浏览全部资源
扫码关注微信
天津大学材料科学与工程学院 天津 300350
E-mail: binwang@tju.edu.cn
纸质出版日期:2024-10-20,
网络出版日期:2024-07-15,
收稿日期:2024-03-27,
录用日期:2024-05-11
移动端阅览
程博翔, 王明倩, 丁志强, 马哲, 王彬, 李悦生. 聚己内酯和聚碳酸酯型聚氨酯的合成及性能研究[J]. 高分子学报, 2024, 55(10), 1346-1355
Cheng, B. X.; Wang, M. Q.; Ding, Z. Q.; Ma, Z.; Wang, B.; Li, Y. S. Synthesis and properties of polycaprolactone and polycarbonate-based polyurethanes. Acta Polymerica Sinica, 2024, 55(10), 1346-1355
程博翔, 王明倩, 丁志强, 马哲, 王彬, 李悦生. 聚己内酯和聚碳酸酯型聚氨酯的合成及性能研究[J]. 高分子学报, 2024, 55(10), 1346-1355 DOI: 10.11777/j.issn1000-3304.2024.24094.
Cheng, B. X.; Wang, M. Q.; Ding, Z. Q.; Ma, Z.; Wang, B.; Li, Y. S. Synthesis and properties of polycaprolactone and polycarbonate-based polyurethanes. Acta Polymerica Sinica, 2024, 55(10), 1346-1355 DOI: 10.11777/j.issn1000-3304.2024.24094.
国内聚己内酯二元醇的产能无法满足聚酯型聚氨酯工业的生产需求,寻找与聚己内酯型聚氨酯(PCL-PU)性能相当的替代物具有重要研究意义. 本工作利用Lewis pair催化的可控开环聚合分别制备了不同相对分子质量的聚己内酯(PCL-diol)和聚碳酸(1
4-丁二醇)酯多元醇(PC-diol),并通过核磁共振波谱和基质辅助激光解吸电离飞行时间质谱分析表征了2种聚酯二元醇的结构. 将2种二元醇分别与2
4-甲苯二异氰酸酯(TDI)、扩链剂1
4-丁二醇(BDO)反应合成了PCL-PU及聚碳酸酯型聚氨酯(PC-PU). 结合多种分析表征方法进一步对比研究了2种聚氨酯的热性质、结晶行为和力学性能. 结果表明,PC-PU具有和PCL-PU相近的热稳定性和热分解过程,2种聚氨酯的初始分解温度均>260 ℃,且均具有2个热分解阶段. PCL-PU具有较快的结晶速率,而PC-PU的结晶速率较慢. 相比于PCL-PU,PC-PU具有更高的断裂伸长率(>1200%)和断裂强度(>45 MPa). 本工作为创制具有PCL-PU相当性能的PC-PU提供了科学基础与依据,有望促进聚氨酯工业的进一步发展.
Polycaprolactone polyurethane (PCL-PU) has excellent mechanical properties
good biocompatibility and biodegradability
which is widely used in biomedical materials and other fields. However
the domestic production capacity of polycaprolactone diols is unable to meet the production demand of the polyester-based polyurethane industry. The search for alternatives with comparable properties to polycaprolactone-based polyurethanes is of great research importance. Therefore
in this study
three polycaprolactone (PCL-diol) and polycarbonate (1
4-butanediol) ester polyols (PC-diol) with different relative molecular masses were prepared using Lewis pair-catalyzed controlled ring-opening polymerization
respectively. The structures of the two polyester diols were characterized by nuclear magnetic resonance hydrogen spectrometry (
1
H-NMR) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis (MALDI-TOF MS). PCL-PU and polycarbonate polyurethane (PC-PU) were synthesized by the reaction of two polyester diols with 2
4-toluene diisocyanate (TDI) and chain extender 1
4-butanediol (BDO)
respectively. The thermal properties
crystalline behaviors
and mechanical properties of the two polyurethanes were further investigated in a comparative manner by thermogravimetric analysis
differential scanning calorimetry analysis
and stress/strain test. The results show that PC-PU has similar thermal stability and thermal decomposition process as PCL-PU
and the initial decomposition temperature of both polyurethanes is higher than 260 ℃
and both of them have two thermal decomposition stages. PCL-PU has a faster crystallization rate
while PC-PU has a slower crystallization rate. Compared to PCL-PU
PC-PU has higher elongation at break (
>
1200%) and breaking strength (
>
45 MPa). This paper provides a scientific basis and rationale for the creation of PC-PU with comparable properties of PCL-PU
and provides impetus for the development of the polyurethane industry.
