浏览全部资源
扫码关注微信
1.浙江大学 硅及先进半导体材料全国重点实验室 高分子科学与工程学系 杭州 310027
2.浙江大学杭州国际科创中心 信息与功能材料研究院 杭州 311200
E-mail: hzchen@zju.edu.cn
纸质出版日期:2024-09-20,
网络出版日期:2024-07-10,
收稿日期:2024-04-06,
录用日期:2024-05-06
移动端阅览
李耀凯, 关诗陶, 李水兴, 左立见, 陈红征. 超96%近红外光隔热率的高性能半透明有机太阳能电池. 高分子学报, 2024, 55(9), 1134-1144
Li, Y. K.; Guan, S. T.; Li, S. X.; Zuo, L. J.; Chen, H. Z. High-performance semitransparent organic solar cells exceeding 96% near-infrared light insulation rate. Acta Polymerica Sinica, 2024, 55(9), 1134-1144
李耀凯, 关诗陶, 李水兴, 左立见, 陈红征. 超96%近红外光隔热率的高性能半透明有机太阳能电池. 高分子学报, 2024, 55(9), 1134-1144 DOI: 10.11777/j.issn1000-3304.2024.24102.
Li, Y. K.; Guan, S. T.; Li, S. X.; Zuo, L. J.; Chen, H. Z. High-performance semitransparent organic solar cells exceeding 96% near-infrared light insulation rate. Acta Polymerica Sinica, 2024, 55(9), 1134-1144 DOI: 10.11777/j.issn1000-3304.2024.24102.
半透明光伏是一种广受关注的太阳能光电转换技术,在吸光供能的同时,还可以保留一定的透光性. 但半透明有机太阳能电池(semitransparent organic solar cells,STOPV)要想实现应用,必须解决能量转换效率(power conversion efficiency,PCE)、可见光透过率(average photopic transmittance,APT)与近红外光隔热率(infrared-light rejection rate,IRR)有机统一的问题. 不同于传统的单一优化策略,本文工作通过采用高性能三元策略和多层光学调控层的方法来协同改善STOPV的性能. 材料层面,通过结合宽带隙给体和2个吸收相似但对称性不同的近红外受体分子,将单结三元不透明有机太阳能电池的效率优化至18.66%. 器件层面,提出三重光学调控方案,同时引入减反射层(anti-reflection layer,ARC),二氧化碲(tellurium dioxide,TeO
2
)光学层和带通滤光片(bandpass filter,BF),来优化器件的透光性. 最终制备的最佳STOPV,其PCE和APT分别达到了12.82%和35.70%,对应的光利用效率(light utilization efficiency,LUE)为4.6%,并且近红外光隔热率达到96.8%,实现了PCE、APT和IRR的均衡提升. 本文提出了一种开发设计高性能STOPV的有效方案,有利于进一步推动STOPV的商业化应用进展.
Semitransparent organic solar cells (STOPV) are a widely acknowledged solar energy conversion technology that can simultaneously absorb invisible light for energy production while allowing visible light transmission for transparency. However
regarding STOPV integrated on building to reach practical application in the future
the harmonious unification of power conversion efficiency (PCE)
average photopic transmittance (APT)
and the infrared-light rejection rate (IRR) must be achieved. In contrast to traditional single-optimization strategies
we present an approach to enhancing STOPV performance by using a ternary strategy coupled with multiple optical modulation engineering. On the materials level
by combining the wide bandgap donor PM6 and two near-infrared acceptors owing similar absorption but different end groups combinations (symmetric molecule BTP-eC9 and asymmetric molecule BTP-S9)
we have optimized the efficiency of a single-junction ternary opaque organic solar cell to 18.66%. On the device level
we propose a triple optical manipulation method by integrating an anti-reflection layer (ARC)
a tellurium dioxide (TeO
2
) optical layer
and a bandpass filter (BF) into
the original STOPV structure
to address the see-saw effect among PCE
APT and IRR. Ultimately
our optimized STOPV achieved a PCE of 12.82% and APT of 35.70%
causing a light utilization efficiency (LUE) of 4.6%
and an infrared-light rejection rate of 96.8%
ranking one of the highest performance multifunction-STOPV.
