浏览全部资源
扫码关注微信
高分子合成与功能构造教育部重点实验室 浙江大学高分子科学与工程学系 杭州 310027
E-mail: s_yh0411@zju.edu.cn
收稿日期:2024-04-21,
录用日期:2024-05-30,
网络出版日期:2024-09-11,
纸质出版日期:2024-11-20
移动端阅览
李承宇, 宋义虎. 离子液体对天然橡胶/丁腈橡胶/白炭黑纳米复合材料应变软化行为的影响. 高分子学报, 2024, 55(11), 1549-1560
Li, C, Y.; Song, Y. H. Effects of ionic liquid on strain softening behaviors of silica filled natural rubber/nitrile butadiene rubber nanocomposites. Acta Polymerica Sinica, 2024, 55(11), 1549-1560
李承宇, 宋义虎. 离子液体对天然橡胶/丁腈橡胶/白炭黑纳米复合材料应变软化行为的影响. 高分子学报, 2024, 55(11), 1549-1560 DOI: 10.11777/j.issn1000-3304.2024.24121. CSTR: 32057.14.GFZXB.2024.7265.
Li, C, Y.; Song, Y. H. Effects of ionic liquid on strain softening behaviors of silica filled natural rubber/nitrile butadiene rubber nanocomposites. Acta Polymerica Sinica, 2024, 55(11), 1549-1560 DOI: 10.11777/j.issn1000-3304.2024.24121. CSTR: 32057.14.GFZXB.2024.7265.
基于橡胶共混物基体的纳米复合材料在大幅振荡剪切和循环拉伸的作用下呈现应变软化行为,但因界面相互作用、相区尺寸和粒子分布等问题而少有研究涉及其调控机理和方法. 本研究采用离子液体(IL)1-丁基-3-甲基咪唑醋酸盐调控白炭黑填充天然橡胶(NR)/丁腈橡胶(NBR)并用胶纳米复合材料的相区结构、粒子分散性、硫化动力学和应变软化行为. 结果表明,IL可促进橡胶硫化,降低NBR相区尺寸和橡胶相溶胀比,提高二硫键含量. 在大幅动态剪切中,IL可减弱高填充纳米复合材料的Payne效应及其伴随的弱应变过冲行为;在大应变循环拉伸过程中,IL可在不影响滞后能密度的前提下降低软化能密度,减弱Mullins效应. 研究结果为调控白炭黑在并用胶基体中的分散性及纳米复合材料的力学性能和应变软化行为提供了实验依据.
Rubber nanocomposites show marked strain softening under large-amplitude oscillating shear and large strain cyclic tensile deformations. Due to the interface effect
phase area size and particle distribution
the strain softening behaviors of nanocomposites based on filler filled rubber blends matrices are more complicated and there are rare methods to regulate the rubber crosslinking
phase morphology and rheological behaviors. Herein the effects of ionic liquid (IL) 1-butyl-3-methyl imidazole acetate on the phase structure
filler dispersity
vulcanization kinetics and rheological behaviors of silica filled natural rubber (NR)/butadiene nitrile rubber (NBR) nanocomposites were studied. The effects of IL of 0.1 and 1 parts per hundred parts of rubber on the nanocomposites with different silica contents were investigated to regulate their microstructure and rheological behavior. The results show that IL can promote the vulcanization of rubber
reduce the swelling ratio of vulcanizates slightly
and reduce the sizes of the rubber phases. IL can weaken the Payne effect of highly filled nanocomposites and reduce the softening energy density without affecting the hysteretic energy density accompanying the Mullins effect. The results are enlightening for adjusting the rheological behavior and mechanical properties of nanocomposites by adjusting the interaction between nanoparticles and various rubber phases.
