浏览全部资源
扫码关注微信
中石化(北京)化工研究院有限公司 北京 100013
[ "乔金樑,男,1959 年生. 中国石油化工集团北京化工研究院教授级高工、博士生导师. 1982 年在中国科技大学获得学士学位;1985 年在北京化工研究院获得硕士学位;1996 年在北京大学获得博士学位. 1985年到北京化工研究院工作,曾担任中国石化首席专家、973项目首席科学家,中国化工学会首批会士. 长期坚持从基础研究出发进行技术创新,获境内外授权发明专利400 余件,发表SCI 论文120 多篇. 获国家发明二等奖二项、国家科技进步二等奖一项、中国专利金奖一项和优秀奖三项. 此外,曾获得中国化学会“化学贡献奖”、亚洲化学联合会“经济发展杰出贡献奖”、中国化工学会“侯德榜化工科学技术成就奖”等. 主要从事聚烯烃等高分子新材料开发.E-mail:qiaojl.bjhy@sinopec.com" ]
纸质出版日期:2024-10-20,
网络出版日期:2024-07-16,
收稿日期:2024-04-16,
录用日期:2024-05-29
移动端阅览
郭照琰, 茹越, 胡晨曦, 张晓红, 乔金樑. 马来酸酐/马来酰亚胺共聚物及衍生物的光致发光研究进展. 高分子学报, 2024, 55(10), 1265-1279
Guo, Z. Y.; Ru, Y.; Hu, C.X.; Zhang, X. H.; Qiao, J. L. Research progress on photoluminescence of maleic anhydride/maleimide copolymers and derivatives. Acta Polymerica Sinica, 2024, 55(10), 1265-1279
郭照琰, 茹越, 胡晨曦, 张晓红, 乔金樑. 马来酸酐/马来酰亚胺共聚物及衍生物的光致发光研究进展. 高分子学报, 2024, 55(10), 1265-1279 DOI: 10.11777/j.issn1000-3304.2024.24099.
Guo, Z. Y.; Ru, Y.; Hu, C.X.; Zhang, X. H.; Qiao, J. L. Research progress on photoluminescence of maleic anhydride/maleimide copolymers and derivatives. Acta Polymerica Sinica, 2024, 55(10), 1265-1279 DOI: 10.11777/j.issn1000-3304.2024.24099.
马来酸酐/马来酰亚胺共聚物及其衍生物作为一类新型的非共轭聚合物光致发光材料,分子可设计性强,结构多变,便于系统性地研究该体系的荧光机理. 本文基于马来酸酐/马来酰亚胺共聚物及其衍生物荧光分子改性、聚合调控、酸碱改性、热处理等方面,结合其制备方法、结构特征、荧光机理等,简述了此类非共轭聚合物在光致发光领域的最新研究进展,分析表明此类发光共聚物具有极高的工业化前景,并指出了其诸多的潜在应用领域如发光二极管(LED)、化学传感、药物输送、细胞成像、无油墨防伪印刷等.
Maleic anhydride/maleimide copolymers and their derivatives have realized industrial production and application with the advantages of easy functionalization
low cost
tunability and biocompatibility
long before their fluorescence properties were discovered. In recent years
the self-stable precipitation polymerization method of maleic anhydride/maleimide copolymer were developed to realize the polymerization and separation of olefin raw materials in the petrochemical industry. The resulting copolymer microspheres also have important industrial value
and can be used in many fields such as light diffusion
wood bonding
and light transfer. As a new typical class of non-conjugated photoluminescence polymers
maleic anhydride/maleimide copolymers and their derivatives could exhibit the following advantages: (1) The electron-deficient maleic anhydride and maleimide monomers could easily form copolymers with electron rich monomers such as styrene
α
-methyl styrene
stilbene
vinyl acetate
etc.
to achieve special photoluminescence caused by spatial conjugation. Such polymers showed strong molecular designability and variable structures; (2) Based on the reactivity of maleic anhydride/maleimide units
such copolymers can achieve functional group grafting
ionic modification
amidation/imide transformation
removal reaction
etc.