半透明有机太阳能电池光学调控二氧化碲近红外光阻隔光电建筑集成
Semitransparent organic solar cellsOptical manipulationTellurium dioxideNear-infrared light insulationPhotovoltaic building integration
Li S. X.; Li C. Z.; Shi M. M.; Chen H. Z. New phase for organic solar cell research: emergence of Y-series electron acceptors and their perspectives. ACS Energy Lett., 2020, 5(5), 1554-1567. doi:10.1021/acsenergylett.0c00537http://dx.doi.org/10.1021/acsenergylett.0c00537
Zhan L. L.; Li S. X.; Lau T. K.; Cui Y.; Lu X. H.; Shi M. M.; Li C. Z.; Li H. Y.; Hou J. H.; Chen H. Z. Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy Environ. Sci., 2020, 13(2), 635-645. doi:10.1039/c9ee03710ahttp://dx.doi.org/10.1039/c9ee03710a
Zheng X. J.; Zuo L. J.; Yan K. R.; Shan S. Q.; Chen T. Y.; Ding G. Y.; Xu B. W.; Yang X.; Hou J. H.; Shi M. M.; Chen H. Z. Versatile organic photovoltaics with a power density of nearly 40 W·g-1. Energy Environ. Sci., 2023, 16(5), 2284-2294. doi:10.1039/d3ee00087ghttp://dx.doi.org/10.1039/d3ee00087g
Xu X. Y.; Wu H. B.; Liang S. J.; Tang Z.; Li M. Y.; Wang J.; Wang X.; Wen J.; Zhou E. J.; Li W. W.; Ma Z. F. Quantum efficiency and voltage losses in P3HT: non-fullerene solar cells. Acta Phys. Chim. Sin., 2022, 38(11), 2201039.
Zhan X. Fluorination effects on triplet loss channels in nonfullerene organic photovoltaic systems. Acta Phys. Chim. Sin., 2021, 38(4), 2104032. doi:10.3866/PKU.WHXB202104032http://dx.doi.org/10.3866/PKU.WHXB202104032
Li X. J.; Sun G. P.; Gong Y. F.; Li Y. F. Recent research progress of n-type conjugated polymer acceptors and all-polymer solar cells. Chinese J. Polym. Sci., 2023, 41(5), 640-651. doi:10.1007/s10118-023-2944-0http://dx.doi.org/10.1007/s10118-023-2944-0
Chen X. Z.; Luo Q.; Ma C. Q. Inkjet-printed organic solar cells and perovskite solar cells: progress, challenges, and prospect. Chinese J. Polym. Sci., 2023, 41(8), 1169-1197. doi:10.1007/s10118-023-2961-zhttp://dx.doi.org/10.1007/s10118-023-2961-z
Wang T.; Sun R.; Yang X. R.; Wu Y.; Wang W.; Li Q.; Zhang C. F.; Min J. A near-infrared polymer acceptor enables over 15% efficiency for all-polymer solar cells. Chinese J. Polym. Sci., 2022, 40(8), 877-888. doi:10.1007/s10118-022-2697-1http://dx.doi.org/10.1007/s10118-022-2697-1
Zhao Y. L.; Zhang Y.; Yuan X. Y.; Deng W. Y.; Zhang B.; Pang S. T.; Yin B. Y.; Wu H. B.; Lin K. W.; Liu Z. T.; Duan C. H.; Huang F.; Cao Y. Halogen-free polymer donors based on 3,4-dicyanothiophene for high-performance polymer solar cells. Chinese J. Polym. Sci., 2022, 40(8), 905-913. doi:10.1007/s10118-022-2721-5http://dx.doi.org/10.1007/s10118-022-2721-5
Wang H.; Lu H.; Chen Y. N.; Zhang A. D.; Liu Y. Q.; Zhang C. E.; Liu Y. H.; Xu X. J.; Bo Z. S. Effect of polymer chain regularity on the photovoltaic performance of organic solar cells. Chinese J. Polym. Sci., 2022, 40(8), 996-1002. doi:10.1007/s10118-022-2796-zhttp://dx.doi.org/10.1007/s10118-022-2796-z
