浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院合肥230026
E-mail: shihui-li@ciac.ac.cn
dmcui@ciac.ac.cn
收稿日期:2024-03-27,
录用日期:2024-04-30,
网络出版日期:2024-06-19,
纸质出版日期:2024-11-20
移动端阅览
梁旦, 姜洋, 李世辉, 崔冬梅. 稀土催化乙烯与极性烯烃共聚合研究. 高分子学报, 2024, 55(11), 1487-1494
Liang, D.; Jiang, Y.; Li, S. H.; Cui, D. M. Copolymerization of ethylene and polar vinyl monomers by rare-earth metal catalysts. Acta Polymerica Sinica, 2024, 55(11), 1487-1494
梁旦, 姜洋, 李世辉, 崔冬梅. 稀土催化乙烯与极性烯烃共聚合研究. 高分子学报, 2024, 55(11), 1487-1494 DOI: 10.11777/j.issn1000-3304.2024.24092. CSTR: 32057.14.GFZXB.2024.7254.
Liang, D.; Jiang, Y.; Li, S. H.; Cui, D. M. Copolymerization of ethylene and polar vinyl monomers by rare-earth metal catalysts. Acta Polymerica Sinica, 2024, 55(11), 1487-1494 DOI: 10.11777/j.issn1000-3304.2024.24092. CSTR: 32057.14.GFZXB.2024.7254.
考察了(Flu-CH
2
-Ph)Sc(CH
2
SiMe
3
)
2
(THF) (
1
)、(Flu-CH
2
-C
5
H
4
N)Sc(CH
2
SiMe
3
)
2
(
2
)、(Flu-CH
2
CH
2
-NHC-C
6
H
2
Me
3
-2
4
6)Sc(CH
2
SiMe
3
)
2
(
3
)、(Flu-CH
2
CH
2
-NHC-C
6
H
4
Me)Sc(CH
2
SiMe
3
)
2
(
4
)空间位阻大小不等的4种稀土催化剂,对乙烯与1.1倍摩尔量Al
i
Bu
3
保护的5-己烯-1-醇(
M2
)的共聚合行为. 其中,催化剂
1
的催化活性最高,达到1.32×10
6
g·mol
Sc
-1
·h
-1
,但产生的是乙烯均聚物,催化剂
2
无催化活性,催化剂
3
和
4
的活性分别为0.38×10
6
和1.24×10
6
g·mol
Sc
-1
·h
-1
,生成了
M2
插入率分别为0.7 mol%和
1.8 mol%的共聚物. 对不同烷烃链长间隔的极性烯烃单体,催化剂
4
对9碳烷烃间隔的10-十一烯-1-醇(
M3
)与乙烯共聚合活性最高(1.19×10
7
g·mol
Sc
-1
·h
-1
)、共聚能力最强(
M3
插入率为4.9 mol%). 系统研究了极性单体
M3
浓度、聚合温度、乙烯压力等,对催化剂
4
催化乙烯与
M3
共聚合活性及其插入率的影响规律. 通过NMR、GPC和DSC对所得的乙烯-极性烯烃共聚物进行了微观结构、热性能分析.
The copolymerization of ethylene and 5-hexen-1-ol (
M2
) masked by 1.1 equivalents of Al
i
Bu
3
is carried out by four rare-earth metal catalysts bearing different steric hindrances: (Flu-CH
2
-Ph)Sc(CH
2
- SiMe
3
)
2
(THF) (
1
)
(Flu-CH
2
-C
5
H
4
N)Sc(CH
2
SiMe
3
)
2
(
2
)
(Flu-CH
2
CH
2
-NHC-C
6
H
2
Me
3
-2
4
6)Sc(CH
2
SiMe
3
)
2
(
3
)
(Flu-CH
2
CH
2
-NHC-C
6
H
4
Me)Sc(CH
2
SiMe
3
)
2
(
4
). Among them
complex
1
shows the hi
ghest catalytic activity (1.32×10
6
g·mol
Sc
-1
·h
-1
) but gives pure polyethylene without detectable
M2
unit
and
in contrast
complex
2
is nearly inert. Under same conditions
the bulkier complex
3
shows moderate activity (0.38×10
6
g·mol
Sc
-1
·h
-1
) and low comonomer incorporation (0.7 mol%). On switching to the bulkiest complex
4
the copolymerization process is obviously promoted with a catalytic activity of 1.24×10
6
g·mol
Sc
-1
·h
-1
and generates a copolymer with 1.8 mol%
M2
. For the polar vinyl monomers having different CH
2
spacers between polar and vinyl groups
complex
4
exhibits the best catalytic performance for the copolymerization of ethylene with 10-undecene-1-ol with the highest catalytic activity (1.19×10
7
g·mol
Sc
-1
·h
-1
) and the strongest incorporation ability (4.9 mol%). The influence of reaction conditions such as comonomer concentration
polymerization temperature and ethylene pressures on the catalytic performance of complex
4
are screened. The microstructures and thermal properties of the resultant copolymers are well-characterized by nuclear magnetic resonance (NMR)
gel permeation chromatography (GPC) and differential scanning calorimeter (DSC).