Therefore
the study of the photoluminescence properties of maleic anhydride/maleimide copolymers is also convenient to provide a systematic basis for the photoluminescence mechanism of non-conjugated polymers. Besides
their fluorescence properties of these copolymers could be adjusted according to practical applications. However
the photoluminescence properties
mechanism and related applications of maleic anhydride/maleimide copolymers and their derivatives are still lacking. Based on the fluorescence molecular modification
polymerization regulation
acid-base modification and heat treatment of maleic anhydride/maleimide copolymers and their derivatives
combined with their preparation methods
structural characteristics and fluorescence mechanism
the latest research progress of this kind of non-conjugated polymers in the field of photoluminescence is briefly reviewed in this paper. Maleic anhydride/maleimide copolymers and their derivatives exhibit high industrial potential in kinds of applications such as light-emitting diode (LED)
chemical sensing
drug delivery
cell imaging
ink-free anti-counterfeiting printing.
非共轭聚合物光致发光马来酸酐/马来酰亚胺共聚物及衍生物空间共轭团簇发光
Non-conjugated polymersPhotoluminescenceMaleic anhydride/maleimide copolymers and derivativesSpace conjugationCluster luminescence
杨冰, 李瑛, 徐创霞, 徐向刚, 谢明贵. 有机荧光材料研究进展. 化学研究与应用, 2003, 15(1), 11-16. doi:10.3969/j.issn.1004-1656.2003.01.004http://dx.doi.org/10.3969/j.issn.1004-1656.2003.01.004
于凯, 关淑霞, 张宏伟, 周百斌, 李玲. 有机光致发光材料的研究进展. 哈尔滨师范大学自然科学学报, 2006, 22(3), 70-73.
于兰平. 无机荧光材料的工艺研究与开发. 天津化工, 2003, 17(5), 35-36. doi:10.3969/j.issn.1008-1267.2003.05.015http://dx.doi.org/10.3969/j.issn.1008-1267.2003.05.015
张中太, 张俊英. 无机光致发光材料及应用. 北京: 化学工业出版社, 2011. 5-10.
Chen G.; Li W. B.; Zhou T. R.; Peng Q.; Zhai D.; Li H. X.; Yuan W. Z.; Zhang Y. M.; Tang B. Z. Conjugation-induced rigidity in twisting molecules: filling the gap between aggregation-caused quenching and aggregation-induced emission. Adv. Mater., 2015, 27(30), 4496-4501. doi:10.1002/adma.201501981http://dx.doi.org/10.1002/adma.201501981
Mei J.; Hong Y. N.; Lam J. W. Y.; Qin A. J.; Tang Y. H.; Tang B. Z. Aggregation-induced emission: the whole is more brilliant than the parts. Adv. Mater., 2014, 26(31), 5429-5479. doi:10.1002/adma.201401356http://dx.doi.org/10.1002/adma.201401356
Mei J.; Leung N. L. C.; Kwok R. T. K.; Lam J. W. Y.; Tang B. Z. Aggregation-induced emission: together we shine, united we soar. Chem. Rev., 2015, 115(21), 11718-11940. doi:10.1021/acs.chemrev.5b00263http://dx.doi.org/10.1021/acs.chemrev.5b00263
Hong Y. N.; Lam J. W. Y.; Tang B. Z. Aggregation-induced emission. Chem. Soc. Rev., 2011, 40(11), 5361. doi:10.1039/c1cs15113dhttp://dx.doi.org/10.1039/c1cs15113d
Hu R. R.; Leung N. L. C.; Tang B. Z. AIE macromolecules: syntheses, structures and functionalities. Chem. Soc. Rev., 2014, 43(13), 4494-4562. doi:10.1039/c4cs00044ghttp://dx.doi.org/10.1039/c4cs00044g
Wang K.; Zhang X. Y.; Zhang X. Q.; Yang B.; Li Z.; Zhang Q. S.; Huang Z. F.; Wei Y. One-pot preparation of cross-linked amphiphilic fluorescent polymer based on aggregation induced emission dyes. Colloids Surf. B Biointerfaces, 2015, 126, 273-279. doi:10.1016/j.colsurfb.2014.12.025http://dx.doi.org/10.1016/j.colsurfb.2014.12.025
Liu J. Z.; Lam J. W. Y.; Tang B. Z. Aggregation-induced emission of silole molecules and polymers: fundamental and applications. J. Inorg. Organomet. Polym. Mater., 2009, 19(3), 249-285. doi:10.1007/s10904-009-9282-8http://dx.doi.org/10.1007/s10904-009-9282-8
Xing C. M.; Lam J. W. Y.; Qin A.; Dong Y.; Haussler M.; Yang W. T.; Tang B. Z. Unique photoluminescence from nonconjugated alternating copolymer poly((maleic anhydride)-alt-(vinyl acetate)). Polym. Mater. Sci. Eng., 2007, 96, 418-419.
