浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 生态环境高分子材料重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
E-mail: wangsiqi@ciac.ac.cn
youhua.tao@ciac.ac.cn
纸质出版日期:2024-12-20,
网络出版日期:2024-09-11,
收稿日期:2024-04-28,
录用日期:2024-06-13
移动端阅览
毛亚辉, 王思棋, 李茂盛, 陶友华. 二乙基环状赖氨酸单体的合成及其与己内酰胺的共聚合研究. 高分子学报, 2024, 55(12), 1680-1685
Mao, Y. H.; Wang, S. Q.; Li, M. S.; Tao, Y. H. Synthesis of a diethyl-protected cyclic lysine monomer and its copolymerization with ε-caprolactam. Acta Polymerica Sinica, 2024, 55(12), 1680-1685
毛亚辉, 王思棋, 李茂盛, 陶友华. 二乙基环状赖氨酸单体的合成及其与己内酰胺的共聚合研究. 高分子学报, 2024, 55(12), 1680-1685 DOI: 10.11777/j.issn1000-3304.2024.24127. CSTR: 32057.14.GFZXB.2024.7269.
Mao, Y. H.; Wang, S. Q.; Li, M. S.; Tao, Y. H. Synthesis of a diethyl-protected cyclic lysine monomer and its copolymerization with ε-caprolactam. Acta Polymerica Sinica, 2024, 55(12), 1680-1685 DOI: 10.11777/j.issn1000-3304.2024.24127. CSTR: 32057.14.GFZXB.2024.7269.
以廉价丰富的赖氨酸为原料,通过两步简单高效的反应,合成了二乙基环状赖氨酸单体. 在此基础上,成功实现了该单体与己内酰胺(
ε
-CLa)的共聚,制备得到了一种新的己内酰胺共聚物(数均分子量27.4 kDa). 对所得聚合物进行了核磁共振氢谱(
1
H-NMR)、碳谱(
13
C-NMR)及扩散排序核磁共振(DOSY-NMR)表征,证实成功得到共聚物. 通过调节单体投料比,可以对聚合物中不同共聚组分的含量进行调控,进而对聚合物性能进行调控. 相较于尼龙6 (
ε
=21%)而言,共聚物的断裂伸长率有所提升(可达(105±8)%).
As potential alternatives to fossil raw materials
bio-based materials have stimulated the exploration of novel monomer architectures and synthesis strategies in polymer science. Herein
we report the synthesis of a novel diethyl-protected cyclic lysine monomer
M1
with a seven-membered ring from lysine
which was subsequently copolymerized with
ε
-caprolactam to produce innovative copolyamide. Comprehensive characterizations including nuclear magnetic resonance hydrogen spectra (
1
H-NMR)
carbon spectra (
13
C-NMR)
and diffusion ordered nuclear magnetic resonance spectroscopy (DOSY-NMR) confirmed that the resulting copolymers were homogeneous rather than a blend of multiple polymers. By adjusting the feed ratio of the monomers
it was possible to control the composition of the copolymers and manipulate properties of these copolymers effectively. Furthermore
this synthesis process demonstrated scalability as laboratory-scale production yielding quantities of up to 50 g. The number-average molecular weight of the copolyamide can reach up to 40 kDa
with a high tensile strength and a high elongation at break ((105±8)%)
indicating that the polymer exhibits exceptional characteristics akin to general polyamides. This work expands the application of lysine
a biological-based molecule
in polyamide general materials. It is expected to reduce the fossil energy dependence of bulk polyamide materials production and lower the full life cycle carbon footprint of related production processes.