Payne A. R. The dynamic properties of carbon black-loaded natural rubber vulcanizates . Part I. J. Appl. Polym. Sci. , 1962 , 6 ( 19 ), 57 - 63 . doi: 10.1002/app.1962.070061906 http://dx.doi.org/10.1002/app.1962.070061906
Mullins L. Effect of stretching on the properties of rubber . Rubber Chem. Technol. , 1948 , 21 ( 2 ), 281 - 300 . doi: 10.5254/1.3546914 http://dx.doi.org/10.5254/1.3546914
Houwink R. ; Janssen H. J. J. Filler reinforcement and tear resistance in the light of thixotropy . Rubber Chem. Technol. , 1956 , 29 ( 2 ), 409 - 418 . doi: 10.5254/1.3542537 http://dx.doi.org/10.5254/1.3542537
Merabia S. ; Sotta P. ; Long D. R. A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins effects) . Macromolecules , 2008 , 41 ( 21 ), 8252 - 8266 . doi: 10.1021/ma8014728 http://dx.doi.org/10.1021/ma8014728
Song Y. H. ; Zheng Q. A guide for hydrodynamic reinforcement effect in nanoparticle-filled polymers . Crit. Rev. Solid State Mater. Sci. , 2016 , 41 ( 4 ), 318 - 346 . doi: 10.1080/10408436.2015.1135415 http://dx.doi.org/10.1080/10408436.2015.1135415
Xu H. L. ; Fan X. P. ; Song Y. H. ; Zheng Q. Reinforcement and Payne effect of hydrophobic silica filled natural rubber nanocomposites . Compos. Sci. Technol. , 2020 , 187 , 107943 . doi: 10.1016/j.compscitech.2019.107943 http://dx.doi.org/10.1016/j.compscitech.2019.107943
Hosseini S. M. ; Razzaghi-Kashani M. On the role of nano-silica in the kinetics of peroxide vulcanization of ethylene propylene diene rubber . Polymer , 2017 , 133 , 8 - 19 . doi: 10.1016/j.polymer.2017.10.061 http://dx.doi.org/10.1016/j.polymer.2017.10.061
Hosseini S. M. ; Razzaghi-Kashani M. Vulcanization kinetics of nano-silica filled styrene butadiene rubber . Polymer , 2014 , 55 ( 24 ), 6426 - 6434 . doi: 10.1016/j.polymer.2014.09.073 http://dx.doi.org/10.1016/j.polymer.2014.09.073
Valentín J. L. ; Fernández-Torres A. ; Posadas P. ; Marcos-Fernández A. ; Rodríguez A. ; González L. Measurements of freezing-point depression to evaluate rubber network structure . Crosslinking of natural rubber with dicumyl peroxide. J. Polym. Sci. Part B Polym. Phys. , 2007 , 45 ( 5 ), 544 - 556 . doi: 10.1002/polb.21060 http://dx.doi.org/10.1002/polb.21060
Shen J. X. ; Lin X. S. ; Liu J. ; Li X. Effects of cross-link density and distribution on static and dynamic properties of chemically cross-linked polymers . Macromolecules , 2019 , 52 ( 1 ), 121 - 134 . doi: 10.1021/acs.macromol.8b01389 http://dx.doi.org/10.1021/acs.macromol.8b01389
Flory P. J. ; Rehner , J.Jr . Statistical mechanics of cross-linked polymer networks . II. Swelling. J. Chem. Phys. , 1943 , 11 ( 11 ), 521 - 526 . doi: 10.1063/1.1723792 http://dx.doi.org/10.1063/1.1723792
Han Q. Y. ; Li X. ; Li Y. C. ; Wu Y. P. Influences of the compatibility of NR/SSBR and phase-selective distribution of silica on its static and dynamic properties . Rubber Chem. Technol. , 2020 , 93 , 588 - 604 . doi: 10.5254/rct.19.80439] http://dx.doi.org/10.5254/rct.19.80439]