Liu S.; Tian J. Q.; Wang L.; Zhang Y. W.; Qin X. Y.; Luo Y. L.; Asiri A. M.; Al-Youbi A. O.; Sun X. P. Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv. Mater., 2012, 24(15), 2037-2041. doi:10.1002/adma.201200164http://dx.doi.org/10.1002/adma.201200164
Zhu S. J.; Zhang J. H.; Wang L.; Song Y. B.; Zhang G. Y.; Wang H. Y.; Yang B. A general route to make non-conjugated linear polymers luminescent. Chem. Commun., 2012, 48(88), 10889-10891. doi:10.1039/c2cc36080bhttp://dx.doi.org/10.1039/c2cc36080b
Zhu S. J.; Wang L.; Zhou N.; Zhao X. H.; Song Y. B.; Maharjan S.; Zhang J. H.; Lu L. J.; Wang H. Y.; Yang B. The crosslink enhanced emission (CEE) in non-conjugated polymer dots: from the photoluminescence mechanism to the cellular uptake mechanism and internalization. Chem. Commun., 2014, 50(89), 13845-13848. doi:10.1039/c4cc05806bhttp://dx.doi.org/10.1039/c4cc05806b
Song G. S.; Lin Y. N.; Zhu Z. C.; Zheng H. Y.; Qiao J. P.; He C. C.; Wang H. L. Strong fluorescence of poly(N-vinylpyrrolidone) and its oxidized hydrolyzate. Macromol. Rapid Commun., 2015, 36(3), 278-285. doi:10.1002/marc.201400516http://dx.doi.org/10.1002/marc.201400516
Zeng X. L.; Yang X. M.; Li F. M.; Ma J.; Lin Y. P.; Yao B. X.; Huang L. Z.; Weng W. One-step fabrication of nitrogen-doped fluorescent nanoparticles from non-conjugated natural products and their temperature-sensing and bioimaging applications. Sens. Bio Sens. Res., 2015, 3, 18-23. doi:10.1016/j.sbsr.2014.10.001http://dx.doi.org/10.1016/j.sbsr.2014.10.001
Zhao E. G.; Lam J. W. Y.; Meng L. M.; Hong Y. N.; Deng H. Q.; Bai G. X.; Huang X. H.; Hao J. H.; Tang B. Z. Poly((maleic anhydride)-alt-(vinyl acetate)): a pure oxygenic nonconjugated macromolecule with strong light emission and solvatochromic effect. Macromolecules, 2015, 48(1), 64-71. doi:10.1021/ma502160whttp://dx.doi.org/10.1021/ma502160w
Zhu S. J.; Song Y. B.; Shao J. R.; Zhao X. H.; Yang B. Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units. Angew. Chem. Int. Ed., 2015, 54(49), 14626-14637. doi:10.1002/anie.201504951http://dx.doi.org/10.1002/anie.201504951
Sun B.; Zhao B.; Wang D. D.; Wang Y. B.; Tang Q.; Zhu S. J.; Yang B.; Sun H. C. Fluorescent non-conjugated polymer dots for targeted cell imaging. Nanoscale, 2016, 8(18), 9837-9841. doi:10.1039/c6nr01909ahttp://dx.doi.org/10.1039/c6nr01909a
Larson D. R.; Zipfel W. R.; Williams R. M.; Clark S. W.; Bruchez M. P.; Wise F. W.; Webb W. W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science, 2003, 300(5624), 1434-1436. doi:10.1126/science.1083780http://dx.doi.org/10.1126/science.1083780
Adegoke O.; Forbes P. B. C. Challenges and advances in quantum dot fluorescent probes to detect reactive oxygen and nitrogen species: a review. Anal. Chim. Acta, 2015, 862, 1-13. doi:10.1016/j.aca.2014.08.036http://dx.doi.org/10.1016/j.aca.2014.08.036
