浏览全部资源
扫码关注微信
中石化(北京)化工研究院有限公司 北京 100013
E-mail: qiaojl.bjhy@sinopec.com
纸质出版日期:2024-09-20,
网络出版日期:2024-07-15,
收稿日期:2024-04-11,
录用日期:2024-05-11
移动端阅览
郭照琰, 高易, 茹越, 刘振杰, 张晓红, 乔金樑. 马来酰胺酸-醋酸乙烯酯交替共聚物的光致发光性能及荧光水凝胶的制备. 高分子学报, 2024, 55(9), 1155-1164
Guo, Z. Y.; Gao, Y; Ru, Y; Liu, Z. J.; Zhang, X. H.; Qiao, J. L. The photoluminescent properties of poly-(maleamic acid-alt-vinyl acetate) and construction of fluorescent hydrogel. Acta Polymerica Sinica, 2024, 55(9), 1155-1164
郭照琰, 高易, 茹越, 刘振杰, 张晓红, 乔金樑. 马来酰胺酸-醋酸乙烯酯交替共聚物的光致发光性能及荧光水凝胶的制备. 高分子学报, 2024, 55(9), 1155-1164 DOI: 10.11777/j.issn1000-3304.2024.24111.
Guo, Z. Y.; Gao, Y; Ru, Y; Liu, Z. J.; Zhang, X. H.; Qiao, J. L. The photoluminescent properties of poly-(maleamic acid-alt-vinyl acetate) and construction of fluorescent hydrogel. Acta Polymerica Sinica, 2024, 55(9), 1155-1164 DOI: 10.11777/j.issn1000-3304.2024.24111.
马来酸酐-醋酸乙烯酯交替共聚物及其衍生物是一类非共轭光致发光聚合物,在防伪、转光等领域具有很好的应用前景. 本研究对自稳定沉淀聚合法制备的马来酸酐-醋酸乙烯酯交替共聚物(PMV)微球进行了酰胺化和酰亚胺化改性,制备出了光致发光的水溶性马来酰胺酸-醋酸乙烯酯交替共聚物PMVN. 通过对其光致发光性能的研究,发现其在室温和85 ℃下溶解的溶液及固体呈现出不同颜色及荧光特征,85 ℃下溶解的溶液及固体还呈现出蓝、红双发射的特性. 在此研究结果基础上,成功制备出荧光水凝胶,所制备的光致发光聚合物和荧光水凝胶在疾病诊断、防伪和环境监测等方面具有很好的应用前景.
Poly(maleic anhydride-
alt
-vinyl acetate) (PMV) have been found as a kind of non-conjugated photoluminescent polymer with strong light emission and unique solvatochromic
effect
while its photoluminescence orginated from anhydride cluster interacting in a through-space manner. Besides
PMV could also be converted into highly-emissive or dual-emissive PMV salts through alkalization modification with sodium/lithium hydroxide. Yet in this study
self-precipated polymerized PMV microspheres were modified by amidation and imide to break maleic anhydride rings and prepare water-soluble photoluminescent poly(maleamic acid-alt-vinyl acetate) (PMVN) through simple ammonia treatment. PMVN not only exhibited photoluminescent properties in both solution and solid state
but also showed different colors and fluorescence characteristics when dissolved at different temperatures (room temperature
or 85 ℃). Microstructure analysis showed that the structures of PMVN-RT and PMVN-85 were basically the same
yet their fluorescence clusters were significantly different
which might be attributed to their different fluorescence characteristics. In addition
the color of PMVN-RT changed to green after heating
while the fluorescence clusters
solution color and fluorescence characteristics of PMVN-85 showed a trend of transforming into PMVN-RT after being placed at room temperature for 72 h. PMVN was a thermochromic photoluminescent polymer with reversible transformation characteristics. Besides
composite fluorescent hydrogels were prepared and exhibited application prospects in many fields such as temperature sensors
biosensors
disease diagnosis
cell imaging
bionic drive and environmental monitoring.
