浏览全部资源
扫码关注微信
华东理工大学材料科学与工程学院 特种功能高分子材料及相关技术教育部重点实验室 上海 200237
E-mail: qlyuan@ecust.edu.cn
收稿日期:2024-04-16,
录用日期:2024-05-31,
网络出版日期:2024-07-22,
纸质出版日期:2024-11-20
移动端阅览
徐欣玥, 董仕龙, 袁荞龙. 不同侧基耐热聚硅乙炔树脂的制备及其热性能. 高分子学报, 2024, 55(11), 1561-1574
Xu, X. Y.; Dong, S. L.; Yuan, Q. L. Preparation and thermostability of heat-resistant poly(silylene acetylene) resins with different side groups. Acta Polymerica Sinica, 2024, 55(11), 1561-1574
徐欣玥, 董仕龙, 袁荞龙. 不同侧基耐热聚硅乙炔树脂的制备及其热性能. 高分子学报, 2024, 55(11), 1561-1574 DOI: 10.11777/j.issn1000-3304.2024.24115. CSTR: 32057.14.GFZXB.2024.7262.
Xu, X. Y.; Dong, S. L.; Yuan, Q. L. Preparation and thermostability of heat-resistant poly(silylene acetylene) resins with different side groups. Acta Polymerica Sinica, 2024, 55(11), 1561-1574 DOI: 10.11777/j.issn1000-3304.2024.24115. CSTR: 32057.14.GFZXB.2024.7262.
利用格氏试剂法合成了5种含不同侧基的端乙炔基硅乙炔树脂(ETSA),通过核磁共振氢谱(
1
H-NMR)和傅里叶转换红外光谱(FTIR)对其结构进行了表征,用体积排除色谱法测其分子量,利用示差扫描量热仪(DSC)研究了ETSA树脂的固化行为,通过热失重分析仪(TGA)研究了ETSA树脂固化物的热稳定性,并利用高分辨透射电镜(HRTEM)和小角X光散射(SAXS)研究了ETSA树脂固化物的微孔结构. 另外,使用2种镍系催化剂对ETSA树脂的固化反应进行催化,并通过DSC、FTIR和TGA研究了催化剂对ETSA固化的催化效果. 结果表明,ETSA树脂随主链中硅原子上侧基体积的增大,聚合度依次下降,固化放热峰峰值温度向高温方向移动,放热焓显著下降. ETSA固化树脂具有优异的热稳定性,氮气与空气中的5%热失重温度(
T
d5
)都超450 ℃,800 ℃残留量(
Y
r800
)分别超过80%和27%. ETSA固化树脂交联网络微孔随侧基体积增加而增大. 镍系催化剂对ETSA树脂的固化反应具有较好的催化效果,降低起始固化温度大于50 ℃,催化固化树脂的
Y
r800
变化不大. ETSA树脂有望用作高耐热树脂基体和聚合物陶瓷前驱体.
Five ethynyl-terminated poly(silylene acetylene) (ETSA) resins with different side groups at Si atom were synthesized using the Grignard reagent method. The structures of ETSA resins were characterized by proton nuclear magnetic resonance (
1
H-NMR) and Fourier transformation infrared (FTIR). The size exclusion chromatography was used to measure the molecular weight and distribution of ETSA resins. The curing behaviors of ETSA resins were investigated using differential scanning calorimetr
y (DSC). The thermal stability of cured ETSA resins were studied by thermogravimetric analysis (TGA). Furthermore
the microporous structure of cured ETSA resin was investigated using high resolution transmission electron microscopy (HRTEM) and small angle X-ray scattering (SAXS). Additionally
two nickel-based catalysts were used to catalyze the curing reaction of the ETSA resins
and the catalytic effect of the catalysts on the curing reaction of ETSA resins were evaluated by DSC
FTIR and TGA. The results show that the degree of polymerization of ETSA resin decreases with increase of the volume of side group at Si atom in the backbone of ETSA. The peak exothermic temperature of the ETSA moves to a high temperature during curing
and the exothermic enthalpy and curing degree of the ETSA decrease with the increase of the volume of side group. The cured ETSA resins display excellent thermal stability. The temperature of 5% weight loss (
T
d5
) of the cured ETSA resins in nitrogen and air are higher than 450 ℃. The residual yield at 800 ℃ (
Y
r800
) in nitrogen and air of the cured ETSA resins are larger than 80% and 27%
respectively. The microporous size in the cross-linked networks of ETSA increases with the increase of the volume of side group. The nickel-based catalysts exhibit the good catalytic effect on the curing reaction of ETSA. The inital temperature of catalyst-curing ETSA resins can drop over 50 ℃
but the
Y
r800
of the catalyst-cured ETSA resins change not much. The ETSA resin is promising to be used as a highly heat-resistant resin matrix and a polymeric precursor.