Deng M.; Xu X. P.; Yu L. Y.; Li R. P.; Peng Q. Lowly fused non-fullerene acceptors towards efficient organic solar cells enabled by isomerization. Chinese J. Polym. Sci., 2022, 40(8), 928-936. doi:10.1007/s10118-022-2751-zhttp://dx.doi.org/10.1007/s10118-022-2751-z
Yuan J.; Zhang Y. Q.; Zhou L. Y.; Zhang G. C.; Yip H. L.; Lau T. K.; Lu X. H.; Zhu C.; Peng H. J.; Johnson P. A.; Leclerc M.; Cao Y.; Ulanski J.; Li Y. F.; Zou Y. P. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3(4), 1140-1151. doi:10.1016/j.joule.2019.01.004http://dx.doi.org/10.1016/j.joule.2019.01.004
Jiang K.; Wei Q. Y.; Lai J. Y. L.; Peng Z. X.; Kim H. K.; Yuan J.; Ye L.; Ade H.; Zou Y. P.; Yan H. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells. Joule, 2019, 3(12), 3020-3033. doi:10.1016/j.joule.2019.09.010http://dx.doi.org/10.1016/j.joule.2019.09.010
Zheng Z.; Wang J. Q.; Bi P. Q.; Ren J. Z.; Wang Y. F.; Yang Y.; Liu X. Y.; Zhang S. Q.; Hou J. H. Tandem organic solar cell with 20.2% efficiency. Joule, 2022, 6(1), 171-184. doi:10.1016/j.joule.2021.12.017http://dx.doi.org/10.1016/j.joule.2021.12.017
Zheng X. J.; Zuo L. J.; Zhao F.; Li Y. K.; Chen T. Y.; Shan S. Q.; Yan K. R.; Pan Y. W.; Xu B. W.; Li C. Z.; Shi M. M.; Hou J. H.; Chen H. Z. High-efficiency ITO-free organic photovoltaics with superior flexibility and upscalability. Adv. Mater., 2022, 34(17), e2200044. doi:10.1002/adma.202200044http://dx.doi.org/10.1002/adma.202200044
He C. L.; Bi Z. Z.; Chen Z.; Guo J.; Xia X. X.; Lu X. H.; Min J.; Zhu H. M.; Ma W.; Zuo L. J.; Chen H. Z. Compromising charge generation and recombination with asymmetric molecule for high-performance binary organic photovoltaics with over 18% certified efficiency. Adv. Funct. Mater., 2022, 32(18), 2112511. doi:10.1002/adfm.202112511http://dx.doi.org/10.1002/adfm.202112511
Wang M. T.; Chen T. Y.; Li Y. K.; Ding G. Y.; Chen Z.; Li J. K.; Xu C.; Wupur A.; Xu C. R.; Fu Y. A.; Xue J. W.; Fu W. F.; Qiu W. M.; Yang X.; Wang D. W.; Ma W.; Lu X. H.; Zhu H. M.; Chen X. K.; Wang X. Y.; Chen H. Z.; Zuo L. J. Synergistically optimizing the optoelectronic properties and morphology using a photo-active solid additive for high-performance binary organic photovoltaics. Energy Environ. Sci., 2024, 17(7), 2598-2609. doi:10.1039/d3ee04065hhttp://dx.doi.org/10.1039/d3ee04065h
He X. Y.; Liu Z. X.; Chen H. Z.; Li C. Z. Selectively modulating componential morphologies of bulk heterojunction organic solar cells. Adv. Mater., 2024, 36(7), e2306681. doi:10.1002/adma.202306681http://dx.doi.org/10.1002/adma.202306681
Chen T. Y.; Zheng X. J.; Wang D.; Zhu Y. X.; Ouyang Y. N.; Xue J. W.; Wang M. T.; Wang S. L.; Ma W.; Zhang C. F.; Ma Z. F.; Li S. X.; Zuo L. J.; Chen H. Z. Delayed crystallization kinetics allowing high-efficiency all-polymer photovoltaics with superior upscaled manufacturing. Adv. Mater., 2024, 36(3), 2308061. doi:10.1002/adma.202308061http://dx.doi.org/10.1002/adma.202308061
