浏览全部资源
扫码关注微信
1.石河子大学化学化工学院/新疆兵团化工绿色过程重点实验室
2.新疆天业(集团)有限公司 石河子 832001
3.中国科学院成都有机化学研究所 成都 610041
E-mail: wzq20070420@163.com; wzq-yh@shzu.edu.cn
收稿日期:2024-04-03,
录用日期:2024-05-15,
网络出版日期:2024-07-12,
纸质出版日期:2024-11-20
移动端阅览
魏鑫, 王培贤, 王明亮, 黄东, 魏忠, 宋晓玲, 王公应, 王自庆. 可生物降解聚己二酸-对苯二甲酸丁二酯/聚碳酸丁二酯共混物的制备及其性能. 高分子学报, 2024, 55(11), 1597-1607
Wei, X.; Wang, P. X.; Wang, M. L.; Huang, D.; Wei, Z.; Song, X. L.; Wang, G. Y.; Wang, Z. Q. Preparation and characterization of biodegradable poly(butylene adipate-co-terephthalate)/poly(butylene carbonate) blends. Acta Polymerica Sinica, 2024, 55(11), 1597-1607
魏鑫, 王培贤, 王明亮, 黄东, 魏忠, 宋晓玲, 王公应, 王自庆. 可生物降解聚己二酸-对苯二甲酸丁二酯/聚碳酸丁二酯共混物的制备及其性能. 高分子学报, 2024, 55(11), 1597-1607 DOI: 10.11777/j.issn1000-3304.2024.24100. CSTR: 32057.14.GFZXB.2024.7257.
Wei, X.; Wang, P. X.; Wang, M. L.; Huang, D.; Wei, Z.; Song, X. L.; Wang, G. Y.; Wang, Z. Q. Preparation and characterization of biodegradable poly(butylene adipate-co-terephthalate)/poly(butylene carbonate) blends. Acta Polymerica Sinica, 2024, 55(11), 1597-1607 DOI: 10.11777/j.issn1000-3304.2024.24100. CSTR: 32057.14.GFZXB.2024.7257.
以环氧大豆油(ESO)作为聚己二酸-对苯二甲酸丁二酯(PBAT)和聚碳酸丁二酯(PBC)的增容剂,采用熔融共混法制备了一系列PBAT/PBC/ESO复合材料. 通过相关表征研究了ESO含量和PBC含量对PBAT/PBC复合材料微观结构和性能的影响. 结果表明,ESO中的环氧基团通过与PBAT和PBC的端基发生开环反应,可以提高PBAT与PBC的相容性,提升了复合材料的结晶性能、热稳定性和延展性. 当复合材料中ESO含量由0%增加到7.0%时,ESO对复合材料还表现出优异的增塑性能,获得PBAT/PBC复合材料的断裂伸长率由353%提高到805%. 另外,PBC的添加可以显著改善PBAT/PBC复合材料的阻隔性能和刚性,因此可以通过改变PBC的含量来调控复合材料的力学性能和阻隔性能.
To address the challenges associated with the inadequate barrier properties and reduced elastic modulus of poly(butylene adipate-
co
-terephthalate) (PBAT)
a series of PBAT/poly(butylene carbonate) (PBC)/epoxidized soybean oil (ESO) composites were prepared by melt blending ESO as a compatibilizer and PBC as the second component with PBAT. The effects of ESO content and PBC content on the thermal properties
crystallization propertie
s
mechanical properties
and barrier properties of the composite materials were investigated through Fourier transform infrared spectroscopy (FTIR)
thermogravimetric analysis (TGA)
differential scanning calorimetry (DSC)
X-ray diffraction (XRD)
scanning electron microscopy (SEM) and other relevant characterization tools. Additionally
the compatibility mechanism of ESO on the composite materials was discussed. The results demonstrated that the epoxy groups in ESO enhanced the compatibility of PBAT and PBC through a ring-opening reaction with the end groups of PBAT and PBC. Furthermore
the crystallization properties and thermal stability of the composites were improved. SEM images showed that the delamination in the composites disappeared after the addition of ESO
and a linear fiber structure appeared
further proving the compatibility enhancement. At the same time
the addition of ESO significantly improved the ductility of the composites. The elongation at break of PBAT/PBC composites increased from 353% to 805% when the ESO content in the composites increased from 0% to 7.0%; meanwhile
PBC and ESO show an excellent synergistic effect in improving the elongation at break of the composite materials. In addition
the addition of PBC can significantly improve the barrier properties and stiffness of PBAT/PBC composites. The oxygen and water vapor barrier properties of composites increased by 73% and 64.7%
respectively
as the PBC content increased from 0 wt% to 80 wt%. Furthermore
the modulus of elasticity increased by 254%. The comprehensive performance of PBAT was notably improved through the incorporation of PBC and ESO as modifying materials
thereby promising to broaden the application fields of PBAT.