Katzman H. A. ; Mallon J. J. ; Barry W. T. Polyarylacetylene-matrix composites for solid rocket motor components . J. Adv. Mater. , 1995 , 26 ( 3 ), 21 - 27 .
Kwock E. W. ; Baird , T. Jr Miller , Synthesis and characterization of soluble, high-molecular-weight poly-(aromatic diacetylenes) . Macromolecules , 1993 , 26 ( 11 ), 2935 - 2940 . doi: 10.1021/ma00063a044 http://dx.doi.org/10.1021/ma00063a044
Jiang J. X. ; Su F. B. ; Trewin A. ; Wood C. D. ; Campbell N. L. ; Niu H. J. ; Dickinson C. ; Ganin A. Y. ; Rosseinsky M. J. ; Khimyak Y. Z. ; Cooper A. I. Conjugated microporous poly(aryleneethynylene) networks . Angew. Chem. Int. Ed , 2007 , 46 ( 45 ), 8574 - 8578 . doi: 10.1002/anie.200701595 http://dx.doi.org/10.1002/anie.200701595
Cooper A. I. Conjugated microporous polymers . Adv. Mater. , 2009 , 21 ( 12 ), 1291 - 1295 . doi: 10.1002/adma.200801971 http://dx.doi.org/10.1002/adma.200801971
Liu M. X. ; Gan L. H. ; Zhao F. Q. ; Fan X. Z. ; Xu H. X. ; Wu F. R. ; Xu Z. J. ; Hao Z. X. ; Chen L. W. Carbon foams with high compressive strength derived from polyarylacetylene resin . Carbon , 2007 , 45 ( 15 ), 3055 - 3057 . doi: 10.1016/j.carbon.2007.10.003 http://dx.doi.org/10.1016/j.carbon.2007.10.003
Itoh M. ; Inoue K. ; Iwata K. ; Mitsuzuka M. ; Kakigano T. New highly heat-resistant polymers containing silicon: poly-(silyleneethynylenephenyleneethynylene)s . Macromolecules , 1997 , 30 ( 4 ), 694 - 701 . doi: 10.1021/ma961081f http://dx.doi.org/10.1021/ma961081f
Itoh M. ; Iwata K. ; Ishikawa J. I. ; Sukawa H. ; Kimura H. ; Okita K. Various silicon-containing polymers with Si(H)-C≡C units . J. Polym. Sci. A Polym. Chem. , 2001 , 39 ( 15 ), 2658 - 2669 . doi: 10.1002/pola.1242 http://dx.doi.org/10.1002/pola.1242
Liu X. T. ; Lv S. K. ; Heng K. J. ; Qiao Z. Y. ; Tang J. K. ; Yuan Q. L. ; Huang F. R. Thermal and thermoxidative decomposition of a heat-resistant poly(dimethylsilylene ethynylenephenyleneethynylene) resin . J. Therm. Anal. Calorim. , 2023 , 148 ( 17 ), 8889 - 8901 . doi: 10.1007/s10973-023-12305-y http://dx.doi.org/10.1007/s10973-023-12305-y
Antolovich S. D. ; Busso E. P. ; Skelton P. ; Telesman J. High temperature materials for aerospace applications . Mater. High Temp. , 2016 , 33 ( 4-5 ), 289 - 290 . doi: 10.1080/09603409.2016.1206294 http://dx.doi.org/10.1080/09603409.2016.1206294
Ijadi-Maghsoodi S. ; Pang Y. ; Barton T. J. Efficient, "one-pot" synthesis of silylene-acetylene and disilylene-acetylene preceramic polymers from trichloroethylene . J. Polym. Sci. A Polym. Chem. , 1990 , 28 ( 5 ), 955 - 965 . doi: 10.1002/pola.1990.080280501 http://dx.doi.org/10.1002/pola.1990.080280501
Budy S. M. ; Son D. Y. Synthesis and properties of polymers with an organosilicon—acetylene backbone . J. Inorg. Organomet. Polym. Mater. , 2018 , 28 ( 5 ), 1673 - 1687 . doi: 10.1007/s10904-018-0854-3 http://dx.doi.org/10.1007/s10904-018-0854-3
Pang Y. ; Ijadi-Maghsoodi S. ; Barton T. J. Catalytic synthesis of silylene-vinylene preceramic polymers from ethynylsilanes . Macromolecules , 1993 , 26 ( 21 ), 5671 - 5675 . doi: 10.1021/ma00073a021 http://dx.doi.org/10.1021/ma00073a021
Kong L. ; Zuo X. B. ; Zhu S. P. ; Li Z. P. ; Shi J. J. ; Li L. ; Feng Z. H. ; Zhang D. H. ; Deng D. Y. ; Yu J. J. Novel carbon-poly(silacetylene) composites as advanced thermal protection material in aerospace applications . Compos. Sci. Technol. , 2018 , 162 , 163 - 169 . doi: 10.1016/j.compscitech.2018.04.038 http://dx.doi.org/10.1016/j.compscitech.2018.04.038