Li S. X.; He C. L.; Chen T. Y.; Zheng J. L.; Sun R.; Fang J.; Chen Y. Y.; Pan Y. W.; Yan K. R.; Li C. Z.; Shi M. M.; Zuo L. J.; Ma C. Q.; Min J.; Liu Y. J.; Chen H. Z. Refined molecular microstructure and optimized carrier management of multicomponent organic photovoltaics toward 19.3% certified efficiency. Energy Environ. Sci., 2023, 16(5), 2262-2273. doi:10.1039/d3ee00630ahttp://dx.doi.org/10.1039/d3ee00630a
Chen T. Y.; Li S. X.; Li Y. K.; Chen Z.; Wu H. T.; Lin Y.; Gao Y.; Wang M. T.; Ding G. Y.; Min J.; Ma Z. F.; Zhu H. M.; Zuo L. J.; Chen H. Z. Compromising charge generation and recombination of organic photovoltaics with mixed diluent strategy for certified 19.4% efficiency. Adv. Mater., 2023, 35(21), e2300400. doi:10.1002/adma.202300400http://dx.doi.org/10.1002/adma.202300400
Zhan L. L.; Li S. X.; Li Y. K.; Sun R.; Min J.; Chen Y. Y.; Fang J.; Ma C. Q.; Zhou G. Q.; Zhu H. M.; Zuo L. J.; Qiu H. Y.; Yin S. C.; Chen H. Z. Manipulating charge transfer and transport via intermediary electron acceptor channels enables 19.3% efficiency organic photovoltaics. Adv. Energy Mater., 2022, 12(39), 2201076. doi:10.1002/aenm.202201076http://dx.doi.org/10.1002/aenm.202201076
Liu S. Y.; Wang D.; Wen T. J.; Zhou G. Q.; Zhu H. M.; Chen H. Z.; Li C. Z. Unaxisymmetric non-fused electron acceptors for efficient polymer solar cells. Chinese J. Polym. Sci., 2022, 40(8), 944-950. doi:10.1007/s10118-022-2750-0http://dx.doi.org/10.1007/s10118-022-2750-0
Chen S. H.; Zhu S. T.; Hong L.; Deng W. Y.; Zhang Y.; Fu Y. A.; Zhong Z. Y.; Dong M. H.; Liu C. C.; Lu X. H.; Zhang K.; Huang F. Binary organic solar cells with over 19% efficiency and enhanced morphology stability enabled by asymmetric acceptors. Angew. Chem. Int. Ed., 2024, 63(12), 2318756. doi:10.1002/anie.202318756http://dx.doi.org/10.1002/anie.202318756
Dong M. H.; Chen S. H.; Hong L.; Jing J. H.; Bai Y. Q.; Liang Y. C.; Zhu C.; Shi T. Y.; Zhong W. K.; Ying L.; Zhang K.; Huang F. 19.0% Efficiency binary organic solar cells enabled by using a building block as solid additive. Nano Energy, 2024, 119, 109097. doi:10.1016/j.nanoen.2023.109097http://dx.doi.org/10.1016/j.nanoen.2023.109097
Zuo L. J.; Jo S. B.; Li Y. K.; Meng Y. H.; Stoddard R. J.; Liu Y.; Lin F.; Shi X. L.; Liu F.; Hillhouse H. W.; Ginger D. S.; Chen H. Z.; Jen A. K. Y. Dilution effect for highly efficient multiple-component organic solar cells. Nat. Nanotechnol., 2022, 17(1), 53-60. doi:10.1038/s41565-021-01011-1http://dx.doi.org/10.1038/s41565-021-01011-1