Le H. H. ; Hamann E. ; Ilisch S. ; Heinrich G. ; Radusch H. J. Selective wetting and dispersion of filler in rubber composites under influence of processing and curing additives . Polymer , 2014 , 55 ( 6 ), 1560 - 1569 . doi: 10.1016/j.polymer.2014.02.002 http://dx.doi.org/10.1016/j.polymer.2014.02.002
Karekar A. ; Oßwald K. ; Reincke K. ; Langer B. ; Saalwächter K. NMR studies on the phase-resolved evolution of cross-link densities in thermo-oxidatively aged elastomer blends . Macromolecules , 2020 , 53 ( 24 ), 11166 - 11177 . doi: 10.1021/acs.macromol.0c01614 http://dx.doi.org/10.1021/acs.macromol.0c01614
Sidkey M. A. ; Yehia A. A. ; Abd El Malak N. A. ; Gaafar M. S. Compatibility studies on some rubber blend systems by ultrasonic techniques . Mater. Chem. Phys. , 2002 , 74 ( 1 ), 23 - 32 . doi: 10.1016/s0254-0584(01)00401-1 http://dx.doi.org/10.1016/s0254-0584(01)00401-1
Zhao X. Y. ; Niu K. J. ; Xu Y. ; Peng Z. ; Jia L. ; Hui D. ; Zhang L. Q. Morphology and performance of NR/NBR/ENR ternary rubber composites . Compos. Part B Eng. , 2016 , 107 , 106 - 112 . doi: 10.1016/j.compositesb.2016.09.073 http://dx.doi.org/10.1016/j.compositesb.2016.09.073
Phiriyawirut M. ; Luamlam S. Influence of poly(vinyl chloride) on natural rubber/chlorosulfonated polyethylene blends . Open J. Org. Polym. Mater. , 2013 , 3 ( 4 ), 81 - 86 .
Zhao H. ; Xiang Y. ; Wu L. ; Gao J. Effect of compatibilizer on properties of chloroprene rubber/natural rubber blends . Polym. Bull. , 2022 , 1 , 65 - 71 .
Kaliyathan A. V. ; Rane A. V. ; Huskic M. ; Kunaver M. ; Kalarikkal N. ; Rouxel D. ; Thomas S. Influence of carbon black on cure properties and mechanical strength of natural rubber/butadiene rubber blends . J. Macromol. Sci. Part A , 2021 , 58 ( 2 ), 69 - 80 . doi: 10.1080/10601325.2020.1826329 http://dx.doi.org/10.1080/10601325.2020.1826329
Rabiei S. ; Shojaei A. Vulcanization kinetics and reversion behavior of natural rubber/styrene-butadiene rubber blend filled with nanodiamond-the role of sulfur curing system . Eur. Polym. J. , 2016 , 81 , 98 - 113 . doi: 10.1016/j.eurpolymj.2016.05.021 http://dx.doi.org/10.1016/j.eurpolymj.2016.05.021
Aswathy T. R. ; Dash B. ; Dey P. ; Nair S. ; Naskar K. Synergistic effect of graphene with graphene oxide, nanoclay, and nanosilica in enhancing the mechanical and barrier properties of bromobutyl rubber/epoxidized natural rubber composites . J. Appl. Polym. Sci. , 2021 , 138 , 50746 . doi: 10.1002/app.50746 http://dx.doi.org/10.1002/app.50746
Azizli M. J. ; Barghamadi M. ; Rezaeeparto K. ; Mokhtary M. ; Parham S. Compatibility, mechanical and rheological properties of hybrid rubber NR/EPDM- g -MA/EPDM/graphene oxide nanocomposites: theoretical and experimental analyses . Compos. Commun. , 2020 , 22 , 100442 . doi: 10.1016/j.coco.2020.100442 http://dx.doi.org/10.1016/j.coco.2020.100442
Dreyer S. ; Salim P. ; Kragl U. Driving forces of protein partitioning in an ionic liquid-based aqueous two-phase system . Biochem. Eng. J. , 2009 , 46 ( 2 ), 176 - 185 . doi: 10.1016/j.bej.2009.05.005 http://dx.doi.org/10.1016/j.bej.2009.05.005