Boffa L. S. ; Novak B. M. Copolymerization of polar monomers with olefins using transition-metal complexes . Chem. Rev. , 2000 , 100 ( 4 ), 1479 - 1494 . doi: 10.1021/cr990251u http://dx.doi.org/10.1021/cr990251u
Chen C. L. Designing catalysts for olefin polymerization and copolymerization: beyond electronic and steric tuning . Nat. Rev. Chem. , 2018 , 2 , 6 - 14 . doi: 10.1038/s41570-018-0003-0 http://dx.doi.org/10.1038/s41570-018-0003-0
陈敏 , 陈昶乐 . 官能团化聚烯烃: 新催化剂、新聚合调控手段、新材料 . 高分子学报 , 2018 , ( 11 ), 1372 - 1384 . doi: 10.11777/j.issn1000-3304.2018.18155 http://dx.doi.org/10.11777/j.issn1000-3304.2018.18155
崔冬梅 . 稀土催化极性单体配位均聚及与非极性单体共聚合的研究 . 高分子学报 , 2020 , 51 ( 1 ), 12 - 29 . doi: 10.11777/j.issn1000-3304.2020.19142 http://dx.doi.org/10.11777/j.issn1000-3304.2020.19142
简忠保 . 功能化聚烯烃合成: 从催化剂到极性单体设计 . 高分子学报 , 2018 , ( 11 ), 1359 - 1371 . doi: 10.11777/j.issn1000-3304.2018.18146 http://dx.doi.org/10.11777/j.issn1000-3304.2018.18146
Kermagoret A. ; Debuigne A. ; Jérôme C. ; Detrembleur C. Precision design of ethylene- and polar-monomer-based copolymers by organometallic-mediated radical polymerization . Nat. Chem. , 2014 , 6 ( 3 ), 179 - 187 . doi: 10.1038/nchem.1850 http://dx.doi.org/10.1038/nchem.1850
Franssen N. M. G. ; Reek J. N. H. ; de Bruin B. Synthesis of functional 'polyolefins': state of the art and remaining challenges . Chem. Soc. Rev. , 2013 , 42 ( 13 ), 5809 - 5832 . doi: 10.1039/c3cs60032g http://dx.doi.org/10.1039/c3cs60032g
Chen J. Z. ; Gao Y. S. ; Marks T. J. Early transition metal catalysis for olefin-polar monomer copolymerization . Angew. Chem. Int. Ed. , 2020 , 59 ( 35 ), 14726 - 14735 . doi: 10.1002/anie.202000060 http://dx.doi.org/10.1002/anie.202000060
Nakamura A. ; Ito S. ; Nozaki K. Coordination-insertion copolymerization of fundamental polar monomers . Chem. Rev. , 2009 , 109 ( 11 ), 5215 - 5244 . doi: 10.1021/cr900079r http://dx.doi.org/10.1021/cr900079r
Nakamura A. ; Anselment T. M. J. ; Claverie J. ; Goodall B. ; Jordan R. F. ; Mecking S. ; Rieger B. ; Sen A. ; van Leeuwen P. W. N. M. ; Nozaki K. Ortho-phosphinobenzenesulfonate: a superb ligand for palladium-catalyzed coordination-insertion copolymerization of polar vinyl monomers . Acc. Chem. Res. , 2013 , 46 ( 7 ), 1438 - 1449 . doi: 10.1021/ar300256h http://dx.doi.org/10.1021/ar300256h
Johnson L. K. ; Mecking S. ; Brookhart M. Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(Ⅱ) catalysts . J. Am. Chem. Soc. , 1996 , 118 ( 1 ), 267 - 268 . doi: 10.1021/ja953247i http://dx.doi.org/10.1021/ja953247i
Guo L. ; Zhang Y. P. ; Mu H. L. ; Pan L. ; Wang K. T. ; Gao H. ; Wang B. ; Ma Z. ; Li Y. S. Efficient addition polymerization of norbornene with polar norbornene derivatives by neutral nickel(Ⅱ) catalysts . Chinese J. Polym. Sci. , 2019 , 37 ( 12 ), 1215 - 1223 . doi: 10.1007/s10118-019-2292-2 http://dx.doi.org/10.1007/s10118-019-2292-2
