ding, Z. Q.; Wang, B. Catalytic depolymerization of crystalline aliphatic polycarbonates. Acta Polymerica Sinica, 2024, 55(11), 1476-1486
林旭名, 王明倩, 傅晓艳, 丁志强, 王彬. 结晶性脂肪族聚碳酸酯催化解聚研究. 高分子学报, 2024, 55(11), 1476-1486 DOI: 10.11777/j.issn1000-3304.2024.24087. CSTR: 32057.14.GFZXB.2024.7253.
Lin, X. M.; Wang, M. Q.; Fu, X. Y; Ding, Z. Q.; Wang, B. Catalytic depolymerization of crystalline aliphatic polycarbonates. Acta Polymerica Sinica, 2024, 55(11), 1476-1486 DOI: 10.11777/j.issn1000-3304.2024.24087. CSTR: 32057.14.GFZXB.2024.7253.
结晶性脂肪族聚碳酸酯的晶区结构严重阻碍溶剂和催化剂的渗透,降低解聚反应活性. 其热解聚反应过程也往往十分复杂,常常伴随着诸多副反应,无法高选择性回收目标产物. 本文工作研究了不同催化剂、反应条件下的聚(碳酸丁二醇酯)、聚(碳酸戊二醇酯)以及聚(碳酸己二醇酯)的本体熔融解聚反应与解聚行为,并通过核磁氢谱测定了产物选择性差别. 结果表明,叔丁醇钾和叔丁醇钠可高效催化聚(碳酸丁二醇酯)解聚,且表现出不同的产物选择性,叔丁醇钾催化解聚时主要生成十四元环二聚体(7CC)
2
,而叔丁醇钠催化解聚优先生成七元环碳酸酯单体7CC. 理论计算结果表明,相比生成7CC,解聚生成(7CC)
2
为优势反应路径;提高反应温度有利于提高7CC的选择性. 当叔丁醇钾催化聚(碳酸戊二醇酯)以及聚(碳酸己二醇酯)解聚时,只能得到相应的十六/十八元环二聚体,而没有八/九元环碳酸酯单体生成. 本研究有望为进一步发展脂肪族聚碳酸酯的高效解聚回收方法提供实验基础与理论依据.
The catalytic depolymerization and recycling of aliphatic polycarbonates have attracted increasing attention in recent years. The crystalline structure of aliphatic polycarbonates impedes the penetration of solvents and catalysts
thereby reducing depolymerization activity. Additionally
the therma
l depolymerization reaction process is complex
accompanied by numerous side reactions and a lack of high selectivity in recovering the target product. Consequently
the depolymerization behaviors and products of aliphatic polycarbonate are highly complex and influenced by numerous factors. In this study
we investigated the depolymerization reactions and behaviors of poly(butylene carbonate)
poly(pentylene carbonate)
and poly(hexylene carbonate) under various catalysts and reaction conditions using intrinsic melting methods. Furthermore
the differences in product selectivities were characterized through-NMR spectroscopy. The results demonstrated that potassium tert-butoxide and sodium tert-butoxide were found to be highly effective catalysts for the depolymerization of poly(butylene carbonate)
with distinct product selectivities. Specifically
potassium tert-butoxide was observed to favor the depolymerization process
resulting in the production of primarily fourteen-membered cyclic dimer (7CC)
2
. In contrast
sodium tert-butoxide exhibited a preference for the generation of seven-membered cyclic carbonate monomers (7CC). Theoretical calculations indicated that the production of (7CC)
2
was a more dominant reaction pathway than the generation of 7CC. Increasing the reaction temperature was found to improve the selectivity for 7CC production. Poly(pentylene glycol carbonate) and poly(hexylene glycol carbonate) were observed to produce only the corresponding sixteen-/eighteen-membered cyclic dimers
with no eight-/nine-membered cyclic monomers being produced. The objective of this research is to provide an experimental and theoretical basis for further development of efficient depolymerization and recycling methods for aliphatic polycarbonates.