Liu X. M. ; Ma H. Y. ; Wu Y. ; Wang C. ; Yang M. ; Yan P. F. ; Welz-Biermann U. Esterification of glycerol with acetic acid using double SO 3 H-functionalized ionic liquids as recoverable catalysts . Green Chem. , 2011 , 13 ( 3 ), 697 - 701 . doi: 10.1039/c0gc00732c http://dx.doi.org/10.1039/c0gc00732c
Wang Y. T. ; Wang L. ; Yan M. M. ; Dong S. L. ; Hao J. C. Near-infrared-light-responsive magnetic DNA microgels for photon- and magneto-manipulated cancer therapy . ACS Appl. Mater. Interfaces , 2017 , 9 ( 34 ), 28185 - 28194 . doi: 10.1021/acsami.7b05502 http://dx.doi.org/10.1021/acsami.7b05502
Chu W. J. ; Yang J. Y. ; Jiang Q. H. ; Li X. ; Xin J. W. Enhancement of photovoltaic performance of flexible perovskite solar cells by means of ionic liquid interface modification in a low temperature all solution process . Appl. Surf. Sci. , 2018 , 440 , 1116 - 1122 . doi: 10.1016/j.apsusc.2018.01.310 http://dx.doi.org/10.1016/j.apsusc.2018.01.310
Pernak J. ; Walkiewicz F. ; Maciejewska M. ; Zaborski M. Ionic liquids as vulcanization accelerators . Ind. Eng. Chem. Res. , 2010 , 49 ( 10 ), 5012 - 5017 . doi: 10.1021/ie100151n http://dx.doi.org/10.1021/ie100151n
Le H. H. ; Das A. ; Basak S. ; Tahir M. ; Wießner S. ; Fischer D. ; Reuter U. ; Stöckelhuber K. W. ; Bhowmick A. K. ; Do Q. K. ; Heinrich G. ; Radusch H. J. Effect of different ionic liquids on the dispersion and phase selective wetting of carbon nanotubes in rubber blends . Polymer , 2016 , 105 , 284 - 297 . doi: 10.1016/j.polymer.2016.10.045 http://dx.doi.org/10.1016/j.polymer.2016.10.045
Gan S. C. ; Wu Z. L. ; Xu H. L. ; Song Y. H. ; Zheng Q. Viscoelastic behaviors of carbon black gel extracted from highly filled natural rubber compounds: insights into the payne effect . Macromolecules , 2016 , 49 ( 4 ), 1454 - 1463 . doi: 10.1021/acs.macromol.5b02701 http://dx.doi.org/10.1021/acs.macromol.5b02701
Maciejewska M. ; Walkiewicz F. ; Zaborski M. Novel ionic liquids as accelerators for the sulfur vulcanization of butadiene-styrene elastomer composites . Ind. Eng. Chem. Res. , 2013 , 52 ( 25 ), 8410 - 8415 . doi: 10.1021/ie303167z http://dx.doi.org/10.1021/ie303167z
Maciejewska M. ; Zaborski M. Ionic liquids as coagents for sulfur vulcanization of butadiene-styrene elastomer filled with carbon black . Polym. Bull. , 2018 , 75 ( 10 ), 4499 - 4514 . doi: 10.1007/s00289-018-2281-6 http://dx.doi.org/10.1007/s00289-018-2281-6
Przybyszewska M. ; Zaborski M. Effect of ionic liquids and surfactants on zinc oxide nanoparticle activity in crosslinking of acrylonitrile butadiene elastomer . J. Appl. Polym. Sci. , 2010 , 116 ( 1 ), 155 - 164 . doi: 10.1002/app.31519 http://dx.doi.org/10.1002/app.31519
Rolere S. ; Liengprayoon S. ; Vaysse L. ; Sainte-Beuve J. ; Bonfils F. Investigating natural rubber composition with Fourier Transform Infrared (FT-IR) spectroscopy: a rapid and non-destructive method to determine both protein and lipid contents simultaneously . Polym. Test. , 2015 , 43 , 83 - 93 . doi: 10.1016/j.polymertesting.2015.02.011 http://dx.doi.org/10.1016/j.polymertesting.2015.02.011