Liu Y. H.; Liu B. W.; Ma C. Q.; Huang F.; Feng G. T.; Chen H. Z.; Hou J. H.; Yan L. P.; Wei Q. Y.; Luo Q.; Bao Q. Y.; Ma W.; Liu W.; Li W. W.; Wan X. J.; Hu X. T.; Han Y. C.; Li Y. W.; Zhou Y. H.; Zou Y. P.; Chen Y. W.; Li Y. F.; Chen Y. S.; Tang Z.; Hu Z. C.; Zhang Z. G.; Bo Z. S. Recent progress in organic solar cells (Part I material science). Sci. China Chem., 2022, 65(2), 224-268. doi:10.1007/s11426-021-1180-6http://dx.doi.org/10.1007/s11426-021-1180-6
Wang D.; Liu H. R.; Li Y. H.; Zhou G. Q.; Zhan L. L.; Zhu H. M.; Lu X. H.; Chen H. Z.; Li C. Z. High-performance and eco-friendly semitransparent organic solar cells for greenhouse applications. Joule, 2021, 5(4), 945-957. doi:10.1016/j.joule.2021.02.010http://dx.doi.org/10.1016/j.joule.2021.02.010
Wang D.; Li Y. H.; Zhou G. Q.; Gu E.; Xia R. X.; Yan B. Y.; Yao J. Z.; Zhu H. M.; Lu X. H.; Yip H. L.; Chen H. Z.; Li C. Z. High-performance see-through power windows. Energy Environ. Sci., 2022, 15(6), 2629-2637. doi:10.1039/d2ee00977chttp://dx.doi.org/10.1039/d2ee00977c
Duan L. P.; Hoex B.; Uddin A. Progress in semitransparent organic solar cells. Sol. RRL, 2021, 5(5), 2100041. doi:10.1002/solr.202100041http://dx.doi.org/10.1002/solr.202100041
Tang H. R.; Bai Y. Q.; Zhao H. Y.; Qin X. D.; Hu Z. C.; Zhou C.; Huang F.; Cao Y. Interface engineering for highly efficient organic solar cells. Adv. Mater., 2024, 36(16), e2212236. doi:10.1002/adma.202212236http://dx.doi.org/10.1002/adma.202212236
Liu B. W.; Li Z. R.; Yan L. P.; Guo J. B.; Luo Q.; Ma C. Q. ZnO surface passivation with glucose enables simultaneously improving efficiency and stability of inverted polymer: non-fullerene solar cells. Chinese J. Polym. Sci., 2022, 40(12), 1594-1603. doi:10.1007/s10118-022-2819-9http://dx.doi.org/10.1007/s10118-022-2819-9
Liu Y. F.; Zhang S. W.; Li Y. X.; Li S. L.; Huang L. Q.; Jing Y. N.; Cheng Q.; Xiao L. G.; Wang B. X.; Han B.; Kang J. J.; Zhang Y.; Zhang H.; Zhou H. Q. Solution-processed molybdenum oxide hole transport layer stabilizes organic solar cells. Chinese J. Polym. Sci., 2023, 41(2), 202-211. doi:10.1007/s10118-022-2873-3http://dx.doi.org/10.1007/s10118-022-2873-3
Cheng H. W.; Zhao Y. P.; Yang Y. Toward high-performance semitransparent organic photovoltaics with narrow‐bandgap donors and non-fullerene acceptors. Adv. Energy Mater., 2022, 12(3), 2102908. doi:10.1002/aenm.202102908http://dx.doi.org/10.1002/aenm.202102908
Li Y. K.; He C. L.; Zuo L. J.; Zhao F.; Zhan L. L.; Li X.; Xia R. X.; Yip H. L.; Li C. Z.; Liu X.; Chen H. Z. High-performance semi-transparent organic photovoltaic devices via improving absorbing selectivity. Adv. Energy Mater., 2021, 11(11), 2003408. doi:10.1002/aenm.202003408http://dx.doi.org/10.1002/aenm.202003408
He C. L.; Li Y. K.; Liu Y. F.; Li Y. H.; Zhou G. Q.; Li S. X.; Zhu H. M.; Lu X. H.; Zhang F. L.; Li C. Z.; Chen H. Z. Near infrared electron acceptors with a photoresponse beyond 1000 nm for highly efficient organic solar cells. J. Mater. Chem. A, 2020, 8(35), 18154-18161. doi:10.1039/d0ta06907hhttp://dx.doi.org/10.1039/d0ta06907h