MacLeod M. ; Arp H. P. H. ; Tekman M. B. ; Jahnke A. The global threat from plastic pollution . Science , 2021 , 373 ( 6550 ), 61 - 65 . doi: 10.1126/science.abg5433 http://dx.doi.org/10.1126/science.abg5433
Santos R. G. ; Machovsky-Capuska G. E. ; Andrades R. Plastic ingestion as an evolutionary trap: toward a holistic understanding . Science , 2021 , 373 ( 6550 ), 56 - 60 . doi: 10.1126/science.abh0945 http://dx.doi.org/10.1126/science.abh0945
叶焱 , 孟祥泽 , 唐国烁 , 金广轩 , 杨睿 , 谢续明 . 高分子材料的生物降解性能表征 . 高分子学报 , 2023 , 54 ( 9 ), 1363 - 1384 . doi: 10.11777/j.issn1000-3304.2023.23111 http://dx.doi.org/10.11777/j.issn1000-3304.2023.23111
Rai P. ; Mehrotra S. ; Priya S. ; Gnansounou E. ; Sharma S. K. Recent advances in the sustainable design and applications of biodegradable polymers . Bioresour. Technol. , 2021 , 325 , 124739 . doi: 10.1016/j.biortech.2021.124739 http://dx.doi.org/10.1016/j.biortech.2021.124739
Garcia J. M. ; Robertson M. L. The future of plastics recycling . Science , 2017 , 358 ( 6365 ), 870 - 872 . doi: 10.1126/science.aaq0324 http://dx.doi.org/10.1126/science.aaq0324
Millican J. M. ; Agarwal S. Plastic pollution: a material problem? Macromolecules , 2021 , 54 ( 10 ), 4455 - 4469 . doi: 10.1021/acs.macromol.0c02814 http://dx.doi.org/10.1021/acs.macromol.0c02814
Mistry A. N. ; Kachenchart B. ; Pinyakong O. ; Assavalapsakul W. ; Jitpraphai S. M. ; Somwangthanaroj A. ; Luepromchai E. Bioaugmentation with a defined bacterial consortium: a key to degrade high molecular weight polylactic acid during traditional composting . Bioresour. Technol. , 2023 , 367 , 128237 . doi: 10.1016/j.biortech.2022.128237 http://dx.doi.org/10.1016/j.biortech.2022.128237
Kosloski-Oh S. C. ; Wood Z. A. ; Manjarrez Y. ; de Los Rios J. P. ; Fieser M. E. Catalytic methods for chemical recycling or upcycling of commercial polymers . Mater. Horiz. , 2021 , 8 ( 4 ), 1084 - 1129 . doi: 10.1039/d0mh01286f http://dx.doi.org/10.1039/d0mh01286f
Zhang J. ; Zhu J. ; Hua Z. ; Liu G. M. Specific ion effects on the enzymatic degradation of polyester films . Chinese J. Polym. Sci. , 2023 , 41 ( 4 ), 476 - 482 . doi: 10.1007/s10118-022-2869-z http://dx.doi.org/10.1007/s10118-022-2869-z
Xu G. Q. ; Wang Q. G. Chemically recyclable polymer materials: polymerization and depolymerization cycles . Green Chem. , 2022 , 24 ( 6 ), 2321 - 2346 . doi: 10.1039/d1gc03901f http://dx.doi.org/10.1039/d1gc03901f
张红明 , 赵君宇 , 高凤翔 , 刘顺杰 , 周庆海 , 王献红 . PET的解聚-共缩聚"一锅法"合成生物降解高分子的研究 . 高分子学报 , 2022 , 53 ( 9 ), 1142 - 1149 . doi: 10.11777/j.issn1000-3304.2022.22167 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22167
Liu Y. H. ; Wu J. Q. ; Hu X. ; Zhu N. ; Guo K. Advances, challenges, and opportunities of poly( γ -butyrolactone)-based recyclable polymers . ACS Macro Lett. , 2021 , 10 ( 2 ), 284 - 296 . doi: 10.1021/acsmacrolett.0c00813 http://dx.doi.org/10.1021/acsmacrolett.0c00813
Hong M. ; Chen E. Y. X. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ -butyrolactone . Nat. Chem. , 2016 , 8 ( 1 ), 42 - 49 . doi: 10.1038/nchem.2391 http://dx.doi.org/10.1038/nchem.2391
Zhang Y. T. ; Schmitt M. ; Falivene L. ; Caporaso L. ; Cavallo L. ; Chen E. Y. X. Organocatalytic conjugate-addition polymerization of linear and cyclic acrylic monomers by N-heterocyclic carbenes: mechanisms of chain initiation, propagation, and termination . J. Am. Chem. Soc. , 2013 , 135 ( 47 ), 17925 - 17942 . doi: 10.1021/ja4088677 http://dx.doi.org/10.1021/ja4088677
Zhang Q. ; Hu C. Y. ; Li P. Y. ; Bai F. Q. ; Pang X. ; Chen X. S. Solvent-promoted catalyst-free recycling of waste polyester and polycarbonate materials . ACS Macro Lett. , 2024 , 13 ( 2 ), 151 - 157 .