Chua C. K.; Sofer Z.; Šimek P.; Jankovský O.; Klímová K.; Bakardjieva S.; Hrdličková Kučková Š.; Pumera M. Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene. ACS Nano, 2015, 9(3), 2548-2555. doi:10.1021/nn505639qhttp://dx.doi.org/10.1021/nn505639q
Fan Z. T.; Li S. H.; Yuan F. L.; Fan L. Z. Fluorescent graphene quantum dots for biosensing and bioimaging. RSC Adv., 2015, 5(25), 19773-19789. doi:10.1039/c4ra17131dhttp://dx.doi.org/10.1039/c4ra17131d
Wegner K.; Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev., 2015, 44(14), 4792-4834. doi:10.1039/c4cs00532ehttp://dx.doi.org/10.1039/c4cs00532e
Gu Y. P.; Cui R.; Zhang Z. L.; Xie Z. X.; Pang D. W. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J. Am. Chem. Soc., 2012, 134(1), 79-82. doi:10.1021/ja2089553http://dx.doi.org/10.1021/ja2089553
Ostermann J.; Merkl J. P.; Flessau S.; Wolter C.; Kornowksi A.; Schmidtke C.; Pietsch A.; Kloust H.; Feld A.; Weller H. Controlling the physical and biological properties of highly fluorescent aqueous quantum dots using block copolymers of different size and shape. ACS Nano, 2013, 7(10), 9156-9167. doi:10.1021/nn4037859http://dx.doi.org/10.1021/nn4037859
Pan H. C.; Cui R. J.; Zhu J. J. CdTe quantum dots as probes for near-infrared fluorescence biosensing using biocatalytic growth of Au nanoparticles. J. Phys. Chem. B, 2008, 112(51), 16895-16901. doi:10.1021/jp807251khttp://dx.doi.org/10.1021/jp807251k
Shukla A.; Mukherjee S.; Sharma S.; Agrawal V.; Radha Kishan K. V.; Guptasarma P. A novel UV laser-induced visible blue radiation from protein crystals and aggregates: scattering artifacts or fluorescence transitions of peptide electrons delocalized through hydrogen bonding? Arch. Biochem. Biophys., 2004, 428(2), 144-153. doi:10.1016/j.abb.2004.05.007http://dx.doi.org/10.1016/j.abb.2004.05.007
Weiss P. S. 2008 Nobel prize in chemistry: green fluorescent protein, its variants and implications. ACS Nano, 2008, 2(10), 1977. doi:10.1021/nn800671hhttp://dx.doi.org/10.1021/nn800671h
Gong Y. Y.; Tan Y. Q.; Mei J.; Zhang Y. R.; Yuan W. Z.; Zhang Y. M.; Sun J. Z.; Tang B. Z. Room temperature phosphorescence from natural products: crystallization matters. Sci. China Chem., 2013, 56(9), 1178-1182. doi:10.1007/s11426-013-4923-8http://dx.doi.org/10.1007/s11426-013-4923-8
Liao X. J.; Kahle F. J.; Liu B.; Bässler H.; Zhang X. H.; Köhler A.; Greiner A. Polarized blue photoluminescence of mesoscopically ordered electrospun non-conjugated polyacrylonitrile nanofibers. Mater. Horiz., 2020, 7(6), 1605-1612. doi:10.1039/d0mh00002ghttp://dx.doi.org/10.1039/d0mh00002g
Wu, Liu Y.; He, Goh S. H. Blue photoluminescence from hyperbranched poly(amino ester)s. Macromolecules, 2005, 38(24), 9906-9909. doi:10.1021/ma051407xhttp://dx.doi.org/10.1021/ma051407x