Yan K. R.; Li C. Z. Solution-processable conductive organics via anion-induced n-doping and their applications in organic and perovskite solar cells. Macromol. Chem. Phys., 2019, 220(10), 1900084. doi:10.1002/macp.201900084http://dx.doi.org/10.1002/macp.201900084
Jing J. H.; Dong S.; Zhang K.; Zhou Z. S.; Xue Q. F.; Song Y.; Du Z. R.; Ren M. R.; Huang F. Semitransparent organic solar cells with efficiency surpassing 15%. Adv. Energy Mater., 2022, 12(20), 2200453. doi:10.1002/aenm.202200453http://dx.doi.org/10.1002/aenm.202200453
Shi H.; Xia R. X.; Sun C.; Xiao J. Y.; Wu Z. H.; Huang F.; Yip H. L.; Cao Y. Synergic interface and optical engineering for high-performance semitransparent polymer solar cells. Adv. Energy Mater., 2017, 7(20), 1701121. doi:10.1002/aenm.201701121http://dx.doi.org/10.1002/aenm.201701121
Song Y.; Zhang K.; Dong S.; Xia R. X.; Huang F.; Cao Y. Semitransparent organic solar cells enabled by a sequentially deposited bilayer structure. ACS Appl. Mater. Interfaces, 2020, 12(16), 18473-18481. doi:10.1021/acsami.0c00396http://dx.doi.org/10.1021/acsami.0c00396
Sun C.; Xia R. X.; Shi H.; Yao H. F.; Liu X.; Hou J. H.; Huang F.; Yip H. L.; Cao Y. Heat-insulating multifunctional semitransparent polymer solar cells. Joule, 2018, 2(9), 1816-1826. doi:10.1016/j.joule.2018.06.006http://dx.doi.org/10.1016/j.joule.2018.06.006
Zuo L. J.; Shi X. L.; Fu W. F.; Jen A. K. Y. Highly efficient semitransparent solar cells with selective absorption and tandem architecture. Adv. Mater., 2019, 31(36), e1901683. doi:10.1002/adma.201901683http://dx.doi.org/10.1002/adma.201901683
Li Y. X.; Guo X.; Peng Z. X.; Qu B. N.; Yan H. P.; Ade H.; Zhang M. J.; Forrest S. R. Color-neutral, semitransparent organic photovoltaics for power window applications. Proc. Natl. Acad. Sci. USA, 2020, 117(35), 21147-21154. doi:10.1073/pnas.2007799117http://dx.doi.org/10.1073/pnas.2007799117
Guan S. T.; Li Y. K.; Xu C.; Yin N.; Xu C. R.; Wang C. X.; Wang M. T.; Xu Y. X.; Chen Q.; Wang D. W.; Zuo L. J.; Chen H. Z. Self-assembled interlayer enables high-performance organic photovoltaics with power conversion efficiency exceeding 20%. Adv. Mater., 2024, 2400342. doi:10.1002/adma.202400342http://dx.doi.org/10.1002/adma.202400342
Wang D.; Qin R.; Zhou G. Q.; Li X.; Xia R. X.; Li Y. H.; Zhan L. L.; Zhu H. M.; Lu X. H.; Yip H. L.; Chen H. Z.; Li C. Z. High-performance semitransparent organic solar cells with excellent infrared reflection and see-through functions. Adv. Mater., 2020, 32(32), 2001621. doi:10.1002/adma.202001621http://dx.doi.org/10.1002/adma.202001621