Mike Chung T. C. Functional polyolefins: synthesis and energy storage applications . Adv. Polym. Sci. , 2013 , 258 , 233 - 278 . doi: 10.1007/12_2013_209 http://dx.doi.org/10.1007/12_2013_209
Dong J. Y. ; Hu Y. L. Design and synthesis of structurally well-defined functional polyolefins via transition metal-mediated olefin polymerization chemistry . Coord. Chem. Rev. , 2006 , 250 ( 1-2 ), 47 - 65 . doi: 10.1016/j.ccr.2005.05.008 http://dx.doi.org/10.1016/j.ccr.2005.05.008
Bouyahyi M. ; Turki Y. ; Tanwar A. ; Jasinska-Walc L. ; Duchateau R. Randomly functionalized polyethylenes: in quest of avoiding catalyst deactivation . ACS Catal. , 2019 , 9 ( 9 ), 7779 - 7790 . doi: 10.1021/acscatal.9b01174 http://dx.doi.org/10.1021/acscatal.9b01174
Shang R. N. ; Gao H. ; Luo F. L. ; Li Y. L. ; Wang B. ; Ma Z. ; Pan L. ; Li Y. S. Functional isotactic polypropylenes via efficient direct copolymerizations of propylene with various amino-functionalized α -olefins . Macromolecules , 2019 , 52 ( 23 ), 9280 - 9290 . doi: 10.1021/acs.macromol.9b00757 http://dx.doi.org/10.1021/acs.macromol.9b00757
王胤然 , 赵泽鹏 , 侯召民 , 郭方 . 溴化聚烯烃橡胶的合成研究 . 高分子学报 , 2023 , 54 ( 11 ), 1729 - 1739 . doi: 10.11777/j.issn1000-3304.2023.23094 http://dx.doi.org/10.11777/j.issn1000-3304.2023.23094
焦娜 , 郭方 , 李杨 . 单茂钪催化对氟苯乙烯间规聚合及与乙烯共聚合的研究 . 高分子学报 , 2017 ( 12 ), 1923 - 1930 . doi: 10.11777/j.issn1000-3304.2017.17051 http://dx.doi.org/10.11777/j.issn1000-3304.2017.17051
Chen J. Z. ; Motta A. ; Wang B. H. ; Gao Y. S. ; Marks T. J. Significant polar comonomer enchainment in zirconium-catalyzed, masking reagent-free, ethylene copolymerizations . Angew. Chem. Int. Ed. , 2019 , 58 ( 21 ), 7030 - 7034 . doi: 10.1002/anie.201902042 http://dx.doi.org/10.1002/anie.201902042
Huang M. L. ; Chen J. Z. ; Wang B. H. ; Huang W. ; Chen H. B. ; Gao Y. S. ; Marks T. J. Polar isotactic and syndiotactic polypropylenes by organozirconium-catalyzed masking-reagent-free propylene and amino-olefin copolymerization . Angew. Chem. Int. Ed. , 2020 , 59 ( 46 ), 20522 - 20528 . doi: 10.1002/anie.202005635 http://dx.doi.org/10.1002/anie.202005635
Tanaka R. ; Fujii H. ; Kida T. ; Nakayama Y. ; Shiono T. Incorporation of boronic acid functionality into isotactic polypropylene and its application as a cross-linking point . Macromolecules , 2021 , 54 ( 3 ), 1267 - 1272 . doi: 10.1021/acs.macromol.0c02686 http://dx.doi.org/10.1021/acs.macromol.0c02686
Tan C. ; Chen M. ; Zou C. ; Chen C. L. Potentially practical catalytic systems for olefin-polar monomer coordination copolymerization . CCS Chem. , 2024 , 6 ( 4 ), 882 - 897 . doi: 10.31635/ccschem.023.202303322 http://dx.doi.org/10.31635/ccschem.023.202303322
Imuta J. I. ; Kashiwa N. ; Toda Y. Catalytic regioselective introduction of allyl alcohol into the nonpolar polyolefins: development of one-pot synthesis of hydroxyl-capped polyolefins mediated by a new metallocene IF catalyst . J. Am. Chem. Soc. , 2002 , 124 ( 7 ), 1176 - 1177 . doi: 10.1021/ja0174377 http://dx.doi.org/10.1021/ja0174377