Zhou Q.; Cao B. Y.; Zhu C. X.; Xu S.; Gong Y. Y.; Yuan W. Z.; Zhang Y. M. Clustering-triggered emission of nonconjugated polyacrylonitrile. Small, 2016, 12(47), 6586-6592. doi:10.1002/smll.201601545http://dx.doi.org/10.1002/smll.201601545
Lai W. F. Non-conjugated polymers with intrinsic luminescence for drug delivery. J. Drug Deliv. Sci. Technol., 2020, 59, 101916. doi:10.1016/j.jddst.2020.101916http://dx.doi.org/10.1016/j.jddst.2020.101916
Wang J. W.; Wang N.; Wu G.; Wang S. N.; Li X. Y. Multicolor emission from non-conjugated polymers based on a single switchable boron chromophore. Angew. Chem. Int. Ed., 2019, 58(10), 3082-3086. doi:10.1002/anie.201812210http://dx.doi.org/10.1002/anie.201812210
Jose A.; Tharayil A.; Porel M. Water soluble non-conjugated fluorescent polymers: aggregation induced emission, solid-state fluorescence, and sensor array applications. Polym. Chem., 2023, 14(28), 3309-3316. doi:10.1039/d3py00357dhttp://dx.doi.org/10.1039/d3py00357d
Zhou Q.; Wang Z. Y.; Dou X. Y.; Wang Y. Z.; Liu S. E.; Zhang Y. M.; Yuan W. Z. Emission mechanism understanding and tunable persistent room temperature phosphorescence of amorphous nonaromatic polymers. Mater. Chem. Front., 2019, 3(2), 257-264. doi:10.1039/c8qm00528ahttp://dx.doi.org/10.1039/c8qm00528a
Bauri K.; Saha B.; Banerjee A.; De P. Recent advances in the development and applications of nonconventional luminescent polymers. Polym. Chem., 2020, 11(46), 7293-7315. doi:10.1039/d0py01285hhttp://dx.doi.org/10.1039/d0py01285h
Bag S.; Ghosh S.; Paul S.; Khan M. E. H.; De P. Styrene-maleimide/maleic anhydride alternating copolymers: recent advances and future perspectives. Macromol. Rapid Commun., 2021, 42(23), e2100501. doi:10.1002/marc.202100501http://dx.doi.org/10.1002/marc.202100501
何焕杰, 王永红, 詹适新, 徐 勤. 膦基丙烯酸-马来酸酐共聚物阻垢剂ZP S-01的合成及阻垢性能. 油田化学, 1999, 16(2), 143-145. doi:10.3969/j.issn.1000-4092.1999.02.014http://dx.doi.org/10.3969/j.issn.1000-4092.1999.02.014
徐燕莉, 朱苑林. 苯乙烯-马来酸酐共聚物的部分酯化物在颜料分散中的应用. 染料工业, 2002, 39(1), 28-31. doi:10.3969/j.issn.1672-1179.2002.01.006http://dx.doi.org/10.3969/j.issn.1672-1179.2002.01.006
廖正福, 李达凡, 罗朝明. 苯乙烯/马来酸酐共聚物的合成及性能研究. 弹性体, 2004, 14(6), 19-21. doi:10.3969/j.issn.1005-3174.2004.06.005http://dx.doi.org/10.3969/j.issn.1005-3174.2004.06.005
Xing C. M.; Yang W. T. Stabilizer-free dispersion copolymerization of maleic anhydride and vinyl acetate. I. Effects of principal factors on microspheres. J. Polym. Sci. Part A Polym. Chem., 2005, 43(17), 3760-3770. doi:10.1002/pola.20871http://dx.doi.org/10.1002/pola.20871
Deng J. P.; Yang W. T.; Rånby B. Surface photografting polymerization of vinyl acetate, maleic anhydride, and their charge-transfer complex. V. Charge-transfer complex (1). J. Appl. Polym. Sci., 2005, 95(4), 903-909. doi:10.1002/app.21219http://dx.doi.org/10.1002/app.21219
