浏览全部资源
扫码关注微信
1.南京大学 高性能高分子材料与技术教育部重点实验室 南京 210023
2.苏州大学 江苏省新型高分子功能材料工程研究中心 苏州 215123
E-mail: weichen@nju.edu.cn
收稿日期:2024-05-17,
录用日期:2024-06-19,
网络出版日期:2024-08-29,
纸质出版日期:2024-11-20
移动端阅览
张昊昱, 陈葳. 荧光共振能量转移法研究高分子的溶液剪切构象. 高分子学报, 2024, 55(11), 1529-1537
Zhang, H. Y.; Chen, W. Conformational changes of polymer chains in a shear field studied by fluorescence resonance energy transfer. Acta Polymerica Sinica, 2024, 55(11), 1529-1537
张昊昱, 陈葳. 荧光共振能量转移法研究高分子的溶液剪切构象. 高分子学报, 2024, 55(11), 1529-1537 DOI: 10.11777/j.issn1000-3304.2024.24114. CSTR: 32057.14.GFZXB.2024.7261.
Zhang, H. Y.; Chen, W. Conformational changes of polymer chains in a shear field studied by fluorescence resonance energy transfer. Acta Polymerica Sinica, 2024, 55(11), 1529-1537 DOI: 10.11777/j.issn1000-3304.2024.24114. CSTR: 32057.14.GFZXB.2024.7261.
从分子层面原位检测剪切场中高分子的微观构象不仅对研究高分子链运动与变形分子机理至关重要,也是开发高分子先进加工工艺的重要环节. 然而由于高分子链的构象变化尺度处于0.1~10 nm区间,现有的表征手段缺乏足够的分辨率. 为解决这一问题,在检测光路上加装可提供不同剪切速率的荧光样品池,对荧光仪进行改造,改造后的荧光仪能够实现剪切场中样品荧光信号的原位采集. 将荧光供体和受体基团通过共价键接入同一根高分子链,根据荧光共振能量转移效率与荧光供体和受体基团间的距离正相关的特点,采用荧光共振能量转移(FRET)光谱方法,通过分析标记在同一根高分子链上的荧光供体和受体基团间的FRET效率随剪切速率的变化,实现对高分子的溶液剪切构象的原位表征. 首次从分子层面原位观察到高分子链在剪切作用下,在稀溶液和亚浓溶液中,分别表现出“整体带动局部”和“局部带动整体”的构象变化模式. 为实验上开展高分子链构象演变的原位研究提供了新的方法和思路.
The
in situ
detection of the microconformation of polymers in a shear field from the molecular level not only plays an important role for demonstrating the molecular mechanism of polymer chains' dynamic behavior such as deformation and diffusion
but also serves as a crucial link in developing advanced polymer processing technology. However
due to the conformational change scale of polymer chains falling within the range from 0.1 nm to 10 nm
conventional characterization methods
such as dynamic light scattering and fluorescence microscopy techniques
are difficult to meet the requirements of spatial resolution needed for characterization. To address this problem
the fluorometer was modified by adding a Couette rheofluorescence cell on the detection optical path. Since the Couette fluorescence cell can apply different shear rates to the sample
the modified fluorometer is able to detect
in situ
fluorescence signals of samples in a shear field. In order to characterize the conformational changes of the polymer chain
fluorescent donor and acceptor groups were labeled to a single polymer chain through covalent bonds Based on the positive correlation between the fluorescence resonance energy transfer (FRET) efficiency and the distance between the fluorescent donor and acceptor groups
a FRET spectroscopy has been used to achieve
in situ
characterization of the solution shear conformation of polymer chains by analyzing the change of the FRET efficiency between fluorescent donor and acceptor groups labeled on the same polymer chain as a function of the shear rate. For the first time
it was observed
in situ
at the molecular level that polymer chains under shear showed the conformational change modes of "whole driven by local" in dilute solutions and "local driven by whole" in semi-dilute solutions
respectively. This study provides new methods and ideas for experimentally carrying out
in situ
studies on the conformational evolution of polymer chains
and has an advancing effect on the development of molecular rheology.