Law K. L. ; Rochman C. M. Large-scale collaborations uncover global extent of plastic pollution . Nature , 2023 , 619 ( 7969 ), 254 - 255 . doi: 10.1038/d41586-023-02175-7 http://dx.doi.org/10.1038/d41586-023-02175-7
陈学思 , 陈国强 , 陶友华 , 王玉忠 , 吕小兵 , 张立群 , 朱锦 , 张军 , 王献红 . 生态环境高分子的研究进展 . 高分子学报 , 2019 , 50 ( 10 ), 1068 - 1082 . doi: 10.11777/j.issn1000-3304.2019.19124 http://dx.doi.org/10.11777/j.issn1000-3304.2019.19124
Kim M. S. ; Chang H. ; Zheng L. ; Yan Q. ; Pfleger B. F. ; Klier J. ; Nelson K. ; Majumder E. L. W. ; Huber G. W. A review of biodegradable plastics: chemistry, applications, properties, and future research needs . Chem. Rev. , 2023 , 123 ( 16 ), 9915 - 9939 . doi: 10.1021/acs.chemrev.2c00876 http://dx.doi.org/10.1021/acs.chemrev.2c00876
Tian H. L. ; Wang Z. P. ; Jia S. L. ; Pan H. W. ; Han L. J. ; Bian J. J. ; Li Y. ; Yang H. L. ; Zhang H. L. Biodegradable foaming material of poly(butylene adipate- co -terephthalate) (PBAT)/poly(propylene carbonate) (PPC) . Chinese J. Polym. Sci. , 2022 , 40 ( 2 ), 208 - 219 . doi: 10.1007/s10118-021-2644-6 http://dx.doi.org/10.1007/s10118-021-2644-6
Wang S. Y. ; Jiang C. ; Xie H. H. ; Zeng J. B. ; Li Y. D. Compatibilization of polylactide/poly(butylene adipate- co -terephthalate) blends with epoxidized natural rubber as a reactive compatibilizer . Ind. Crops Prod. , 2023 , 205 , 117447 . doi: 10.1016/j.indcrop.2023.117447 http://dx.doi.org/10.1016/j.indcrop.2023.117447
Huang F. F. ; Wu L. B. ; Li B. G. Sulfonated biodegradable PBAT copolyesters with improved gas barrier properties and excellent water dispersibility: from synthesis to structure-property . Polym. Degrad. Stabil. , 2020 , 182 , 109391 . doi: 10.1016/j.polymdegradstab.2020.109391 http://dx.doi.org/10.1016/j.polymdegradstab.2020.109391
Arslan O. N. ; Güntürkün D. ; Göksu Y. A. ; Altınbay A. ; Özer H. Ö. ; Nofar M. Poly(glycidyl methacrylate) modified cellulose nanocrystals and their PBAT-based nanocomposites . Int. J. Biol. Macromol. , 2023 , 253 , 126851 . doi: 10.1016/j.ijbiomac.2023.126851 http://dx.doi.org/10.1016/j.ijbiomac.2023.126851
Aversa C. ; Barletta M. ; Cappiello G. ; Gisario A. Compatibilization strategies and analysis of morphological features of poly(butylene adipate- co -terephthalate) (PBAT)/poly(lactic acid) PLA blends: a state-of-art review . Eur. Polym. J. , 2022 , 173 , 111304 . doi: 10.1016/j.eurpolymj.2022.111304 http://dx.doi.org/10.1016/j.eurpolymj.2022.111304
Pan H. W. ; Wang Y. ; Jia S. L. ; Zhao Y. ; Bian J. J. ; Yang H. L. ; Hao Y. P. ; Han L. J. ; Zhang H. L. Biodegradable poly-(butylene adipate- co -terephthalate)/poly(glycolic acid) films: effect of poly(glycolic acid) crystal on mechanical and barrier properties . Chinese J. Polym. Sci. , 2023 , 41 ( 7 ), 1123 - 1132 . doi: 10.1007/s10118-023-2934-2 http://dx.doi.org/10.1007/s10118-023-2934-2
Gao F. X. ; Cai Y. ; Liu S. J. ; Wang X. H. High-performance biodegradable PBAT/PPC composite film through reactive compatibilizer . Chinese J. Polym. Sci. , 2023 , 41 ( 7 ), 1051 - 1058 . doi: 10.1007/s10118-023-2900-z http://dx.doi.org/10.1007/s10118-023-2900-z
Shen J. N. ; Wang K. ; Ma Z. ; Xu N. ; Pang S. J. ; Pan L. S. Biodegradable blends of poly(butylene adipate- co -terephthalate) and polyglycolic acid with enhanced mechanical, rheological and barrier performances . J. Appl. Polym. Sci. , 2021 , 138 ( 43 ), 51285 . doi: 10.1002/app.51285 http://dx.doi.org/10.1002/app.51285