Chen C. X.; Xu C.; Zhai J. X.; Zhao C. W.; Ma Y. H.; Yang W. T. Low-cost and formaldehyde-free wood adhesive based on water-soluble olefin-maleamic acid copolymers. Ind. Eng. Chem. Res., 2023, 62(48), 20547-20555. doi:10.1021/acs.iecr.3c01968http://dx.doi.org/10.1021/acs.iecr.3c01968
Strauss U. P.; Vesnaver G. Optical probes in polyelectrolyte studies. II. Fluorescence spectra of dansylated copolymers of maleic anhydride and alkyl vinyl ethers. J. Phys. Chem., 1975, 79(22), 2426-2429. doi:10.1021/j100589a017http://dx.doi.org/10.1021/j100589a017
Thoma J.; Duhamel J.; Li M. J.; Bertocchi M.; Weiss R. Long-range, polymer chain dynamics of a "stiff" polymer. Fluorescence from poly(isobutylene-alt-maleic anhydride) with N-(1-pyrenylmethyl) succinimide groups. Macromolecules, 2017, 2017(50), 3396-3403. doi:10.1021/acs.macromol.7b00527http://dx.doi.org/10.1021/acs.macromol.7b00527
Wang K. C.; Huang W.; Xia P.; Gao C.; Yan D. Y. Fluorescent polymer made from chemical modification of poly(styrene-co-maleic anhydride). React. Funct. Polym., 2002, 52(3), 143-148. doi:10.1016/s1381-5148(02)00088-3http://dx.doi.org/10.1016/s1381-5148(02)00088-3
Li M. J.; Bertocchi M. J.; Weiss R. G. Photophysics of pyrenyl-functionalized poly(isobutylene-alt-maleic anhydride) and poly(isobutylene-alt-maleic N-alkylimide). influence of solvent, degree of substitution, and temperature. Macromolecules, 2017, 50(5), 1919-1929. doi:10.1021/acs.macromol.6b02434http://dx.doi.org/10.1021/acs.macromol.6b02434
Li C.; Pan X. G.; Hua C. F.; Su J. H.; Tian H. Synthesis of novel copoly(styrene-maleic anhydride) materials and their luminescent properties. Eur. Polym. J., 2003, 39(6), 1091-1097. doi:10.1016/s0014-3057(02)00361-0http://dx.doi.org/10.1016/s0014-3057(02)00361-0
Wang G.; Zhou L. Y.; Zhang P. F.; Zhao E. G.; Zhou L. H.; Chen D.; Sun J. M.; Gu X. G.; Yang W. T.; Tang B. Z. Fluorescence self-reporting precipitation polymerization based on aggregation-induced emission for constructing optical nanoagents. Angew. Chem. Int. Ed., 2020, 59(25), 10122-10128. doi:10.1002/anie.201913847http://dx.doi.org/10.1002/anie.201913847
Zhou X. B.; Luo W. W.; Nie H.; Xu L. G.; Hu R. R.; Zhao Z. J.; Qin A. J.; Tang B. Z. Oligo(maleic anhydride)s: a platform for unveiling the mechanism of clusteroluminescence of non-aromatic polymers. J. Mater. Chem. C, 2017, 5(19), 4775-4779. doi:10.1039/c7tc00868fhttp://dx.doi.org/10.1039/c7tc00868f
Ji X.; Tian W. G.; Jin K. F.; Diao H. L.; Huang X.; Song G. J.; Zhang J. Anionic polymerization of nonaromatic maleimide to achieve full-color nonconventional luminescence. Nat. Commun., 2022, 13(1), 3717. doi:10.1038/s41467-022-31547-2http://dx.doi.org/10.1038/s41467-022-31547-2