Chen M. F. ; Xiong P. L. ; Zhou Q. ; Ni L. Z. ; Wang G. C. Synthesis, curing behavior and thermal properties of silicon-containing hybrid polymers with Si-C≡C units: silicon-containing hybrid polymers . Polym. Int. , 2014 , 63 ( 8 ), 1531 - 1536 . doi: 10.1002/pi.4661 http://dx.doi.org/10.1002/pi.4661
Li G. Z. ; Luo Z. H. ; Han W. J. ; Luo Y. M. ; Xu C. H. ; Zhao T. Preparation and properties of novel hybrid resins based on acetylene-functional benzoxazine and polyvinylsilazane . J. Appl. Polym. Sci. , 2013 , 130 ( 5 ), 3794 - 3799 . doi: 10.1002/app.39642 http://dx.doi.org/10.1002/app.39642
Dong S. L. ; Hu X. Y. ; Yuan Q. L. ; Huang F. R. An easy-to-process poly(silylene-acetylene) terminated by reactive ethynylphenyl: synthesis, properties and composites . React. Funct. Polym. , 2022 , 170 , 105099 . doi: 10.1016/j.reactfunctpolym.2021.105099 http://dx.doi.org/10.1016/j.reactfunctpolym.2021.105099
Németh C. ; Szabó D. ; Gyarmati B. ; Gerasimov A. ; Varfolomeev M. ; Abdullin T. ; László K. ; Szilágyi A. Effect of side groups on the properties of cationic polyaspartamides . Eur. Polym. J. , 2017 , 93 , 805 - 814 . doi: 10.1016/j.eurpolymj.2017.02.024 http://dx.doi.org/10.1016/j.eurpolymj.2017.02.024
Liu X. T. ; Ma M. P. ; Li C. ; Tang J. K. ; Yuan Q. L. ; Huang F. R. Effect of side groups on the properties of silicon-containing arylacetylene resins . Polym. Eng. Sci. , 2022 , 62 ( 3 ), 793 - 801 . doi: 10.1002/pen.25885 http://dx.doi.org/10.1002/pen.25885
Ma M. P. ; Liu X. T. ; Li C. ; Qiao Z. Y. ; Yuan Q. L. ; Huang F. R. Effects of pendant side groups on the properties of the silicon-containing arylacetylene resins with 2 , 5 -diphenyl-[1, 3 , 4 ] moieties-oxadiazole. RSC Adv., 2021, 11 ( 32 ), 19656 - 19665 . doi: 10.1039/d1ra02184b http://dx.doi.org/10.1039/d1ra02184b
Yi L. ; Huang W. ; Yan D. Y. Polyimides with side groups: synthesis and effects of side groups on their properties . J. Polym. Sci. A Polym. Chem. , 2017 , 55 ( 4 ), 533 - 559 . doi: 10.1002/pola.28409 http://dx.doi.org/10.1002/pola.28409
Liang A. S. ; Zhou X. Y. ; Zhou W. Q. ; Wan T. ; Wang L. H. ; Pan C. J. ; Wang L. Side-chain effects on the thermoelectric properties of fluorene-based copolymers . Macromol. Rapid Commun. , 2017 , 38 ( 18 ), 1600817 . doi: 10.1002/marc.201600817 http://dx.doi.org/10.1002/marc.201600817
Hayashi M. ; Yano R. ; Takasu A. Synthesis of amorphous low T g polyesters with multiple COOH side groups and their utilization for elastomeric vitrimers based on post-polymerization cross-linking . Polym. Chem. , 2019 , 10 ( 16 ), 2047 - 2056 . doi: 10.1039/c9py00293f http://dx.doi.org/10.1039/c9py00293f
Guo K. K. ; Li P. ; Zhu Y. P. ; Wang F. ; Qi H. M. Thermal curing and degradation behaviour of silicon-containing arylacetylene resins . Polym. Degrad. Stabil. , 2016 , 131 , 98 - 105 . doi: 10.1016/j.polymdegradstab.2016.07.006 http://dx.doi.org/10.1016/j.polymdegradstab.2016.07.006
Guo L. H. ; Liu W. J. ; Chen C. L. Late transition metal catalyzed α -olefin polymerization and copolymerization with polar monomers . Mater. Chem. Front. , 2017 , 1 ( 12 ), 2487 - 2494 . doi: 10.1039/c7qm00321h http://dx.doi.org/10.1039/c7qm00321h
Khoshsefat M. ; Ma Y. P. ; Sun W. H. Multinuclear late transition metal catalysts for olefin polymerization . Coord. Chem. Rev. , 2021 , 434 , 213788 . doi: 10.1016/j.ccr.2021.213788 http://dx.doi.org/10.1016/j.ccr.2021.213788