Cederholm L. ; Wohlert J. ; Olsén P. ; Hakkarainen M. ; Odelius K. “ Like recycles like”: selective ring-closing depolymerization of poly(L-lactic acid) to L-lactide . Angew. Chem. Int. Ed. , 2022 , 61 ( 33 ), e 202204531 . doi: 10.1002/anie.202204531 http://dx.doi.org/10.1002/anie.202204531
Hofmann M. ; Alberti C. ; Scheliga F. ; Meißner R. R. R. ; Enthaler S. Tin(II) 2-ethylhexanoate catalysed methanolysis of end-of-life poly(lactide) . Polym. Chem. , 2020 , 11 ( 15 ), 2625 - 2629 . doi: 10.1039/d0py00292e http://dx.doi.org/10.1039/d0py00292e
Yang R. L. ; Xu G. Q. ; Lv C. D. ; Dong B. Z. ; Zhou L. ; Wang Q. G. Zn(HMDS) 2 as a versatile transesterification catalyst for polyesters synthesis and degradation toward a circular materials economy approach . ACS Sustain. Chem. Eng. , 2020 , 8 ( 50 ), 18347 - 18353 . doi: 10.1021/acssuschemeng.0c07595 http://dx.doi.org/10.1021/acssuschemeng.0c07595
Gallin C. F. ; Lee W. W. ; Byers J. A. A simple, selective, and general catalyst for ring closing depolymerization of polyesters and polycarbonates for chemical recycling . Angew. Chem. Int. Ed. , 2023 , 62 ( 25 ), e 202303762 . doi: 10.1002/anie.202303762 http://dx.doi.org/10.1002/anie.202303762
Abe H. ; Takahashi N. ; Kim K. J. ; Mochizuki M. ; Doi Y. Effects of residual zinc compounds and chain-end structure on thermal degradation of poly( ε -caprolactone) . Biomacromolecules , 2004 , 5 ( 4 ), 1480 - 1488 . doi: 10.1021/bm049945p http://dx.doi.org/10.1021/bm049945p
Wang M. Q. ; Ding Z. Q. ; Shi X. C. ; Ma Z. ; Wang B. ; Li Y. S. Modulating polymerization behaviors of ether-ester monomers and physicochemic al properties of poly(ether- alt -ester)s by heteroatom substitutions . Macromolecules , 2024 , 57 ( 3 ), 869 - 879 . doi: 10.1021/acs.macromol.3c02140 http://dx.doi.org/10.1021/acs.macromol.3c02140
Yuan J. S. ; Xiong W. ; Zhou X. H. ; Zhang Y. ; Shi D. ; Li Z. C. ; Lu H. 4 -Hydroxyproline-derived sustainable polythioesters: controlled ring-opening polymerization, complete recyclability, and facile functionalization . J. Am. Chem. Soc. , 2019, 141 ( 12 ), 4928 - 4935 . doi: 10.1021/jacs.9b00031 http://dx.doi.org/10.1021/jacs.9b00031
Wang Y. C. ; Li M. S. ; Chen J. L. ; Tao Y. H. ; Wang X. H. O-to-S substitution enables dovetailing conflicting cyclizability, polymerizability, and recyclability: dithiolactone vs . dilactone. Angew. Chem. Int. Ed. , 2021 , 60 ( 41 ), 22547 - 22553 . doi: 10.1002/anie.202109767 http://dx.doi.org/10.1002/anie.202109767
Suyama T. ; Tokiwa Y. Enzymatic degradation of an aliphatic polycarbonate, poly(tetramethylene carbonate) . Enzyme Microb. Technol. , 1997 , 20 ( 2 ), 122 - 126 . doi: 10.1016/s0141-0229(96)00084-1 http://dx.doi.org/10.1016/s0141-0229(96)00084-1