Huang J.; Geng X.; Peng C.; Grove T. Z.; Turner S. R. Enhanced fluorescence properties of stilbene-containing alternating copolymers. Macromol. Rapid Commun., 2018, 39(4), 1700530. doi:10.1002/marc.201700530http://dx.doi.org/10.1002/marc.201700530
Shang C.; Wei N.; Zhuo H. M.; Shao Y. M.; Zhang Q.; Zhang Z. X.; Wang H. L. Highly emissive poly(maleic anhydride-alt-vinyl pyrrolidone) with molecular weight-dependent and excitation-dependent fluorescence. J. Mater. Chem. C, 2017, 5(32), 8082-8090. doi:10.1039/c7tc02381bhttp://dx.doi.org/10.1039/c7tc02381b
Chen X.; Hu C. X.; Wang Y.; Li T.; Jiang J.; Huang J.; Wang S. B.; Liu T. X.; Dong W. F.; Qiao J. L. Improve quantum yield of poly(maleic anhydride-alt-vinyl acetate) via good solvents. Macromol. Rapid Commun., 2023, 44(3), 2200653. doi:10.1002/marc.202200653http://dx.doi.org/10.1002/marc.202200653
Zhou Z. X.; Chen X.; Wang Y.; Hu C. X.; Li T.; Wang S. B.; Dong W. F.; Qiao J. L. Branched copolymers with tunable clusteroluminescence in high quantum yield. ACS Macro Lett., 2023, 12(11), 1523-1529. doi:10.1021/acsmacrolett.3c00549http://dx.doi.org/10.1021/acsmacrolett.3c00549
Ru Y.; Zhang X. H.; Song W. B.; Liu Z. J.; Feng H. S.; Wang B.; Guo M. M.; Wang X.; Luo C. X.; Yang W. T.; Li Y. F.; Qiao J. L. A new family of thermoplastic photoluminescence polymers. Polym. Chem., 2016, 7(40), 6250-6256. doi:10.1039/c6py00915hhttp://dx.doi.org/10.1039/c6py00915h
Ru Y.; Zhang X. H.; Wang L.; Dai L. M.; Yang W. T.; Qiao J. L. Polymer composites with high haze and high transmittance. Polym. Chem., 2015, 6(37), 6632-6636. doi:10.1039/c5py01072ahttp://dx.doi.org/10.1039/c5py01072a
Yu M. L.; Gao Y. H.; Ying A.; Li L. L.; Xie G. H.; Gong S. L.; Gao X.; Wang T.; Yang C. L. Alternating thermally activated delayed fluorescence copolymers featuring through-space charge transfer for efficient electroluminescence. Macromolecules, 2023, 56(14), 5381-5389. doi:10.1021/acs.macromol.3c00601http://dx.doi.org/10.1021/acs.macromol.3c00601
Saha B.; Bauri K.; Bag A.; Ghorai P. K.; De P. Conventional fluorophore-free dual pH- and thermo-responsive luminescent alternating copolymer. Polym. Chem., 2016, 7(45), 6895-6900. doi:10.1039/c6py01738jhttp://dx.doi.org/10.1039/c6py01738j
He B. Z.; Zhang J.; Zhang H. K.; Liu Z. Y.; Zou H.; Hu R.; Qin A. J.; Kwok R. T. K.; Lam J. W. Y.; Tang B. Z. Catalyst-free multicomponent tandem polymerizations of alkyne and amines toward nontraditional intrinsic luminescent poly(aminomaleimide)s. Macromolecules, 2020, 53(10), 3756-3764. doi:10.1021/acs.macromol.0c00525http://dx.doi.org/10.1021/acs.macromol.0c00525
Mohamed M. G.; Jheng Y. R.; Yeh S. L.; Chen T.; Kuo S. W. Unusual emission of polystyrene-based alternating copolymers incorporating aminobutyl maleimide fluorophore-containing polyhedral oligomeric silsesquioxane nanoparticles. Polymers, 2017, 9(3), 103. doi:10.3390/polym9030103http://dx.doi.org/10.3390/polym9030103