马来酸酐-醋酸乙烯酯交替共聚物荧光水凝胶自稳定沉淀聚合发光团簇蓝/红双发射聚集诱导发光
Poly(maleic anhydride-alt-vinyl acetate) (PMV) and its derivativesFluorescent hydrogelSelf-stabilized precipitation polymerizationPhotoluminescent clustersBlue and red emissionAggregation induced emission
Zeng X. L.; Yang X. M.; Li F. M.; Ma J.; Lin Y. P.; Yao B. X.; Huang L. Z.; Weng W. One-step fabrication of nitrogen-doped fluorescent nanoparticles from non-conjugated natural products and their temperature-sensing and bioimaging applications. Sens. Bio Sens. Res., 2015, 3, 18-23. doi:10.1016/j.sbsr.2014.10.001http://dx.doi.org/10.1016/j.sbsr.2014.10.001
Gong Y. Y.; Tan Y. Q.; Mei J.; Zhang Y. R.; Yuan W. Z.; Zhang Y. M.; Sun J. Z.; Tang B. Z. Room temperature phosphorescence from natural products: crystallization matters. Sci. China Chem., 2013, 56(9), 1178-1182. doi:10.1007/s11426-013-4923-8http://dx.doi.org/10.1007/s11426-013-4923-8
Liu S.; Tian J. Q.; Wang L.; Zhang Y. W.; Qin X. Y.; Luo Y. L.; Asiri A. M.; Al-Youbi A. O.; Sun X. P. Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv. Mater., 2012, 24(15), 2037-2041. doi:10.1002/adma.201200164http://dx.doi.org/10.1002/adma.201200164
Shukla A.; Mukherjee S.; Sharma S.; Agrawal V.; Radha Kishan K. V.; Guptasarma P. A novel UV laser-induced visible blue radiation from protein crystals and aggregates: scattering artifacts or fluorescence transitions of peptide electrons delocalized through hydrogen bonding? Arch. Biochem. Biophys., 2004, 428(2), 144-153. doi:10.1016/j.abb.2004.05.007http://dx.doi.org/10.1016/j.abb.2004.05.007
Song G. S.; Lin Y. N.; Zhu Z. C.; Zheng H. Y.; Qiao J. P.; He C. C.; Wang H. L. Strong fluorescence of poly(N-vinylpyrrolidone) and its oxidized hydrolyzate. Macromol. Rapid Commun., 2015, 36(3), 278-285. doi:10.1002/marc.201400516http://dx.doi.org/10.1002/marc.201400516
Sun B.; Zhao B.; Wang D. D.; Wang Y. B.; Tang Q.; Zhu S. J.; Yang B.; Sun H. C. Fluorescent non-conjugated polymer dots for targeted cell imaging. Nanoscale, 2016, 8(18), 9837-9841. doi:10.1039/c6nr01909ahttp://dx.doi.org/10.1039/c6nr01909a
Weiss;, P. S. 2008 Nobel prize in chemistry: green fluorescent protein, its variants and implications. ACS Nano, 2008, 2(10), 1977. doi:10.1021/nn800671hhttp://dx.doi.org/10.1021/nn800671h
Zhao E. G.; Lam J. W. Y.; Meng L. M.; Hong Y. N.; Deng H. Q.; Bai G. X.; Huang X. H.; Hao J. H.; Tang B. Z. Poly((maleic anhydride)-alt-(vinyl acetate)): a pure oxygenic nonconjugated macromolecule with strong light emission and solvatochromic effect. Macromolecules, 2015, 48(1), 64-71. doi:10.1021/ma502160whttp://dx.doi.org/10.1021/ma502160w
Zhu S. J.; Song Y. B.; Shao J. R.; Zhao X. H.; Yang B. Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units. Angew. Chem. Int. Ed., 2015, 54(49), 14626-14637. doi:10.1002/anie.201504951http://dx.doi.org/10.1002/anie.201504951
Zhu S. J.; Wang L.; Zhou N.; Zhao X. H.; Song Y. B.; Maharjan S.; Zhang J. H.; Lu L. J.; Wang H. Y.; Yang B. The crosslink enhanced emission (CEE) in non-conjugated polymer dots: from the photoluminescence mechanism to the cellular uptake mechanism and internalization. Chem. Commun., 2014, 50(89), 13845-13848. doi:10.1039/c4cc05806bhttp://dx.doi.org/10.1039/c4cc05806b
Zhu S. J.; Zhang J. H.; Wang L.; Song Y. B.; Zhang G. Y.; Wang H. Y.; Yang B. A general route to make non-conjugated linear polymers luminescent. Chem. Commun., 2012, 48(88), 10889-10891. doi:10.1039/c2cc36080bhttp://dx.doi.org/10.1039/c2cc36080b