Han Y. ; Shi J. W. ; Mao L. X. ; Wang Z. ; Zhang L. Q. Improvement of compatibility and mechanical performances of PLA/PBAT composites with epoxidized soybean oil as compatibilizer . Ind. Eng. Chem. Res. , 2020 , 59 ( 50 ), 21779 - 21790 . doi: 10.1021/acs.iecr.0c04285 http://dx.doi.org/10.1021/acs.iecr.0c04285
Choo J. E. ; Park T. H. ; Jeon S. M. ; Hwang S. W. The effect of epoxidized soybean oil on the physical and mechanical properties of PLA/PBAT/PPC blends by the reactive compatibilization . J. Polym. Environ. , 2023 , 31 ( 9 ), 4007 - 4021 . doi: 10.1007/s10924-023-02862-6 http://dx.doi.org/10.1007/s10924-023-02862-6
Wang H. H. ; Zhou S. J. ; Xiong S. J. ; Liu Q. ; Tian H. F. ; Yu S. X. ; Yuan T. Q. High-performance thermoplastic starch/poly(butylene adipate- co -terephthalate) blends through synergistic plasticization of epoxidized soybean oil and glycerol . Int. J. Biol. Macromol. , 2023 , 242 (Pt 3 ), 124716 . doi: 10.1016/j.ijbiomac.2023.124716 http://dx.doi.org/10.1016/j.ijbiomac.2023.124716
Lu Y. ; Tu Z. ; Cheng Y. ; Liu L. P. ; Leng X. F. ; Wei Z. Y. ; Li Y. Kilogram-scale production of biodegradable poly-(butylene carbonate): molecular weight dependence of physical properties and enhanced crystallization by nucleating agent . J. Polym. Environ. , 2023 , 31 ( 4 ), 1510 - 1524 . doi: 10.1007/s10924-022-02689-7 http://dx.doi.org/10.1007/s10924-022-02689-7
Wang J. ; Zheng L. C. ; Li C. C. ; Zhu W. X. ; Zhang D. ; Xiao Y. N. ; Guan G. H. Fully biodegradable blends of poly-(butylene succinate) and poly(butylene carbonate): miscibility, thermal properties, crystallization behavior and mechanical properties . Polym. Test. , 2012 , 31 ( 1 ), 39 - 45 . doi: 10.1016/j.polymertesting.2011.09.005 http://dx.doi.org/10.1016/j.polymertesting.2011.09.005
Wang X. M. ; Zhuang Y. G. ; Dong L. S. Study of biodegradable polylactide/poly(butylene carbonate) blend . J. Appl. Polym. Sci. , 2013 , 127 , 471 - 477 . doi: 10.1002/app.37735 http://dx.doi.org/10.1002/app.37735
Wu D. D. ; Li W. ; Zhao Y. ; Deng Y. J. ; Zhang H. L. ; Zhang H. X. ; Dong L. S. Thermal, mechanical and rheological properties of biodegradable poly(propylene carbonate) and poly(butylene carbonate) blends . Chinese J. Polym. Sci. , 2015 , 33 ( 3 ), 444 - 455 . doi: 10.1007/s10118-015-1597-z http://dx.doi.org/10.1007/s10118-015-1597-z
Cai X. D. ; Yang X. G. ; Zhang H. ; Wang G. Y. Modification of biodegradable poly(butylene carbonate) with 1 , 4 -cyclohexanedimethylene to enhance the thermal and mechanical properties . Polym. Degrad. Stabil., 2017, 143 , 35 - 41 . doi: 10.1016/j.polymdegradstab.2017.06.018 http://dx.doi.org/10.1016/j.polymdegradstab.2017.06.018
Perumal N. ; Sreekantan S. ; Hamid Z. A. A. ; Rusli A. ; Bhubalan K. ; Appaturi J. N. Effect of plasticizer and compatibilizer on properties of polybutylene adipate- co -terephthalate (PBAT) with acetylated starch . J. Polym. Environ. , 2024 , 32 ( 1 ), 289 - 302 . doi: 10.1007/s10924-023-02964-1 http://dx.doi.org/10.1007/s10924-023-02964-1
Kumar M. ; Mohanty S. ; Nayak S. K. ; Rahail Parvaiz M. Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites . Bioresour. Technol. , 2010 , 101 ( 21 ), 8406 - 8415 . doi: 10.1016/j.biortech.2010.05.075 http://dx.doi.org/10.1016/j.biortech.2010.05.075