Stehling U. M. ; Stein K. M. ; Kesti M. R. ; Waymouth R. M. Metallocene/borate-catalyzed polymerization of amino-functionalized α -olefins . Macromolecules , 1998 , 31 ( 7 ), 2019 - 2027 . doi: 10.1021/ma971053c http://dx.doi.org/10.1021/ma971053c
Wang X. Y. ; Wang Y. X. ; Shi X. C. ; Liu J. Y. ; Chen C. L. ; Li Y. S. Syntheses of well-defined functional isotactic polypropylenes via efficient c opolymerization of propylene with ω -halo- α -alkenes by post-metallocene hafnium catalyst . Macromolecules , 2014 , 47 ( 2 ), 552 - 559 . doi: 10.1021/ma4022696 http://dx.doi.org/10.1021/ma4022696
Wang X. Y. ; Long Y. Y. ; Wang Y. X. ; Li Y. S. Insights into propylene/ω-halo-α-alkenes copolymerization promoted by rac-Et(Ind) 2 ZrCl 2 and (pyridyl-amido)hafnium catalysts . J. Polym. Sci. Part A Polym. Chem., 2014, 52 ( 23 ), 3421 - 3428 . doi: 10.1002/pola.27409 http://dx.doi.org/10.1002/pola.27409
Liu D. T. ; Yao C. G. ; Wang R. ; Wang M. Y. ; Wang Z. C. ; Wu C. J. ; Lin F. ; Li S. H. ; Wan X. H. ; Cui D. M. Highly isoselective coordination polymerization of ortho -methoxystyrene with β -diketiminato rare-earth-metal precursors . Angew. Chem. Int. Ed. , 2015 , 54 ( 17 ), 5205 - 5209 . doi: 10.1002/anie.201412166 http://dx.doi.org/10.1002/anie.201412166
Chai Y. J. ; Wang L. F. ; Liu D. T. ; Wang Z. C. ; Run M. T. ; Cui D. M. Polar-group activated isospecific coordination polymerization of ortho-methoxystyrene: effects of central metals and ligands . Chem. Eur. J. , 2019 , 25 ( 8 ), 2043 - 2050 . doi: 10.1002/chem.201805012 http://dx.doi.org/10.1002/chem.201805012
Li S. H. ; Liu D. T. ; Wang Z. C. ; Cui D. M. Development of group 3 catalysts for alternating copolymerization of ethylene and styrene derivatives . ACS Catal. , 2018 , 8 ( 7 ), 6086 - 6093 . doi: 10.1021/acscatal.8b00885 http://dx.doi.org/10.1021/acscatal.8b00885
Liu D. T. ; Wang M. Y. ; Chai Y. J. ; Wan X. H. ; Cui D. M. Self-activated coordination polymerization of alkoxystyrenes by a yttrium precursor: stereocontrol and mechanism . ACS Catal. , 2019 , 9 ( 3 ), 2618 - 2625 . doi: 10.1021/acscatal.9b00555 http://dx.doi.org/10.1021/acscatal.9b00555
Jiang Y. ; Zhang Z. ; Li S. H. ; Cui D. M. Isospecific (co)polymerization of unmasked polar styrenes by neutral rare-earth metal catalysts . Angew. Chem. Int. Ed. , 2022 , 61 ( 9 ), e 202112966 . doi: 10.1002/anie.202112966 http://dx.doi.org/10.1002/anie.202112966
Liu B. ; Qiao K. N. ; Fang J. ; Wang T. T. ; Wang Z. C. ; Liu D. T. ; Xie Z. G. ; Maron L. ; Cui D. M. Mechanism and effect of polar styrenes on scandium-catalyzed copolymerization with ethylene . Angew. Chem. Int. Ed. , 2018 , 57 ( 45 ), 14896 - 14901 . d oi: 10.1002/anie.201808836 http://dx.doi.org/10.1002/anie.201808836
Liu D. T. ; Wang M. Y. ; Wang Z. C. ; Wu C. J. ; Pan Y. P. ; Cui D. M. Stereoselective copolymerization of unprotected polar and nonpolar styrenes by an yttrium precursor: Control of polar-group distribution and mechanism . Angew. Chem. Int. Ed. , 2017 , 56 ( 10 ), 2714 - 2719 . doi: 10.1002/anie.201611066 http://dx.doi.org/10.1002/anie.201611066