Lai W. F. Non-conjugated polymers with intrinsic luminescence for drug delivery. J. Drug Deliv. Sci. Technol., 2020, 59, 101916. doi:10.1016/j.jddst.2020.101916http://dx.doi.org/10.1016/j.jddst.2020.101916
Wang J. W.; Wang N.; Wu G.; Wang S. N.; Li X. Y. Multicolor emission from non-conjugated polymers based on a single switchable boron chromophore. Angew. Chem. Int. Ed., 2019, 58(10), 3082-3086. doi:10.1002/anie.201812210http://dx.doi.org/10.1002/anie.201812210
Jose A.; Tharayil A.; Porel M. Water soluble non-conjugated fluorescent polymers: aggregation induced emission, solid-state fluorescence, and sensor array applications. Polym. Chem., 2023, 14(28), 3309-3316. doi:10.1039/d3py00357dhttp://dx.doi.org/10.1039/d3py00357d
Zhou Q.; Wang Z. Y.; Dou X. Y.; Wang Y. Z.; Liu S. E.; Zhang Y. M.; Yuan W. Z. Emission mechanism understanding and tunable persistent room temperature phosphorescence of amorphous nonaromatic polymers. Mater. Chem. Front., 2019, 3(2), 257-264. doi:10.1039/c8qm00528ahttp://dx.doi.org/10.1039/c8qm00528a
Zhang H. K.; Tang B. Z. Through-space interactions in clusteroluminescence. JACS Au, 2021, 1(11), 1805-1814. doi:10.1021/jacsau.1c00311http://dx.doi.org/10.1021/jacsau.1c00311
Liu Z. J.; Chen D.; Zhang J. F.; Liao H. D.; Chen Y. Z.; Sun Y. F.; Deng J. Y.; Yang W. T. Self-stabilized precipitation polymerization and its application. Research, 2018, 2018, 9370490. doi:10.1155/2018/9370490http://dx.doi.org/10.1155/2018/9370490
Guo X. Y.; Ma Y. H.; Chen D.; Peng W.; Yang W. T. Preparation of styrene-maleic anhydride random copolymer by stabilizer-free dispersion polymerization. J. Macromol. Sci. Part A, 2012, 49(12), 1061-1069. doi:10.1080/10601325.2012.728482http://dx.doi.org/10.1080/10601325.2012.728482
Chen C. X.; Xu C.; Zhai J. X.; Ma Y. H.; Zhao C. W.; Yang W. T. Solvent-free preparation of uniform styrene/maleimide copolymer microspheres from solid poly(styrene-alt-maleic anhydride) microspheres. Polym. Chem., 2022, 13(5), 684-692. doi:10.1039/d1py01540khttp://dx.doi.org/10.1039/d1py01540k
Ru Y.; Zhang X. H.; Song W. B.; Liu Z. J.; Feng H. S.; Wang B.; Guo M. M.; Wang X.; Luo C. X.; Yang W. T.; Li Y. F.; Qiao J. L. A new family of thermoplastic photoluminescence polymers. Polym. Chem., 2016, 7(40), 6250-6256. doi:10.1039/c6py00915hhttp://dx.doi.org/10.1039/c6py00915h
Ru Y.; Zhang X. H.; Wang L.; Dai L. M.; Yang W. T.; Qiao J. L. Polymer composites with high haze and high transmittance. Polym. Chem., 2015, 6(37), 6632-6636. doi:10.1039/c5py01072ahttp://dx.doi.org/10.1039/c5py01072a
Guo Z. Y.; Ru Y.; Song W. B.; Liu Z. J.; Zhang X. H.; Qiao J. L. Water-soluble polymers with strong photoluminescence through an eco-friendly and low-cost route. Macromol. Rapid Commun., 2017, 38(14), 1700099. doi:10.1002/marc.201700099http://dx.doi.org/10.1002/marc.201700099
Hu C. X.; Guo Z. Y.; Ru Y.; Song W. B.; Liu Z. J.; Zhang X. H.; Qiao J. L. A new family of photoluminescent polymers with dual chromophores. Macromol. Rapid Commun., 2018, 39(10), e1800035. doi:10.1002/marc.201800035http://dx.doi.org/10.1002/marc.201800035
Hu C. X.; Ru Y.; Guo Z. Y.; Liu Z. J.; Song J. H.; Song W. B.; Zhang X. H.; Qiao J. L. New multicolored AIE photoluminescent polymers prepared by controlling the pH value. J. Mater. Chem. C, 2019, 7(2), 387-393. doi:10.1039/c8tc05197fhttp://dx.doi.org/10.1039/c8tc05197f