Jung J. H. ; Ree M. ; Kim H. Acid- and base-catalyzed hydrolyses of aliphatic polycarbonates and polyesters . Catal. Today , 2006 , 115 ( 1-4 ), 283 - 287 . doi: 10.1016/j.cattod.2006.02.060 http://dx.doi.org/10.1016/j.cattod.2006.02.060
Darensbourg D. J. ; Wei S. H. Depolymerization of polycarbonates derived from carbon dioxide and epoxides to provide cyclic carbonates . A kinetic study. Macromolecules , 2012 , 45 ( 15 ), 5916 - 5922 . doi: 10.1021/ma301110c http://dx.doi.org/10.1021/ma301110c
Yu Y. ; Gao B. ; Liu Y. ; Lu X. B. Efficient and selective chemical recycling of CO 2 -based alicyclic polycarbonates via catalytic pyrolysis . Angew. Chem. Int. Ed. , 2022 , 61 ( 34 ), e 202204492 . doi: 10.1002/anie.202204492 http://dx.doi.org/10.1002/anie.202204492
Yu Y. ; Fang L. M. ; Liu Y. ; Lu X. B. Chemical synthesis of CO 2 -based polymers with enhanced thermal stability and unexpected recyclability from biosourced monomers . ACS Catal. , 2021 , 11 ( 13 ), 8349 - 8357 . doi: 10.1021/acscatal.1c01376 http://dx.doi.org/10.1021/acscatal.1c01376
McGuire T. M. ; Deacy A. C. ; Buchard A. ; Williams C. K. Solid-state chemical recycling of polycarbonates to epoxides and carbon dioxide using a heterodinuclear Mg(II)Co(II) catalyst . J. Am. Chem. Soc. , 2022 , 144 ( 40 ), 18444 - 18449 . doi: 10.1021/jacs.2c06937 http://dx.doi.org/10.1021/jacs.2c06937
Li C. L. ; Sablong R. J. ; van Benthem R. A. T. M. ; Koning C. E. Unique base-initiated depolymerization of limonene-derived polycarbonates . ACS Macro Lett. , 2017 , 6 ( 7 ), 684 - 688 . doi: 10.1021/acsmacrolett.7b00310 http://dx.doi.org/10.1021/acsmacrolett.7b00310
Andrea K. A. ; Wheeler M. D. ; Kerton F. M. Borane catalyzed polymerization and depolymerization reactions controlled by Lewis acidic strength . Chem. Commun. , 2021 , 57 ( 59 ), 7320 - 7322 . doi: 10.1039/d1cc02218k http://dx.doi.org/10.1039/d1cc02218k
Singer F. N. ; Deacy A. C. ; McGuire T. M. ; Williams C. K. ; Buchard A. Chemical recycling of poly(cyclohexene carbonate) using a di-Mg II catalyst . Angew. Chem. Int. Ed. , 2022 , 61 ( 26 ), e 202201785 . doi: 10.1002/anie.202201785 http://dx.doi.org/10.1002/anie.202201785
Márquez Y. ; Franco L. ; Puiggalí J. Thermal degradation studies of poly(trimethylene carbonate) blends with either polylactide or polycaprolactone . Thermochim. Acta , 2012 , 550 , 65 - 75 . doi: 10.1016/j.tca.2012.10.001 http://dx.doi.org/10.1016/j.tca.2012.10.001
Darensbourg D. J. ; Moncada A. I. ; Wei S. H. Aliphatic polycarbonates produced from the coupling of carbon dioxide and oxetanes and their depolymerization via cyclic carbonate formation . Macromolecules , 2011 , 44 ( 8 ), 2568 - 2576 . doi: 10.1021/ma2002323 http://dx.doi.org/10.1021/ma2002323