Wang T. T. ; Wu C. J. ; Ji X. L. ; Cui D. M. Direct synthesis of functional thermoplastic elastomer with excellent mechanical properties by scandium-catalyzed copolymerization of ethylene and fluorostyrenes . Angew. Chem. Int. Ed. , 2021 , 60 ( 49 ), 25735 - 25740 . doi: 10.1002/anie.202111184 http://dx.doi.org/10.1002/anie.202111184
Wang Q. Y. ; Zhang Z. ; Jiang Y. ; Zhang Y. F. ; Li S. H. ; Cui D. M. Isospecific polymerization of halide- and amino-substituted styrenes using a bis(phenolate) titanium catalyst . Catalysts , 2022 , 12 ( 4 ), 439 . doi: 10.3390/catal12040439 http://dx.doi.org/10.3390/catal12040439
Wang T. T. ; Wu C. J. ; Wang B. L. ; Cui D. M. Isospecific alternating copolymerization of unprotected polar styrenes and ethylene by the C symmetric scandium precursor via synergistic effects of two substituent groups . Giant , 2021 , 7 , 100061 . doi: 10.1016/j.giant.2021.100061 http://dx.doi.org/10.1016/j.giant.2021.100061
Zhong Y. H. ; Wu C. J. ; Cui D. M. Syndio-and cis-1 , 4 dually selective copolymerization of polar fluorostyrene and butadiene using rare-earth metal catalysts . Inorg. Chem. Front., 2020, 7 ( 20 ), 3961 - 3968 . doi: 10.1039/d0qi00719f http://dx.doi.org/10.1039/d0qi00719f
Wang C. X. ; Luo G. ; Nishiura M. ; Song G. Y. ; Yamamoto A. ; Luo Y. ; Hou Z. M. Heteroatom-assisted olefin polymerization by rare-earth metal catalysts . Sci. Adv. , 2017 , 3 ( 7 ), e 1701011 . doi: 10.1126/sciadv.1701011 http://dx.doi.org/10.1126/sciadv.1701011
Wang H. B. ; Wu X. ; Yang Y. ; Nishiura M. ; Hou Z. M. Co-syndiospecific alternating copolymerization of functionalized propylenes and styrene by rare-earth catalysts . Angew. Chem. Int. Ed. , 2020 , 59 ( 18 ), 7173 - 7177 . doi: 10.1002/anie.201915760 http://dx.doi.org/10.1002/anie.201915760
Wang H. B. ; Zhao Y. N. ; Nishiura M. ; Yang Y. ; Luo G. ; Luo Y. ; Hou Z. M. Scandium-catalyzed regio- and stereoselective cyclopolymerization of functionalized α , ω -dienes and copolymerization with ethylene . J. Am. Chem. Soc. , 2019 , 141 ( 32 ), 12624 - 12633 . doi: 10.1021/jacs.9b04275 http://dx.doi.org/10.1021/jacs.9b04275
Wang H. B. ; Yang Y. ; Nishiura M. ; Higaki Y. ; Takahara A. ; Hou Z. M. Synthesis of self-healing polymers by scandium-catalyzed copolymerization of ethylene and anisylpropylenes . J. Am. Chem. Soc. , 2019 , 141 ( 7 ), 3249 - 3257 . doi: 10.1021/jacs.8b13316 http://dx.doi.org/10.1021/jacs.8b13316
Wang Y. ; Wang Q. ; Tan C. ; Chen C. L. Synthesis of polar-functionalized isotactic polypropylenes using commercial heterogeneous ziegler-natta catalyst . J. Am. Chem. Soc. , 2024 , 146 ( 10 ), 6837 - 6845 . doi: 10.1021/jacs.3c13723 http://dx.doi.org/10.1021/jacs.3c13723