聚己内酯聚碳酸酯聚酯二元醇开环聚合聚氨酯
PolycaprolactonePolycarbonatePolyester diolsRing-opening polymerizationPolyurethane
Joseph J.; Patel R. M.; Wenham A.; Smith J. R. Biomedical applications of polyurethane materials and coatings. Trans. Inst. Metal Finish., 2018, 96(3), 121-129. doi:10.1016/j.jmst.2017.05.014http://dx.doi.org/10.1016/j.jmst.2017.05.014
Lei W. Q.; Fang C. Q.; Zhou X.; Li J. B.; Yang R.; Zhang Z. S.; Liu D. H. Thermal properties of polyurethane elastomer with different flexible molecular chain based on para-phenylene diisocyanate. J. Mater. Sci. Technol., 2017, 33(11), 1424-1432. doi:10.1016/j.jmst.2017.05.014http://dx.doi.org/10.1016/j.jmst.2017.05.014
金玉顺, 伍一波, 刘若凡, 丁伟. 热塑性弹性体的制备与改性研究进展. 弹性体, 2023, 33(6), 83-91. doi:10.1021/ma4006395http://dx.doi.org/10.1021/ma4006395
Fragiadakis D.; Runt J. Molecular dynamics of segmented polyurethane copolymers: influence of soft segment composition. Macromolecules, 2013, 46(10), 4184-4190. doi:10.1021/ma9811472http://dx.doi.org/10.1021/ma9811472
Velankar S.; Cooper S. L. Microphase separation and rheological properties of polyurethane melts. 1. Effect of block length. Macromolecules, 1998, 31(26), 9181-9192. doi:10.1021/ma9811472http://dx.doi.org/10.1021/ma9811472
Lin W. J.; Lu C. H. Characterization and permeation of microporous poly(ε-caprolactone) films. J. Membr. Sci., 2002, 198(1), 109-118. doi:10.1021/acsapm.0c00535http://dx.doi.org/10.1021/acsapm.0c00535
Loureiro M. V.; Vale M.; Galhano R.; Matos S.; Bordado J. C.; Pinho I.; Marques A. C. Microencapsulation of isocyanate in biodegradable poly(ε-caprolactone) capsules and application in monocomponent green adhesives. ACS Appl. Polym. Mater., 2020, 2(11), 4425-4438. doi:10.1021/acsapm.0c00535http://dx.doi.org/10.1021/acsapm.0c00535
赵鑫, 常静. ε-己内酯与聚己内酯研究应用进展. 煤炭与化工, 2021, 44(4), 130-134. doi:10.3969/j.issn.1001-5922.2022.01.002http://dx.doi.org/10.3969/j.issn.1001-5922.2022.01.002
熊涛, 张一甫. 聚ε-己内酯多元醇的合成与表征. 粘接, 2022, 49(1), 8-11. doi:10.3969/j.issn.1001-5922.2022.01.002http://dx.doi.org/10.3969/j.issn.1001-5922.2022.01.002
Guan J. J.; Wagner W. R. Synthesis, characterization and cytocompatibility of polyurethaneurea elastomers with designed elastase sensitivity. Biomacromolecules, 2005, 6(5), 2833-2842. doi:10.1021/bm0503322http://dx.doi.org/10.1021/bm0503322
Behera P. K.; Raut S. K.; Mondal P.; Sarkar S.; Singha N. K. Self-healable polyurethane elastomer based on dual dynamic covalent chemistry using diels-alder"click"and disulfide metathesis reactions. ACS Appl. Polym. Mater., 2021, 3(2), 847-856. doi:10.1021/acsapm.0c01179http://dx.doi.org/10.1021/acsapm.0c01179
Rivero G.; Nguyen L.; Hillewaere X. K. Prez, F. D. One-pot thermo-remendable shape memory polyurethanes. Macromolecules, 2014, 47(6), 2010-2018. doi:10.1021/ma402471chttp://dx.doi.org/10.1021/ma402471c
Zhang X. Y.; Fevre M.; Jones G. O.; Waymouth R. M. Catalysis as an enabling science for sustainable polymers. Chem. Rev., 2018, 118(2), 839-885. doi:10.1021/acs.chemrev.7b00329http://dx.doi.org/10.1021/acs.chemrev.7b00329
Yang Z. P.; Zhang S. F.; Chen Z. P.; Lai X. J.; Li H. Q.; Zeng X. R. Self-healing and degradable polycaprolactone-based polyurethane elastomer for flexible stretchable strain sensors. ACS Appl. Polym. Mater., 2024, 6(1), 905-914. doi:10.1021/acs.chemmater.3c00120http://dx.doi.org/10.1021/acs.chemmater.3c00120