Kulshrestha U. ; Gupta T. ; Kumawat P. ; Jaiswal H. ; Ghosh S. B. ; Sharma N. N. Cellulose nanofibre enabled natural rubber composites: microstructure, curing behaviour and dynamic mechanical properties . Polym. Test. , 2020 , 90 , 106676 . doi: 10.1016/j.polymertesting.2020.106676 http://dx.doi.org/10.1016/j.polymertesting.2020.106676
Yasin S. ; Hussain M. ; Zheng Q. ; Song Y. H. Effects of ionic liquid on cellulosic nanofiller filled natural rubber bionanocomposites . J. Colloid Interface Sci. , 2021 , 591 , 409 - 417 . doi: 10.1016/j.jcis.2021.02.029 http://dx.doi.org/10.1016/j.jcis.2021.02.029
Yin Q. ; Wang D. N. ; Jia H. B. ; Ji Q. M. ; Wang L. P. ; Li G. ; Yin B. Water-induced modulus changes of bio-based uncured nanocomposite film based on natural rubber and bacterial cellulose nanocrystals . Ind. Crops Prod. , 2018 , 113 , 240 - 248 . doi: 10.1016/j.indcrop.2018.01.040 http://dx.doi.org/10.1016/j.indcrop.2018.01.040
Toki S. ; Hsiao B. S. ; Amnuaypornsri S. ; Sakdapipanich J. New insights into the relationship between network structure and strain-induced crystallization in un-vulcanized and vulcanized natural rubber by synchrotron X-ray diffraction . Polymer , 2009 , 50 ( 9 ), 2142 - 2148 . doi: 10.1016/j.polymer.2009.03.001 http://dx.doi.org/10.1016/j.polymer.2009.03.001
Rippel M. M. ; Paula Leite C. A. ; Galembeck F. Elemental mapping in natural rubber latex films by electron energy loss spectroscopy associated with transmission electron microscopy . Anal. Chem. , 2002 , 74 ( 11 ), 2541 - 2546 . doi: 10.1021/ac0111661 http://dx.doi.org/10.1021/ac0111661
Chen X. Z. ; An J. ; Cai G. M. ; Zhang J. ; Chen W. ; Dong X. W. ; Zhu L. C. ; Tang B. ; Wang J. F. ; Wang X. G. Environmentally friendly flexible strain sensor from waste cotton fabrics and natural rubber latex . Polymers , 2019 , 11 ( 3 ), 404 . doi: 10.3390/polym11030404 http://dx.doi.org/10.3390/polym11030404
Hernández M. ; del Mar Bernal M. ; Verdejo R. ; Ezquerra T. A. ; López-Manchado M. A. Overall performance of natural rubber/graphene nanocomposites . Compos. Sci. Technol. , 2012 , 73 , 40 - 46 . doi: 10.1016/j.compscitech.2012.08.012 http://dx.doi.org/10.1016/j.compscitech.2012.08.012
Xu S. H. ; Gu J. ; Luo Y. F. ; Jia D. M. ; Yan L. Influence of nanocrystalline cellulose on structure and properties of natural rubber/silica composites . Polym. Compos. , 2015 , 36 ( 5 ), 861 - 868 . doi: 10.1002/pc.23005 http://dx.doi.org/10.1002/pc.23005
Zhou J. W. ; Wang W. J. ; Song Y. H. ; Zheng Q. Effect of ionic liquid on structure and properties of carbon black filled natural rubber vulcanizates . Compos. Part A Appl. Sci. Manuf. , 2023 , 167 , 107432 . doi: 10.1016/j.compositesa.2023.107432 http://dx.doi.org/10.1016/j.compositesa.2023.107432