Tan C. ; Zou C. ; Chen C. L. An ionic cluster strategy for performance improvements and product morphology control in metal-catalyzed olefin-polar monomer copolymerization . J. Am. Chem. Soc. , 2022 , 144 ( 5 ), 2245 - 2254 . doi: 10.1021/jacs.1c11817 http://dx.doi.org/10.1021/jacs.1c11817
Zhang Z. ; Jiang Y. ; Lei R. ; Zhang Y. F. ; Li S. H. ; Cui D. M. Proximity-driven synergic copolymerization of ethylene and polar monomers . Macromolecules , 2023 , 56 ( 6 ), 2476 - 2483 . doi: 10.1021/acs.macromol.2c02337 http://dx.doi.org/10.1021/acs.macromol.2c02337
Chen J. Z. ; Gao Y. S. ; Wang B. H. ; Lohr T. L. ; Marks T. J. Scandium-catalyzed self-assisted polar co-monomer enchainment in ethylene polymerization . Angew. Chem. Int. Ed. , 2017 , 56 ( 50 ), 15964 - 15968 . doi: 10.1002/anie.201708797 http://dx.doi.org/10.1002/anie.201708797
Jiang Y. ; Zhang Z. ; Jiang H. Q. ; Wang Q. Y. ; Li S. H. ; Cui D. M. Polar group-promoted copolymerization of ethylene with polar olefins . Macromolecules , 2023 , 56 ( 4 ), 1547 - 1553 . doi: 10.1021/acs.macromol.2c02155 http://dx.doi.org/10.1021/acs.macromol.2c02155
Wang Z. C. ; Wang M. Y. ; Liu J. Y. ; Liu D. T. ; Cui D. M. Rapid syndiospecific (co)polymerization of fluorostyrene with high monomer conversion . Chem.Eur. J. , 2017 , 23 ( 72 ), 18151 - 18155 . doi: 10.1002/chem.201704584 http://dx.doi.org/10.1002/chem.201704584
Pan Y. P. ; Rong W. F. ; Jian Z. B. ; Cui D. M. Ligands dominate highly syndioselective polymerization of styrene by using constrained-geometry-configuration rare-earth metal precursors . Macromolecules , 2012 , 45 ( 3 ), 1248 - 1253 . doi: 10.1021/ma202558g http://dx.doi.org/10.1021/ma202558g
Wang B. L. ; Wang D. ; Cui D. M. ; Gao W. ; Tang T. ; Chen X. S. ; Jing X. B. Synthesis of the first rare earth metal bis(alkyl)s bearing an indenyl functionalized N -heterocyclic carbene . Organometallics , 2007 , 26 ( 13 ), 3167 - 3172 . doi: 10.1021/om0700922 http://dx.doi.org/10.1021/om0700922
Wang B. L. ; Cui D. M. ; Lv K. Highly 3 , 4 -selective living polymerization of isoprene with rare earth metal fluorenyl N -heterocyclic carbene precursors . Macromolecules, 2008, 41 ( 6 ), 1983 - 1988 . doi: 10.1021/ma702505n http://dx.doi.org/10.1021/ma702505n
Kretschmer W. P. ; Meetsma A. ; Hessen B. ; Schmalz T. ; Qayyum S. ; Kempe R. Reversible chain transfer between organoyttrium cations and aluminum: synthesis of aluminum-terminated polyethylene with extremely narrow molecular-weight distribution . Chem. Eur. J. , 2006 , 12 ( 35 ), 8969 - 8978 . doi: 10.1002/chem.200600660 http://dx.doi.org/10.1002/chem.200600660
Li S. H. ; Miao W. ; Tang T. ; Dong W. M. ; Zhang X. Q. ; Cui D. M. New rare earth metal bis(alkyl)s bearing an iminophosphonamido ligand . synthesis and catalysis toward highly 3 , 4 -selective polymerization of isoprene. Organometallics, 2008, 27 ( 4 ), 718 - 725 . doi: 10.1021/om700945r http://dx.doi.org/10.1021/om700945r
0
浏览量
353
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构