Liu Y. Z.; Yang S. H.; Zhao B.; Deng J. P. Nonconventional fluorescence-based circularly polarized luminescent core/shell particles: maleic anhydride copolymer as the core and chiral helical polyacetylene as the shell. ACS Macro Lett., 2023, 12(4), 530-535. doi:10.1021/acsmacrolett.3c00141http://dx.doi.org/10.1021/acsmacrolett.3c00141
Guo Z. Y.; Ru Y.; Song W. B.; Liu Z. J.; Zhang X. H.; Qiao J. L. Water-soluble polymers with strong photoluminescence through an eco-friendly and low-cost route. Macromol. Rapid Commun., 2017, 38(14), 28488384. doi:10.1002/marc.201700099http://dx.doi.org/10.1002/marc.201700099
Hu C. X.; Guo Z. Y.; Ru Y.; Song W. B.; Liu Z. J.; Zhang X. H.; Qiao J. L. A new family of photoluminescent polymers with dual chromophores. Macromol. Rapid Commun., 2018, 39(10), e1800035. doi:10.1002/marc.201800035http://dx.doi.org/10.1002/marc.201800035
Hu C. X.; Ru Y.; Guo Z. Y.; Liu Z. J.; Song J. H.; Song W. B.; Zhang X. H.; Qiao J. L. New multicolored AIE photoluminescent polymers prepared by controlling the pH value. J. Mater. Chem. C, 2019, 7(2), 387-393. doi:10.1039/c8tc05197fhttp://dx.doi.org/10.1039/c8tc05197f
Xie Y.; Tu W. H.; Xiong Z. P.; Liu D.; Zhang J. Y.; Sun J. Z.; Zhao Z.; Wang D.; Huang F. H.; Zhang H. K.; Tang B. Z. Enolate enables unexpected red luminescence from through-bond/through-space complexation between imide and organic base. Macromolecules, 2023, 56(24), 10082-10091. doi:10.1021/acs.macromol.3c01977http://dx.doi.org/10.1021/acs.macromol.3c01977
Chen X.; Hu C. X.; Wang Y.; Li T.; Jiang J.; Huang J.; Wang S. B.; Dong W. F.; Qiao J. L. A self-assemble supramolecular film with humidity visualization enabled by clusteroluminescence. Adv. Sci., 2024, 11(1), e2304946. doi:10.1002/advs.202304946http://dx.doi.org/10.1002/advs.202304946
胡晨曦, 张晓红, 乔金樑. 水热法制备非共轭聚集诱导发光聚合物及其在Fe3+检测中的应用. 高分子学报, 2021, 52(3), 281-286. doi:10.11777/j.issn1000-3304.2020.20215http://dx.doi.org/10.11777/j.issn1000-3304.2020.20215
姚远, 张晓红, 茹越, 乔金樑. 超吸湿聚合物气凝胶的制备与性能. 高分子学报, 2023, 54(8), 1131-1138. doi:10.11777/j.issn1000-3304.2023.23044http://dx.doi.org/10.11777/j.issn1000-3304.2023.23044
Yao Y.; Zhang X. H.; Guo Z. Y.; Liu W. L.; Hu C. X.; Ru Y.; Zhang L. D.; Jiang C.; Qiao J. L. Preparation and application of recyclable polymer aerogels from styrene-maleic anhydride alternating copolymers. Chem. Eng. J., 2023, 455, 140363. doi:10.1016/j.cej.2022.140363http://dx.doi.org/10.1016/j.cej.2022.140363
Chen X.; Hu C. X.; Wang Y.; Li T.; Jiang J.; Huang J.; Wang S. B.; Liu T. X.; Dong W. F.; Qiao J. L. Tunable red clusteroluminescence polymers prepared by a simple heating process. ACS Appl. Mater. Interfaces, 2023, 15(19), 23824-23833. doi:10.1021/acsami.3c03883http://dx.doi.org/10.1021/acsami.3c03883
0
浏览量
234
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构