Federico C. E. ; Fleming Y. ; Kotecký O. ; Rommel R. ; Philippe A. M. ; Westermann S. ; Addiego F. Assessment of strain-induced cavitation of silica-filled styrene-butadiene rubber nanocomposite by synchrotron radiation tomography . Compos. Part B Eng. , 2022 , 247 , 110337 . doi: 10.1016/j.compositesb.2022.110337 http://dx.doi.org/10.1016/j.compositesb.2022.110337
Li X. Y. ; Yang Q. P. ; Li H. ; Zhang L. Q. ; Hong S. ; Ning N. Y. ; Tian M. Quantifying the 3 D multiscale dispersion structure of nanofillers in polymer nanocomposites by combining 3 D-STEM and synchrotron radiation X-ray CT . Compos. Part B Eng., 2021, 212 , 108687 . doi: 10.1016/j.compositesb.2021.108687 http://dx.doi.org/10.1016/j.compositesb.2021.108687
Yang T. T. ; Shui Y. ; Wei C. S. ; Huang L. Z. ; Yang C. W. ; Sun G. A. ; Han J. J. ; Xu J. Z. ; Li Z. M. ; Liu D. Effect of cyclic straining with various rates on stress softening/hysteresis and structural evolution of filled rubber: a time-resolved SANS study . Compos. Part B Eng. , 2022 , 242 , 110100 . doi: 10.1016/j.compositesb.2022.110100 http://dx.doi.org/10.1016/j.compositesb.2022.110100
Song Y. H. ; Zheng Q. Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics . Prog. Mater. Sci. , 2016 , 84 , 1 - 58 . doi: 10.1016/j.pmatsci.2016.09.002 http://dx.doi.org/10.1016/j.pmatsci.2016.09.002
Fan X. P. ; Xu H. L. ; Wu C. J. ; Song Y. H. ; Zheng Q. Influences of chemical crosslinking, physical associating, and filler filling on nonlinear rheological responses of polyisoprene . J. Rheol. , 2020 , 64 ( 4 ), 775 - 784 . doi: 10.1122/1.5124034 http://dx.doi.org/10.1122/1.5124034
Fan X. P. ; Song Y. H. ; Zheng Q. ; Wang W. J. Strain softening of styrene-isoprene-styrene copolymers under large amplitude oscillatory shear for clarifying Payne effect in rubbers and their nanocomposites . Chinese J. Polym. Sci. , 2023 , 41 ( 1 ), 153 - 165 . doi: 10.1007/s10118-022-2832-z http://dx.doi.org/10.1007/s10118-022-2832-z
Hou F. Y. ; Song Y. H. ; Zheng Q. Payne effect of thermo-oxidatively aged isoprene rubber vulcanizates . Polymer , 2020 , 195 , 122432 . doi: 10.1016/j.polymer.2020.122432 http://dx.doi.org/10.1016/j.polymer.2020.122432
Diani J. ; Fayolle B. ; Gilormini P. A review on the Mullins effect . Eur. Polym. J. , 2009 , 45 ( 3 ), 601 - 612 . doi: 10.1016/j.eurpolymj.2008.11.017 http://dx.doi.org/10.1016/j.eurpolymj.2008.11.017
Xu H. L. ; Xia X. X. ; Hussain M. ; Song Y. H. ; Zheng Q. Linear and nonlinear rheological behaviors of silica filled nitrile butadiene rubber . Polymer , 2018 , 156 , 222 - 227 . doi: 10.1016/j.polymer.2018.10.014 http://dx.doi.org/10.1016/j.polymer.2018.10.014
Harwood J. A. C. ; Mullins L. ; Payne A. R. Stress softening in natural rubber vulcanizates . Part II. Stress softening effects in pure gum and filler loaded rubbers. J. Appl. Polym. Sci. , 1965 , 9 ( 9 ), 3011 - 3021 . doi: 10.1002/app.1965.070090907 http://dx.doi.org/10.1002/app.1965.070090907