Xie Y. P.; Huo L. J.; Fan B. B.; Fu H. T.; Cai Y. H.; Zhang L.; Li Z. Y.; Wang Y.; Ma W.; Chen Y. W.; Sun Y. M. High-performance semitransparent ternary organic solar cells. Adv. Funct. Mater., 2018, 28(49), 1800627. doi:10.1002/adfm.201800627http://dx.doi.org/10.1002/adfm.201800627
Yuan X. X.; Sun R.; Wu Y.; Wang T.; Wang Y. H.; Wang W.; Yu Y.; Guo J.; Wu Q.; Min J. Simultaneous enhanced device efficiency and color neutrality in semitransparent organic photovoltaics employing a synergy of ternary strategy and optical engineering. Adv. Funct. Mater., 2022, 32(22), 2200107. doi:10.1002/adfm.202200107http://dx.doi.org/10.1002/adfm.202200107
Liu W. Y.; Sun S. M.; Zhou L.; Cui Y.; Zhang W. K.; Hou J. H.; Liu F.; Xu S. J.; Zhu X. Z. Design of near-infrared nonfullerene acceptor with ultralow nonradiative voltage loss for high-performance semitransparent ternary organic solar cells. Angew. Chem. Int. Ed., 2022, 61(19), e202116111. doi:10.1002/anie.202116111http://dx.doi.org/10.1002/anie.202116111
Li S. X.; Zhan L. L.; Yao N. N.; Xia X. X.; Chen Z.; Yang W. T.; He C. L.; Zuo L. J.; Shi M. M.; Zhu H. M.; Lu X. H.; Zhang F. L.; Chen H. Z. Unveiling structure-performance relationships from multi-scales in non-fullerene organic photovoltaics. Nat. Commun., 2021, 12(1), 4627. doi:10.1038/s41467-021-24937-5http://dx.doi.org/10.1038/s41467-021-24937-5
Li Y. X.; Ji C. G.; Qu Y.; Huang X. J.; Hou S. C.; Li C. Z.; Liao L. S.; Guo L. J.; Forrest S. R. Enhanced light utilization in semitransparent organic photovoltaics using an optical outcoupling architecture. Adv. Mater., 2019, 31(40), e1903173. doi:10.1002/adma.201903173http://dx.doi.org/10.1002/adma.201903173
Zhan L. L.; Li S. X.; Li Y. K.; Sun R.; Min J.; Bi Z. Z.; Ma W.; Chen Z.; Zhou G. Q.; Zhu H. M.; Shi M. M.; Zuo L. J.; Chen H. Z. Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric-asymmetric molecule ternary organic photovoltaics. Joule, 2022, 6(3), 662-675. doi:10.1016/j.joule.2022.02.001http://dx.doi.org/10.1016/j.joule.2022.02.001
Guan S. T.; Li Y. K.; Yan K. R.; Fu W. F.; Zuo L. J.; Chen H. Z. Balancing the selective absorption and photon-to-electron conversion for semitransparent organic photovoltaics with 5.0% light-utilization efficiency. Adv. Mater., 2022, 34(41), e2205844. doi:10.1002/adma.202205844http://dx.doi.org/10.1002/adma.202205844
Zhao F.; Zuo L. J.; Li Y. K.; Zhan L. L.; Li S. X.; Li X.; Xia R. X.; Yip H. L.; Chen H. Z. High-performance upscaled indium tin oxide-free organic solar cells with visual esthetics and flexibility. Sol. RRL, 2021, 5(9), 2100339. doi:10.1002/solr.202100339http://dx.doi.org/10.1002/solr.202100339
Li X.; Xia R. X.; Yan K. R.; Ren J.; Yip H. L.; Li C. Z.; Chen H. Z. Semitransparent organic solar cells with vivid colors. ACS Energy Lett., 2020, 5(10), 3115-3123. doi:10.1021/acsenergylett.0c01554http://dx.doi.org/10.1021/acsenergylett.0c01554
0
浏览量
62
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构