陈晓媛 , 王港 , 黄锐 . 毛细管中聚合物熔体不稳定流动的研究进展 . 工程塑料应用 , 2003 , 31 ( 3 ), 58 - 62 . doi: 10.3969/j.issn.1001-3539.2003.03.019 http://dx.doi.org/10.3969/j.issn.1001-3539.2003.03.019
Schroeder C. M. Single polymer dynamics for molecular rheology . J. Rheol. , 2018 , 62 ( 1 ), 371 - 403 . doi: 10.1122/1.5013246 http://dx.doi.org/10.1122/1.5013246
Nath P. ; Mangal R. ; Kohle F. ; Choudhury S. ; Narayanan S. ; Wiesner U. ; Archer L. A. Dynamics of nanoparticles in entangled polymer solutions . Langmuir , 2018 , 34 ( 1 ), 241 - 249 . doi: 10.1021/acs.langmuir.7b03418 http://dx.doi.org/10.1021/acs.langmuir.7b03418
Rosén T. ; Wang R. F. ; Zhan C. B. ; He H. R. ; Chodankar S. ; Hsiao B. S. Cellulose nanofibrils and nanocrystals in confined flow: single-particle dynamics to collective alignment revealed through scanning small-angle X-ray scattering and numerical simulations . Phys. Rev. E , 2020 , 101 ( 3-1 ), 032610 . doi: 10.1103/physreve.101.032610 http://dx.doi.org/10.1103/physreve.101.032610
Link A. ; Springer J. Light scattering from dilute polymer solutions in shear flow . Macromolecules , 1993 , 26 ( 3 ), 464 - 471 . doi: 10.1021/ma00055a010 http://dx.doi.org/10.1021/ma00055a010
Bent J. ; Hutchings L. R. ; Richards R. W. ; Gough T. ; Spares R. ; Coates P. D. ; Grillo I. ; Harlen O. G. ; Read D. J. ; Graham R. S. ; Likhtman A. E. ; Groves D. J. ; Nicholson T. M. ; McLeish T. C. Neutron-mapping polymer flow: scattering, flow visualization, and molecular theory . Science , 2003 , 301 ( 5640 ), 1691 - 1695 . doi: 10.1126/science.1086952 http://dx.doi.org/10.1126/science.1086952
LeDuc P. ; Haber C. ; Bao G. ; Wirtz D. Dynamics of individual flexible polymers in a shear flow . Nature , 1999 , 399 ( 6736 ), 564 - 566 . doi: 10.1038/21148 http://dx.doi.org/10.1038/21148
Wu T. Y. ; Guo J. C. ; Huang J. B. ; Yan Y. Robust single molecular white fluorescence facilitated by blocking aggregate growth in Densely-Woven solid polymeric network . Chem. Eng. J. , 2023 , 457 , 140974 . doi: 10.1016/j.cej.2022.140974 http://dx.doi.org/10.1016/j.cej.2022.140974
Brandell D. ; Liivat A. ; Aabloo A. ; Thomas J. O. Molecular dynamics simulation of the crystalline short-chain polymer system LiPF 6 ·PEO 6 (Mw~ 1000 ). J. Mater. Chem., 2005, 15 ( 40 ), 4338 - 4345 . doi: 10.1039/b505091j http://dx.doi.org/10.1039/b505091j
Wang Z. H. ; Zhai Q. L. ; Chen W. ; Wang X. L. ; Lu Y. Y. ; An L. J. Mechanism of nonmonotonic increase in polymer size: comparison between linear and ring chains at high shear rates . Macromolecules , 2019 , 52 ( 21 ), 8144 - 8154 . doi: 10.1021/acs.macromol.9b00809 http://dx.doi.org/10.1021/acs.macromol.9b00809
阮永金 , 卢宇源 , 安立佳 . 管子模型 . 高分子学报 , 2018 , ( 12 ), 1493 - 1506 .
刘冬梅 , 刘茗竹 , 卢宇源 , 安立佳 , 张汉壮 . 近平衡态与快速启动剪切下缠结高分子流体流变行为研究 . 高分子学报 , 2015 , ( 7 ), 858 - 866 .