Harwood J. A. C. ; Payne A. R. Stress softening in natural rubber vulcanizates . Part III. Carbon black-filled vulcanizates. J. Appl. Polym. Sci. , 1966 , 10 ( 2 ), 315 - 324 . doi: 10.1002/app.1966.070100212 http://dx.doi.org/10.1002/app.1966.070100212
Lorenz H. ; Freund M. ; Juhre D. ; Ihlemann J. ; Klüppel M. Constitutive generalization of a microstructure-based model for filled elastomers . Macromol. Theory Simul. , 2011 , 20 ( 2 ), 110 - 123 . doi: 10.1002/mats.201000054 http://dx.doi.org/10.1002/mats.201000054
Harwood J. A. C. ; Payne A. R. Stress softening in natural rubber vulcanizates . IV. Unfilled vulcanizates. Rubber Chem. Technol. , 1967 , 40 ( 3 ), 840 - 848 . doi: 10.5254/1.3539099 http://dx.doi.org/10.5254/1.3539099
Coquelle E. ; Bossis G. Mullins effect in elastomers filled with particles aligned by a magnetic field . Int. J. Solids Struct. , 2006 , 43 ( 25-26 ), 7659 - 7672 . doi: 10.1016/j.ijsolstr.2006.03.020 http://dx.doi.org/10.1016/j.ijsolstr.2006.03.020
Govindjee S. ; Juan S. M. A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullins' effect . J. Mech. Phys. Solids , 1991 , 39 ( 1 ), 87 - 112 . doi: 10.1016/0022-5096(91)90032-j http://dx.doi.org/10.1016/0022-5096(91)90032-j
Chenal J. M. ; Gauthier C. ; Chazeau L. ; Guy L. ; Bomal Y. Parameters governing strain induced crystallization in filled natural rubber . Polymer , 2007 , 48 ( 23 ), 6893 - 6901 . doi: 10.1016/j.polymer.2007.09.023 http://dx.doi.org/10.1016/j.polymer.2007.09.023
Li Z. Y. ; Xu H. L. ; Xia X. X. ; Song Y. H. ; Zheng Q. Energy dissipation accompanying Mullins effect of nitrile butadiene rubber/carbon black nanocomposites . Polymer , 2019 , 171 , 106 - 114 . doi: 10.1016/j.polymer.2019.03.043 http://dx.doi.org/10.1016/j.polymer.2019.03.043
Li Z. Y. ; Wen F. X. ; Hussain M. ; Song Y. H. ; Zheng Q. Scaling laws of Mullins effect in nitrile butadiene rubber nanocomposites . Polymer , 2020 , 193 , 122350 . doi: 10.1016/j.polymer.2020.122350 http://dx.doi.org/10.1016/j.polymer.2020.122350
Campise F. ; Roth L. E. ; Acosta R. H. ; Villar M. A. ; Vallés E. M. ; Monti G. A. ; Vega D. A. Contribution of linear guest and structural pendant chains to relaxational dynamics in model polymer networks probed by time-domain 1 H NMR . Macromolecules , 2016 , 49 ( 1 ), 387 - 394 . doi: 10.1021/acs.macromol.5b01806 http://dx.doi.org/10.1021/acs.macromol.5b01806
Batra A. ; Cohen C. ; Archer L. Stress relaxation of end-linked polydimethylsiloxane elastomers with long pendent chains . Macromolecules , 2005 , 38 ( 16 ), 7174 - 7180 . doi: 10.1021/ma050933l http://dx.doi.org/10.1021/ma050933l
Li Z. P. ; Lu X. ; Tao G. ; Guo J. H. ; Jiang H. W. Damping elastomer with broad temperature range based on irregular networks formed by end-linking of hydroxyl-terminated poly(dimethylsiloxane) . Polym. Eng. Sci. , 2016 , 56 ( 1 ), 97 - 102 . doi: 10.1002/pen.24196 http://dx.doi.org/10.1002/pen.24196
Davies D. M. Hysteresis in rubber . Nature , 1952 , 170 , 937 . doi: 10.1038/170937a0 http://dx.doi.org/10.1038/170937a0
0
浏览量
295
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构