Meriwether L. S. ; Colthup E. C. ; Kennerly G. W. ; Reusch R. N. The polymerization of acetylenes by nickel-carbonyl-phosphine complexes . I. Scope of the Reaction. J. Org. Chem. , 1961 , 26 ( 12 ), 5155 - 5163 . doi: 10.1021/jo01070a091 http://dx.doi.org/10.1021/jo01070a091
Shen Y. ; Yuan Q. ; Huang F. ; Du L. Effect of neutral nickel catalyst on cure process of silicon-containing polyarylacetylene . Thermochim. Acta , 2014 , 590 , 66 - 72 . doi: 10.1016/j.tca.2014.06.002 http://dx.doi.org/10.1016/j.tca.2014.06.002
Zhang J. ; Huang J. X. ; Wang C. F. ; Huang F. R. ; Du L. A new silicon-containing arylacetylene resin with amine groups as precursor to Si-C-N ceramic . J. Macromol. Sci. Part B , 2009 , 48 ( 5 ), 1001 - 1010 . doi: 10.1080/00222340903011916 http://dx.doi.org/10.1080/00222340903011916
Mukbaniani O. ; Tatrishvili T. ; Titvinidze G. ; Mukbaniani N. ; Lezhava L. ; Gogesashvili N. Hydrosilylation reaction of methylhydridesiloxane to phenylacetylene . J. Appl. Polym. Sci. , 2006 , 100 ( 3 ), 2511 - 2515 . doi: 10.1002/app.23664 http://dx.doi.org/10.1002/app.23664
Qian B. J. ; Cao B. W. ; Chu M. Y. ; Li Y. B. ; Ma H. Y. ; Guo R. Y. ; Wan L. Q. Curing reactions of liquid hydridopolycarbosilanes with vinyl or allyl groups . J. Appl. Polym. Sci. , 2023 , 140 ( 42 ), e 54565 . doi: 10.1002/app.54565 http://dx.doi.org/10.1002/app.54565
Yeung L. Y. ; Pennino M. J. ; Miller A. M. ; Elrod M. J. Kinetics and mechanistic studies of the atmospheric oxidation of alkynes . J. Phys. Chem. A , 2005 , 109 ( 9 ), 1879 - 1889 . doi: 10.1021/jp0454671 http://dx.doi.org/10.1021/jp0454671
Tanaka K. ; Nakajima K. ; Okada M. ; Yamabe T. ; Ishikawa M. Electronic structures of simplified polymeric organosilicon systems containing π -conjugated moieties . Organometallics , 1991 , 10 ( 8 ), 2679 - 2684 . doi: 10.1021/om00054a032 http://dx.doi.org/10.1021/om00054a032
Gao X. X. ; Liu H. C. ; Wei H. T. ; Zheng J. ; Huang G. S. Effect of incompletely condensed tri-silanol-phenyl-POSS on the thermal stability of silicone rubber . Polym. Bull. , 2019 , 76 ( 6 ), 2835 - 2850 . doi: 10.1007/s00289-018-2499-3 http://dx.doi.org/10.1007/s00289-018-2499-3
Pu C. Z. ; Lin D. L. ; Xu H. J. ; Liu F. Z. ; Gao H. ; Tian G. F. ; Qi S. L. ; Wu D. Z. Clarifying the effect of chemical structure on high-temperature resistance of polyimides based on DFT and ReaxFF based molecular dynamic simulation . Polymer , 2022 , 255 , 125119 . doi: 10.1016/j.polymer.2022.125119 http://dx.doi.org/10.1016/j.polymer.2022.125119
Jin C. E. ; Wang F. ; Zhu Y. P. ; Deng S. F. ; Qi H. M. ; Du L. Thermal oxidation behavior and mechanisms for silicon-containing arylacetylene resins: experimental and reactive force field molecular dynamics simulations . ACS Appl. Polym. Mater. , 2024 , 6 ( 3 ), 1962 - 1972 . doi: 10.1021/acsapm.3c02845 http://dx.doi.org/10.1021/acsapm.3c02845
Lee J. , S M. ; Cooper A. I. Advances in conjugated microporous polymers . Chem. Rev. , 2020 , 120 ( 4 ), 2171 - 2214 . doi: 10.1021/acs.chemrev.9b00399 http://dx.doi.org/10.1021/acs.chemrev.9b00399
Tian B. ; Heringa J. R. ; Bouwman W. G. Scattering from oriented objects analysed by the anisotropic Guinier-Porod model . Food Struct. , 2021 , 30 , 100221 . doi: 10.1016/j.foostr.2021.100221 http://dx.doi.org/10.1016/j.foostr.2021.100221
0
浏览量
297
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构