赖氨酸聚酰胺开环聚合共聚
LysinePolyamideRing-opening polymerizationCopolymerization
安泽胜, 陈昶乐, 何军坡, 洪春雁, 李志波, 李子臣, 刘超, 吕小兵, 秦安军, 曲程科, 唐本忠, 陶友华, 宛新华, 王国伟, 王佳, 郑轲, 邹文凯. 中国高分子合成化学的研究与发展动态. 高分子学报, 2019, 50(10), 1083-1132. doi:10.11777/j.issn1000-3304.2019.19136http://dx.doi.org/10.11777/j.issn1000-3304.2019.19136
Andrady A. L.; Neal M. A.Applications and societal benefits of plastics. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2009, 364(1526), 1977-1984. doi:10.1098/rstb.2008.0304http://dx.doi.org/10.1098/rstb.2008.0304
Cywar R. M.; Rorrer N. A.; Hoyt C. B.; Beckham G. T.; Chen E. Y. X.Bio-based polymers with performance-advantaged properties. Nat. Rev. Mater., 2022, 7, 83-103. doi:10.1038/s41578-021-00363-3http://dx.doi.org/10.1038/s41578-021-00363-3
Levi P. G.; Cullen J. M.Mapping global flows of chemicals: from fossil fuel feedstocks to chemical products. Environ. Sci. Technol., 2018, 52(4), 1725-1734. doi:10.1021/acs.est.7b04573http://dx.doi.org/10.1021/acs.est.7b04573
Shafiee S.; Topal E.When will fossil fuel reserves be diminished?Energy Policy, 2009, 37(1), 181-189. doi:10.1016/j.enpol.2008.08.016http://dx.doi.org/10.1016/j.enpol.2008.08.016
Hopewell J.; Dvorak R.; Kosior E.Plastics recycling: challenges and opportunities. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2009, 364(1526), 2115-2126. doi:10.1098/rstb.2008.0311http://dx.doi.org/10.1098/rstb.2008.0311
Weiss M.; Haufe J.; Carus M.; Brandão M.; Bringezu S.; Hermann B.; Patel M. K.A review of the environmental impacts of biobased materials. J. Ind. Ecol., 2012, 16(s1), S169-S181. doi:10.1111/j.1530-9290.2012.00468.xhttp://dx.doi.org/10.1111/j.1530-9290.2012.00468.x
Zhu Y. Q.; Romain C.; Williams C. K.Sustainable polymers from renewable resources. Nature, 2016, 540(7633), 354-362. doi:10.1038/nature21001http://dx.doi.org/10.1038/nature21001
Gallezot P.Conversion of biomass to selected chemical products. Chem. Soc. Rev., 2012, 41(4), 1538-1558. doi:10.1039/c1cs15147ahttp://dx.doi.org/10.1039/c1cs15147a
Ragauskas A. J.; Williams C. K.; Davison B. H.; Britovsek G.; Cairney J.; Eckert C. A.; Frederick W. J.Jr, Hallett J. P.; Leak D. J.; Liotta C. L.; Mielenz J. R.; Murphy R.; Templer R.; Tschaplinski T.The path forward for biofuels and biomaterials. Science, 2006, 311(5760), 484-489. doi:10.1126/science.1114736http://dx.doi.org/10.1126/science.1114736
陈沁, 杜杰毫, 谢海波, 赵宗保, 郑强. 生物基可聚合单体及其聚合物制备与性能研究进展. 高分子学报, 2016, (10), 1330-1358. doi:10.11777/j.issn1000-3304.2016.16154http://dx.doi.org/10.11777/j.issn1000-3304.2016.16154
陈学思, 陈国强, 陶友华, 王玉忠, 吕小兵, 张立群, 朱锦, 张军, 王献红. 生态环境高分子的研究进展. 高分子学报, 2019, 50(10), 1068-1082. doi:10.11777/j.issn1000-3304.2019.19124http://dx.doi.org/10.11777/j.issn1000-3304.2019.19124
Reimschuessel, H. K. Polyamides. In: Buschow, K. H. J.; Cahn, R. W.; Flemings, M. C.; Ilschner, B.; Kramer, E. J.; Mahajan, S.; Veyssière, P., eds. Encyclopedia of Materials: Science and Technology. Oxford: Elsevier, 2001. 7147-7149.