Liu Y. N.; Wang J.; Li L. N.; Meng S.; Ji K. H.; Ma P. T.; Wang J. P.; Niu J. Y. Enhanced photoinduced baeyer-villiger oxidation of ketones by introducing trinuclear ruthenium clusters into polyoxometalate-based metal-organic frameworks. Chem. Mater., 2023, 35(10), 3941-3950. doi:10.1021/acs.chemmater.3c00120http://dx.doi.org/10.1021/acs.chemmater.3c00120
王洪宇. 基于环己酮路线制备ε-己内酯工艺研究进展及工艺安全分析. 安全、健康和环境, 2023, 23(10), 1-10. doi:10.1016/j.tet.2007.11.024http://dx.doi.org/10.1016/j.tet.2007.11.024
Jiménez-Sanchidrián C.; Ruiz J. R. The Baeyer-Villiger reaction on heterogeneous catalysts. Tetrahedron, 2008, 64(9), 2011-2026. doi:10.1021/acs.iecr.1c04407http://dx.doi.org/10.1021/acs.iecr.1c04407
Cai Z. H.; Liu D.; Huang J. N.; Feng J. N.; Wang H. J.; Yang G. X.; Peng F.; Cao Y. H.; Yu H. Solvent-free production of ε-caprolactone from oxidation of cyclohexanone catalyzed by nitrogen-doped carbon nanotubes. Ind. Eng. Chem. Res., 2022, 61(5), 2037-2044. doi:10.1016/j.catcom.2011.01.028http://dx.doi.org/10.1016/j.catcom.2011.01.028
Yang Z. W.; Niu L. Y.; Jia X. J.; Kang Q. X.; Ma Z. H.; Lei Z. Q. Preparation of silica-supported sulfate and its application as a stable and highly active solid acid catalyst. Catal. Commun., 2011, 12(9), 798-802. doi:10.1021/acssuschemeng.9b02521http://dx.doi.org/10.1021/acssuschemeng.9b02521
Zhang Y. Y.; Zhao Y. Y.; Jiang W. W.; Yao Q. C.; Li Z. W.; Gao X.; Liu T.; Yang F. K.; Wang F. Y.; Liu J. H. Lipase-catalyzed oxidation of cyclohexanone to form ε-caprolactone and kinetic modeling. ACS Sustain. Chem. Eng., 2019, 7(15), 13294-13306. doi:10.1021/acssuschemeng.9b02521http://dx.doi.org/10.1021/acssuschemeng.9b02521
张涵, 孙志强, 李帅, 庞火亘, 陈学思. ε-己内酯产业化开发的现状与展望. 高分子材料科学与工程, 2021, 37(1), 218-222. doi:10.1021/acscatal.7b03580http://dx.doi.org/10.1021/acscatal.7b03580
Shaikh R. R.; Pornpraprom S.; D'Elia V. Catalytic strategies for the cycloaddition of pure, diluted, and waste CO2 to epoxides under ambient conditions. ACS Catal., 2018, 8(1), 419-450. doi:10.1016/s0032-3861(00)00273-1http://dx.doi.org/10.1016/s0032-3861(00)00273-1
Rokicki G.; Kowalczyk T. Synthesis of oligocarbonate diols and their characterization by MALDI-TOF spectrometry. Polymer, 2000, 41(26), 9013-9031. doi:10.1016/j.polymdegradstab.2015.10.023http://dx.doi.org/10.1016/j.polymdegradstab.2015.10.023
Fernández-d'Arlas B.; Alonso-Varona A.; Palomares T.; Corcuera M. A.; Eceiza A. Studies on the morphology, properties and biocompatibility of aliphatic diisocyanate-polycarbonate polyurethanes. Polym. Degrad. Stabil., 2015,. doi:10.1016/j.polymdegradstab.2015.10.023http://dx.doi.org/10.1016/j.polymdegradstab.2015.10.023
Serkis M.; Špírková M.; Poręba R.; Hodan J.; Kredatusová J.; Kubies D. Hydrolytic stability of polycarbonate-based polyurethane elastomers tested in physiologically simulated conditions. Polym. Degrad. Stabil., 2015, 119, 23-34. doi:10.1016/j.polymdegradstab.2015.04.030http://dx.doi.org/10.1016/j.polymdegradstab.2015.04.030
Wang J.; Zhang H. M.; Miao Y. Y.; Qiao L. J.; Wang X. H.; Wang F. S. Waterborne polyurethanes from CO2 based polyols with comprehensive hydrolysis/oxidation resistance. Green Chem., 2016, 18(2), 524-530. doi:10.1016/j.cej.2018.09.118http://dx.doi.org/10.1016/j.cej.2018.09.118
Matějka L.; Špírková M.; Dybal J.; Kredatusová J.; Hodan J.; Zhigunov A.; Šlouf M. Structure evolution during order-disorder transitions in aliphatic polycarbonate based polyurethanes. Self-healing polymer. Chem. Eng. J., 2019, 357, 611-624. doi:10.1016/j.cej.2018.09.118http://dx.doi.org/10.1016/j.cej.2018.09.118