Olsén P. ; Undin J. ; Odelius K. ; Keul H. ; Albertsson A. C. Switching from controlled ring-opening polymerization (cROP) to controlled ring-closing depolymerization (cRCDP) by adjusting the reaction parameters that determine the ceiling temperature . Biomacromolecules , 2016 , 17 ( 12 ), 3995 - 4002 . doi: 10.1021/acs.biomac.6b01375 http://dx.doi.org/10.1021/acs.biomac.6b01375
Olsén P. ; Odelius K. ; Albertsson A. C. Ring-closing depolymerization: a powerful tool for synthesizing the allyloxy-functionalized six-membered aliphatic carbonate monomer 2-allyloxymethyl-2-ethyltrimethylene carbonate . Macromolecules , 2014 , 47 ( 18 ), 6189 - 6195 . doi: 10.1021/ma5012304 http://dx.doi.org/10.1021/ma5012304
Miyagawa T. ; Shimizu M. ; Sanda F. ; Endo T. Six-membered cyclic carbonate having styrene moiety as a chemically recyclable monomer . Construction of novel cross-linking-de-cross-linking system of network polymers. Macromolecules , 2005 , 38 ( 19 ), 7944 - 7949 . doi: 10.1021/ma047998t http://dx.doi.org/10.1021/ma047998t
Huang J. ; Olsén P. ; Svensson Grape E. ; Inge A. K. ; Odelius K. Simple approach to macrocyclic carbonates with fast polymerization rates and their polymer-to-monomer regeneration . Macromolecules , 2022 , 55 ( 2 ), 608 - 614 . doi: 10.1021/acs.macromol.1c02225 http://dx.doi.org/10.1021/acs.macromol.1c02225
Zhang W. ; Dai J. ; Wu Y. C. ; Chen J. X. ; Shan S. Y. ; Cai Z. Z. ; Zhu J. B. Highly reactive cyclic carbonates with a fused ring toward functionalizable and recyclable polycarbonates . ACS Macro Lett. , 2022 , 11 ( 2 ), 173 - 178 . doi: 10.1021/acsmacrolett.1c00653 http://dx.doi.org/10.1021/acsmacrolett.1c00653
Liu W. ; Zhu W. X. ; Li C. C. ; Guan G. H. ; Zhang D. ; Xiao Y. N. ; Zheng L. C. Thermal degradation mechanism of poly(hexamethylene carbonate) . Polym. Degrad. Stabil. , 2015 , 112 , 70 - 77 . doi: 10.1016/j.polymdegradstab.2014.12.013 http://dx.doi.org/10.1016/j.polymdegradstab.2014.12.013
Zhu W. X. ; Li C. C. ; Zhang D. ; Guan G. H. ; Xiao Y. N. ; Zheng L. C. Thermal degradation mechanism of poly(butylene carbonate) . Polym. Degrad. Stabil. , 2012 , 97 ( 9 ), 1589 - 1595 . doi: 10.1016/j.polymdegradstab.2012.06.029 http://dx.doi.org/10.1016/j.polymdegradstab.2012.06.029
Chu M. Y. ; Liu Y. ; Lou X. X. ; Zhang Q. ; Chen J. X. Rational design of chemical catalysis for plastic recycling . ACS Catal. , 2022 , 12 ( 8 ), 4659 - 4679 . doi: 10.1021/acscatal.2c01286 http://dx.doi.org/10.1021/acscatal.2c01286
Ji L. ; Meng J. L. ; Li C. L. ; Wang M. ; Jiang X. F. From polyester plastics to diverse monomers via low-energy upcycling . Adv. Sci. , 2024 , e 2403002 . doi: 10.1002/advs.202403002 http://dx.doi.org/10.1002/advs.202403002
0
浏览量
524
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构