Fangueiro R.; Pereira C. G.; De Araújo M.Applications of polyesters and polyamides in civil engineering. Polyesters and Polyamides. Amsterdam: Elsevier, 2008. 542-592. doi:10.1533/9781845694609.3.542http://dx.doi.org/10.1533/9781845694609.3.542
Winnacker M.; Rieger B.Biobased polyamides: recent advances in basic and applied research. Macromol. Rapid Commun., 2016, 37(17), 1391-1413. doi:10.1002/marc.201600181http://dx.doi.org/10.1002/marc.201600181
Ikeda M.; Takeno, S. Recent advances in amino acid production. In: Inui, M.; Toyoda, K., eds. Microbiology Monographs. Cham: Springer International Publishing, 2020. 175-226. doi:10.1007/978-3-030-39267-3_7http://dx.doi.org/10.1007/978-3-030-39267-3_7
D'Este M.; Alvarado-Morales M.; Angelidaki I.Amino acids production focusing on fermentation technologies—a review. Biotechnol. Adv., 2018, 36(1), 14-25. doi:10.1016/j.biotechadv.2017.09.001http://dx.doi.org/10.1016/j.biotechadv.2017.09.001
Kaleta C.; Schäuble S.; Rinas U.; Schuster S.Metabolic costs of amino acid and protein production in escherichia coli. Biotechnol. J., 2013, 8(9), 1105-1114. doi:10.1002/biot.201200267http://dx.doi.org/10.1002/biot.201200267
Mueller U.; Huebner S.Economic aspects of amino acids production. FaurieR.; ThommelJ.; BatheB.; DebabovV. G.; HuebnerS.; IkedaM.; KimuraE.; MarxA.; MöckelB.; MuellerU.; PfefferleW., eds. Advances in Biochemical Engineering/Biotechnology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. 137-170. doi:10.1007/3-540-45989-8_5http://dx.doi.org/10.1007/3-540-45989-8_5
Usuda Y.; Hara Y.; Kojima, H. Toward sustainable amino acid production. In: Yokota, A.; Ikeda, M., eds. Amino Acid Fermentation. Tokyo: Springer Japan, 2017. 289-304. doi:10.1007/10_2016_36http://dx.doi.org/10.1007/10_2016_36
Leinonen I.; Iannetta P. P. M.; Rees R. M.; Russell W.; Watson C.; Barnes A. P.Lysine supply is a critical factor in achieving sustainable global protein economy. Front. Sustain. Food Syst., 2019, 3, 27. doi:10.3389/fsufs.2019.00027http://dx.doi.org/10.3389/fsufs.2019.00027
Félix F. K. D. C.; Letti L. A. J.; Vinícius de Melo Pereira, G.; Bonfim P. G. B.; Soccol V. T.; Soccol C. R.L-lysine production improvement: a review of the state of the art and patent landscape focusing on strain development and fermentation technologies. Crit. Rev. Biotechnol., 2019, 39(8), 1031-1055. doi:10.1080/07388551.2019.1663149http://dx.doi.org/10.1080/07388551.2019.1663149
Sanchez S.; Rodríguez-Sanoja R.; Ramos A.; Demain A. L.Our microbes not only produce antibiotics, they also overproduce amino acids. J. Antibiot., 2018, 71(1), 26-36. doi:10.1038/ja.2017.142http://dx.doi.org/10.1038/ja.2017.142
Lian J. W.; Chen J. L.; Luan S. F.; Liu W.; Zong B. N.; Tao Y. H.; Wang X. H.Organocatalytic copolymerization of cyclic lysine derivative and ε-caprolactam toward antibacterial nylon-6 polymers. ACS Macro Lett., 2022, 11(1), 46-52. doi:10.1021/acsmacrolett.1c00658http://dx.doi.org/10.1021/acsmacrolett.1c00658
Chen J. L.; Dong Y. L.; Xiao C. S.; Tao Y. H.; Wang X. H.Organocatalyzed ring-opening polymerization of cyclic lysine derivative: Sustainable access to cationic poly(ε-lysine) mimics. Macromolecules, 2021, 54(5), 2226-2231. doi:10.1021/acs.macromol.0c02689http://dx.doi.org/10.1021/acs.macromol.0c02689
Tao Y. H.; Chen X. Y.; Jia F.; Wang S. X.; Xiao C. S.; Cui F. C.; Li Y. Q.; Bian Z.; Chen X. S.; Wang X. H.New chemosynthetic route to linear ε-poly-lysine. Chem. Sci., 2015, 6(11), 6385-6391. doi:10.1039/c5sc02479jhttp://dx.doi.org/10.1039/c5sc02479j
0
浏览量
167
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构