Zeng F. H.; Ning J. Y.; Yang Y. Y.; Tian C.; Huang L.; Zhao F. Q.; Liu Q.; Cui M. L.; Lv J. H.; Jiang Y. F.; Cai X. F.; Kong W. B. A photohealable polyurethane with superior robustness and healing ratio. Macromolecules, 2022, 55(19), 8741-8748. doi:10.1021/ma901317thttp://dx.doi.org/10.1021/ma901317t
Kojio K.; Furukawa M.; Motokucho S.; Shimada M.; Sakai M. Structure-mechanical property relationships for poly-(carbonate urethane) elastomers with novel soft segments. Macromolecules, 2009, 42(21), 8322-8327. doi:10.1021/ma901317thttp://dx.doi.org/10.1021/ma901317t
Luo W. K.; Qin J. X.; Xiao M.; Han D. M.; Wang S. J.; Meng Y. Z. Synthesis of aliphatic carbonate macrodiols and their application as sustainable feedstock for polyurethane. ACS Omega, 2017, 2(7), 3205-3213. doi:10.1021/acsomega.7b00183http://dx.doi.org/10.1021/acsomega.7b00183
Stokes K.; McVenes R.; Anderson J. M. Polyurethane elastomer biostability. J. Biomater. Appl., 1995, 9(4), 321-354. doi:10.1021/cr068363qhttp://dx.doi.org/10.1021/cr068363q
Darensbourg D. J. Making plastics from carbon dioxide: salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. Chem. Rev., 2007, 107(6), 2388-2410. doi:10.1039/c4gc01754dhttp://dx.doi.org/10.1039/c4gc01754d
Xu B. H.; Wang J. Q.; Sun J.; Huang Y.; Zhang J. P.; Zhang X. P.; Zhang S. J. Fixation of CO2 into cyclic carbonates catalyzed by ionic liquids: a multi-scale approach. Green Chem., 2015, 17(1), 108-122. doi:10.1016/j.cattod.2006.02.033http://dx.doi.org/10.1016/j.cattod.2006.02.033
Li Q. B.; Zhang W. Y.; Zhao N.; Wei W.; Sun Y. H. Synthesis of cyclic carbonates from urea and diols over metal oxides. Catal. Today, 2006, 115(1-4), 111-116. doi:10.1016/j.cattod.2006.02.033http://dx.doi.org/10.1016/j.cattod.2006.02.033
王彬, 季鹤源, 李悦生. Lewis Pairs催化环酯开环聚合与环酐/环氧化物开环交替共聚. 高分子学报, 2020, 51(10), 1104-1120. doi:10.11777/j.issn1000-3304.2020.20035http://dx.doi.org/10.11777/j.issn1000-3304.2020.20035
王彬. 联吡啶双酚铝催化开环(共)聚合制备聚酯材料. 高分子学报, 2023, 54(6), 778-790. doi:10.11777/j.issn1000-3304.2022.22433http://dx.doi.org/10.11777/j.issn1000-3304.2022.22433
王彬, 林旭名, 王明倩, 李悦生. 一种七元环碳酸酯及其合成方法. 中国专利, CN117024399B. --.
Ma D. Z. Molecular weight dependence of the melting behavior of poly(ε-caprolactone). Chinese J. Polym. Sci., 2002, 20(1), 45-51.
Špírková M.; Pavličević J.; Strachota A.; Poreba R.; Bera O.; Kaprálková L.; Baldrian J.; Šlouf M.; Lazić N.; Budinski-Simendić J. Novel polycarbonate-based polyurethane elastomers: composition-property relationship. Eur. Polym. J., 2011, 47(5), 959-972. doi:10.1016/j.eurpolymj.2011.01.001http://dx.doi.org/10.1016/j.eurpolymj.2011.01.001
Xu Y. W.; Zhou S.; Wu Z. H.; Yang X. Y.; Li N.; Qin Z. H.; Jiao T. F. Room-temperature self-healing and recyclable polyurethane elastomers with high strength and superior robustness based on dynamic double-crosslinked structure. Chem. Eng. J., 2023, 466, 143179. doi:10.1016/j.cej.2023.143179http://dx.doi.org/10.1016/j.cej.2023.143179
Fang C. Q.; Lei W. Q.; Zhou X.; Yu Q.; Cheng Y. L. Preparation and characterization of waterborne polyurethane containing PET waste/PPG as soft segment. J. Appl. Polym. Sci., 2015, 132(45), 42757. doi:10.1021/jp100599uhttp://dx.doi.org/10.1021/jp100599u
Mishra A.; Aswal V. K.; Maiti P. Nanostructure to microstructure self-assembly of aliphatic polyurethanes: the effect on mechanical properties. J. Phys. Chem. B, 2010, 114(16), 5292-5300. doi:10.1021/jp100599uhttp://dx.doi.org/10.1021/jp100599u
0
浏览量
418
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构