Hu H. ; Zhang R. Y. ; Ying W. B. ; Shi L. ; Yao C. K. ; Kong Z. Y. ; Wang K. ; Wang J. G. ; Zhu J. Sustainable and rapidly degradable poly(butylene carbonate- co -cyclohexanedicarboxylate): influence of composition on its crystallization, mechanical and barrier properties . Polym. Chem. , 2019 , 10 ( 14 ), 1812 - 1822 . doi: 10.1039/c9py00083f http://dx.doi.org/10.1039/c9py00083f
Ye G. Y. ; Gu T. F. ; Chen B. Y. ; Bi H. J. ; Hu Y. C. Mechanical, thermal properties and shape memory behaviors of PLA/PCL/PLA- g -GMA blends . Polym. Eng. Sci. , 2023 , 63 ( 7 ), 2084 - 2092 . doi: 10.1002/pen.26347 http://dx.doi.org/10.1002/pen.26347
Ye G. Y. ; Zhang J. ; Bi H. J. The effect of epoxy vitrimer on the structure and properties of thermoplastic polyurethane/polycaprolactone polymer composites . Polym. Eng. Sci. , 2023 , 63 ( 6 ), 1828 - 1835 . doi: 10.1002/pen.26328 http://dx.doi.org/10.1002/pen.26328
Wang Y. ; Wen L. ; Liu J. J. ; Li C. C. ; Zhang Z. J. ; Xiao Y. N. ; Yin T. ; Wu S. H. ; Jiang Z. K. ; Zhang B. Synthesis of biodegradable PGA-PBC-PGA triblock copolymers and closed-loop recycling via a thermal depolymerization strategy . Green Chem. , 2023 , 25 ( 23 ), 9998 - 10009 . doi: 10.1039/d3gc03236a http://dx.doi.org/10.1039/d3gc03236a
Mahmud S. ; Long Y. ; Abu Taher M. ; Xiong Z. ; Zhang R. Y. ; Zhu J. Toughening polylactide by direct blending of cellulose nanocrystals and epoxidized soybean oil . J. Appl. Polym. Sci. , 2019 , 136 ( 46 ), 48221 . doi: 10.1002/app.48221 http://dx.doi.org/10.1002/app.48221
Ge Q. Y. ; Dou Q. Preparation of supertough polylactide/polybutylene succinate/epoxidized soybean oil bio-blends by chain extension . ACS Sustain. Chem. Eng. , 2023 , 11 ( 26 ), 9620 - 9629 . d oi: 10.1021/acssuschemeng.3c01042 http://dx.doi.org/10.1021/acssuschemeng.3c01042
Belhassen R. ; Vilaseca F. ; Mutjé P. ; Boufi S. Thermoplasticized starch modified by reactive blending with epoxidized soybean oil . Ind. Crops Prod. , 2014 , 53 , 261 - 267 . doi: 10.1016/j.indcrop.2013.12.039 http://dx.doi.org/10.1016/j.indcrop.2013.12.039
Deng Y. ; Thomas N. L. Blending poly(butylene succinate) with poly(lactic acid): ductility and phase inversion effects . Eur. Polym. J. , 2015 , 71 , 534 - 546 . doi: 10.1016/j.eurpolymj.2015.08.029 http://dx.doi.org/10.1016/j.eurpolymj.2015.08.029
张田伟 , 梁嘉欣 , 岳双双 , 王拴紧 , 韩东梅 , 黄盛 , 孟跃中 , 肖敏 . 可生物降解的半芳香聚酯聚碳酸丙烯酯共聚物/聚己二酸-对苯二甲酸丁二酯共混物的制备及性能表征 . 高分子学报 , 2023 , 54 ( 8 ), 1144 - 1154 . doi: 10.11777/j.issn1000-3304.2022.22415 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22415
Ou-Yang Q. ; Guo B. H. ; Xu J. Preparation and characterization of poly(butylene succinate)/polylactide blends for fused deposition modeling 3D printing . ACS Omega , 2018 , 3 ( 10 ), 14309 - 14317 . doi: 10.1021/acsomega.8b02549 http://dx.doi.org/10.1021/acsomega.8b02549
Li X. X. ; Wu H. Y. ; Dai J. S. ; Huang T. ; Wang Y. Structure and mechanical properties con trolling of elastomer modified polypropylene by compounded β / α nucleating agents . J. Polym. Sci. Part B , 2011 , 49 , 898 - 906 . doi: 10.1002/polb.22261 http://dx.doi.org/10.1002/polb.22261
0
浏览量
291
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构