Bos I. ; Timmerman M. ; Sprakel J. FRET-based determination of the exchange dynamics of complex coacervate core micelles . Macromolecules , 2021 , 54 ( 1 ), 398 - 411 . doi: 10.1021/acs.macromol.0c02387 http://dx.doi.org/10.1021/acs.macromol.0c02387
Valdez S. ; Robertson M. ; Qiang Z. Fluorescence resonance energy transfer measurements in polymer science: a review . Macromol. Rapid Commun. , 2022 , 43 ( 24 ), e 2200421 . doi: 10.1002/marc.202200421 http://dx.doi.org/10.1002/marc.202200421
Morawetz H. Studies of synthetic polymers by nonradiative energy transfer . Science , 1988 , 240 ( 4849 ), 172 - 176 . doi: 10.1126/science.240.4849.172 http://dx.doi.org/10.1126/science.240.4849.172
Ediger M. D. ; Fayer M. D. New approach to probing polymer and polymer blend structure using electronic excitation transport . Macromolecules , 1983 , 16 ( 12 ), 1839 - 1844 . doi: 10.1021/ma00246a008 http://dx.doi.org/10.1021/ma00246a008
Chan N. Y. ; Chen M. ; Dunstan D. E. Elasticity of polymer solutions in Couette flow measured by fluorescence resonance energy transfer (FRET) . Eur. Phys. J. E , 2009 , 30 ( 1 ), 37 - 41 . doi: 10.1140/epje/i2009-10503-x http://dx.doi.org/10.1140/epje/i2009-10503-x
Jean D. Global analysis of fluorescence decays to probe the internal dynamics of fluorescently labeled macromolecules . Langmuir , 2014 , 30 ( 9 ), 2307 - 2324 . doi: 10.1021/la403714u http://dx.doi.org/10.1021/la403714u
高司洋 , 沙野 , 陈娇 , 秦淋淋 , 陈葳 , 薛奇 . 荧光光谱法研究聚苯乙烯在良溶剂中的链构象变化 . 中国科学 : 化学 , 2017 , 47 , 1123 - 1131 .
Brandrup J. ; Immergut E.H. ; Grulke E.A. ; Abe A. ; Bloch D.R. Polymer Handbook . New York : Wiley , 1999 , 301 - 304 .
Sammler R. L. ; Schrag J. L. Bead-spring model predictions of solution dynamics for flexible homopolymers incorporating long-chain branches and/or rings . Macromolecules , 1988 , 21 ( 4 ), 1132 - 1140 . doi: 10.1021/ma00182a047 http://dx.doi.org/10.1021/ma00182a047
瞿志超 , 张俊生 , 陈葳 . 剪切流场中高分子链构象转变的 FRET 研究 . 南京大学学报 (自然科学版) , 2019 , 55 , 819 - 824 .
Janiak C. A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands . J. Chem. Soc. , Dalton Trans. , 2000 ( 21 ), 3885 - 3896 . doi: 10.1039/b003010o http://dx.doi.org/10.1039/b003010o
Teraoka, I. Polymer Solutions . New York : Wiley , 2002 . 63 - 65 . doi: 10.1002/0471224510 http://dx.doi.org/10.1002/0471224510
许金钩 , 王尊本 . 荧光分析法 . 北京 : 科学出版社 , 2006 . 22 - 32 .
Collis M. W. ; Mackley M. R. The melt processing of monodisperse and polydisperse polystyrene melts within a slit entry and exit flow . J. Non Newton. Fluid Mech. , 2005 , 128 ( 1 ), 29 - 41 . doi: 10.1016/j.jnnfm.2005.02.010 http://dx.doi.org/10.1016/j.jnnfm.2005.02.010
Kong X. X. ; Han Y. C. ; Chen W. D. ; Cui F. C. ; Li Y. Q. Understanding conformational and dynamical evolution of semiflexible polymers in shear flow . Soft Matter , 2019 , 15 ( 31 ), 6353 - 6361 . doi: 10.1039/c9sm00600a http://dx.doi.org/10.1039/c9sm00600a
Doi M. ; Edwards S. F. The Theory of Polymer Dynamics . Oxford : Clarendon Press , 1986 . 108 - 110 .
吴奇 . 大分子溶液: 源自一次个人40年之旅的教科书 . 北京 : 高等教育出版社 , 2021 . 320 - 334 .
Costanzo S. ; Ianniello V. ; Pasquino R. ; Grizzuti N. ; Ianniruberto G. ; Marrucci G. Strain hardening of unentangled polystyrene solutions in fast shear flows . Macromolecules , 2022 , 55 ( 20 ), 9206 - 9219 . doi: 10.1021/acs.macromol.2c01499 http://dx.doi.org/10.1021/acs.macromol.2c01499
Hu, W. Polymer Physics: A Molecular Approach . Wien : Springer , 2013 . 77 - 80 . doi: 10.1007/978-3-7091-0670-9_5 http://dx.doi.org/10.1007/978-3-7091-0670-9_5
Hawke L. G. D. ; Romano D. ; Rastogi S. Nonequilibrium melt state of ultra-high-molecular-weight polyethylene: a theoretical approach on the equilibrium process . Macromolecules , 2019 , 52 ( 22 ), 8849 - 8866 . doi: 10.1021/acs.macromol.9b01152 http://dx.doi.org/10.1021/acs.macromol.9b01152
0
浏览量
287
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构