Chen X.; Hu C. X.; Wang Y.; Li T.; Jiang J.; Huang J.; Wang S. B.; Dong W. F.; Qiao J. L. A self-assemble supramolecular film with humidity visualization enabled by clusteroluminescence. Adv. Sci., 2024, 11(1), 2304946. doi:10.1002/advs.202304946http://dx.doi.org/10.1002/advs.202304946
Yao Y.; Zhang X. H.; Guo Z. Y.; Liu W. L.; Hu C. X.; Ru Y.; Zhang L. D.; Jiang C.; Qiao J. L. Preparation and application of recyclable polymer aerogels from styrene-maleic anhydride alternating copolymers. Chem. Eng. J., 2023, 455, 140363. doi:10.1016/j.cej.2022.140363http://dx.doi.org/10.1016/j.cej.2022.140363
姚远, 张晓红, 茹越, 乔金樑. 超吸湿聚合物气凝胶的制备与性能. 高分子学报, 2023, 54(8), 1131-1138. doi:10.11777/j.issn1000-3304.2023.23044http://dx.doi.org/10.11777/j.issn1000-3304.2023.23044
Wu Y. H.; Chen M. S.; Zhao G. Z.; Qi D. B.; Zhang X. H.; Li Y. R.; Huang Y. B.; Yang W. T. Recyclable solid-solid phase change materials with superior latent heat via reversible anhydride-alcohol crosslinking for efficient thermal storage. Adv. Mater., 2024, 36(16), e2311717. doi:10.1002/adma.202311717http://dx.doi.org/10.1002/adma.202311717
Zhou Z. X.; Chen X.; Wang Y.; Hu C. X.; Li T.; Wang S. B.; Dong W. F.; Qiao J. L. Branched copolymers with tunable clusteroluminescence in high quantum yield. ACS Macro Lett., 2023, 12(11), 1523-1529. doi:10.1021/acsmacrolett.3c00549http://dx.doi.org/10.1021/acsmacrolett.3c00549
Chen X.; Hu C. X.; Wang Y.; Li T.; Jiang J.; Huang J.; Wang S. B.; Liu T. X.; Dong W. F.; Qiao J. L. Improve quantum yield of poly(maleic anhydride-alt-vinyl acetate) via good solvents. Macromol. Rapid Commun., 2023, 44(3), e2200653. doi:10.1002/marc.202200653http://dx.doi.org/10.1002/marc.202200653
Chen X.; Hu C. X.; Wang Y.; Li T.; Jiang J.; Huang J.; Wang S. B.; Liu T. X.; Dong W. F.; Qiao J. L. Tunable red clusteroluminescence polymers prepared by a simple heating process. ACS Appl. Mater. Interfaces, 2023, 15(19), 23824-23833. doi:10.1021/acsami.3c03883http://dx.doi.org/10.1021/acsami.3c03883
Chen C. X.; Xu C.; Zhai J. X.; Zhao C. W.; Ma Y. H.; Yang W. T. Low-cost and formaldehyde-free wood adhesive based on water-soluble olefin-maleamic acid copolymers. Ind. Eng. Chem. Res., 2023, 62(48), 20547-20555. doi:10.1021/acs.iecr.3c01968http://dx.doi.org/10.1021/acs.iecr.3c01968
Mailhot B.; Gardette J. L. Fourier transform infrared and Fourier transform Raman analysis of styrenic polymers. Vib. Spectrosc., 1996, 11(1), 69-78. doi:10.1016/0924-2031(95)00067-4http://dx.doi.org/10.1016/0924-2031(95)00067-4
Yang Z. Y.; Yao J. S.; Guo R. B. Synthesis and characterization of chiral poly(amide-imide) containing L-alanine. Adv. Mater. Res., 2011, 282-283, 116-119. doi:10.4028/www.scientific.net/AMR.282-283.116http://dx.doi.org/10.4028/www.scientific.net/AMR.282-283.116
Tani Y.; Yonenuma R.; Mori H. Clusterization-triggered emission of poly(vinyl amine)-based ampholytic block and random copolymers. React. Funct. Polym., 2023, 184, 105518. doi:10.1016/j.reactfunctpolym.2023.105518http://dx.doi.org/10.1016/j.reactfunctpolym.2023.105518
Su W. W.; Wang R.; Qian C.; Li X. T.; Tong Q.; Jiao T. F. Research progress review of preparation and applications of fluorescent hydrogels. J. Chem., 2020, 2020, 8246429. doi:10.1155/2020/8246429http://dx.doi.org/10.1155/2020/8246429
胡佳妤, 杜聪, 张歆宁, 郑强, 吴子良. 玻璃态水凝胶: 从凝胶材料的新状态到高性能. 高分子学报, 2023, 54(12), 1795-1816.
周杭生, 黄金, 赵天艺, 刘明杰. 仿生多相限域复合高分子凝胶. 高分子学报, 2023, 54(11), 1641-1662. doi:10.11777/j.issn1000-3304.2023.23130http://dx.doi.org/10.11777/j.issn1000-3304.2023.23130
0
浏览量
142
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构