浏览全部资源
扫码关注微信
1.浙江工业大学材料科学与工程学院 杭州 310014
2.浙江工业大学平湖新材料研究院 平湖 314200
E-mail: gcsxlx@zjut.edu.cn
纸质出版日期:2024-12-20,
网络出版日期:2024-09-13,
收稿日期:2024-05-03,
录用日期:2024-07-19
移动端阅览
王敏, 何杰, 柴园园, 叶会见, 周洪涛, 严维力, 徐立新. 基于超支化梳形多臂共聚物的石墨烯多功能薄膜制备研究. 高分子学报, 2024, 55(12), 1716-1729
Wang, M.; He, J.; Cai, Y. Y.; Ye, H. J.; Zhou, H. T.; Yan, W. L.; Xu, L. X. Multifunctional graphene films based on designer hyperbranched comb-like multi-arm copolymers. Acta Polymerica Sinica, 2024, 55(12), 1716-1729
王敏, 何杰, 柴园园, 叶会见, 周洪涛, 严维力, 徐立新. 基于超支化梳形多臂共聚物的石墨烯多功能薄膜制备研究. 高分子学报, 2024, 55(12), 1716-1729 DOI: 10.11777/j.issn1000-3304.2024.24130. CSTR: 32057.14.GFZXB.2024.7270.
Wang, M.; He, J.; Cai, Y. Y.; Ye, H. J.; Zhou, H. T.; Yan, W. L.; Xu, L. X. Multifunctional graphene films based on designer hyperbranched comb-like multi-arm copolymers. Acta Polymerica Sinica, 2024, 55(12), 1716-1729 DOI: 10.11777/j.issn1000-3304.2024.24130. CSTR: 32057.14.GFZXB.2024.7270.
通过简单的工艺制备高性能、多功能石墨烯薄膜是石墨烯研究领域的重要课题. 本研究利用链行走聚合和原子转移自由基聚合方法相结合的方法,以乙烯和丙烯酸十六烷基酯(HDA)为主要单体设计合成了超支化梳形多臂共聚物HBPE@PHDA,利用其辅助天然石墨液相剥离制得石墨烯分散液,进一步经真空抽滤获得不同组成比例的石墨烯复合薄膜(Graphene/HBPE@PHDA);利用凝胶渗透色谱(GPC)、氢核磁共振(
1
H-NMR)和熔融流变分析对所得共聚物的结构、组成进行了表征,并对所得石墨烯复合薄膜的微观结构、导热、力学和形状记忆性能进行了评价. 研究表明,所得共聚物由近似球形的超支化聚乙烯(HBPE)核和多重的梳形聚合物侧链聚丙烯酸十六烷基酯(PHDA)构成;该共聚物作为分散助剂可有效促进石墨烯在普通低沸点有机溶剂中液相剥离,获得由该共聚物非共价稳固修饰的低缺陷石墨烯,同时在所得的石墨烯薄膜中可通过其侧链PHDA进行结晶,使所得石墨烯复合薄膜同时呈现优异的力学、各向异性导热和形状记忆性能;以石墨烯比例为60 wt%的
样品为例,所得薄膜的拉伸强度可达3.0 MPa,平面热导率达29.4 W‧m‧K
-1
,各向异性比例达36.8. 本研究为柔性、高强、多功能石墨烯薄膜的简单制备提供了新思路.
It is highly desirable to produce high-performance
multifunctional graphene films through relatively simple process. Herein
a hyperbranched comb-like multi-arm copolymer
HBPE@PHDA
was designed and synthesized by combining the chain walking ethylene polymerization and atomic transfer radical polymerization of hexadecyl acrylate (HDA). The HBPE@PHDA noncovalently functionalized graphene was further obtained by exfoliating graphite in chloroform under sonication with the copolymer as stabilizer
and subsequently HBPE@PHDA/Graphene composite films were fabricated from the resultant graphene dispersion
via
vacuum filtration. The structure and composition of the HBPE@PHDA were characterized by gel permeation chromatography (GPC)
proton nuclear megnetic resonance (
1
H-NMR) and melt rheological measurements
and the performance of the resultant graphene composite films was evaluated. It is confirmed that the HBPE@PHDA consists of a hyperbranched polyethylene (HBPE) core and multiple comb-like poly(hexadecyl acrylate) (PHDA
) side chains
and as a stabilizer
the copolymer can effectively promote the exfoliation of graphite in chloroform
rendering the HBPE@PHDA-functionazlied graphene free of structural defects. And meanwhile
the copolymer can crystallize through the PHDA side chains in the resultant graphene composite film system
which simultaneously imparts the latter with excellent mechanical
anisotropically thermal transfer
and shape memory performance. As an example
the composite film with 60 wt% graphene exhibits a tensile strength
3.0 MPa
a thermal conductivity in plane
29.4 W·m·K
-1
with an anisotropical ratio
36.8. This work provides a new simple way for producing flexible
high-strength
multifunctional graphene films.
超支化梳形多臂石墨烯薄膜各向异性导热形状记忆
HyperbranchedComb-like multi-armGraphene filmsAnisotropical thermal transferShape memory performance
Novoselov K. S.; Geim A. K.; Morozov S. V.; Jiang D.; Zhang Y.; Dubonos S. V.; Grigorieva I. V.; Firsov A. A.Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666-669. doi:10.1126/science.1102896http://dx.doi.org/10.1126/science.1102896
Yang J.; Li M. Z.; Fang S. L.; Wang Y. L.; He H. Y.; Wang C. L.; Zhang Z. J.; Yuan B. C.; Jiang L.; Baughman R. H.; Cheng Q. F.Water-induced strong isotropic MXene-bridged graphene sheets for electrochemical energy storage. Science, 2024, 383(6684), 771-777. doi:10.1126/science.adj3549http://dx.doi.org/10.1126/science.adj3549
Zhang X. D.; Guo Y.; Liu Y. J.; Li Z.; Fang W. Z.; Peng L.; Zhou J.; Xu Z.; Gao C.Ultrathick and highly thermally conductive graphene films by self-fusion. Carbon, 2020, 167, 249-255. doi:10.1016/j.carbon.2020.05.051http://dx.doi.org/10.1016/j.carbon.2020.05.051
Liu Y. J.; Li P.; Wang F.; Fang W. Z.; Xu Z.; Gao W. W.; Gao C.Rapid roll-to-roll production of graphene films using intensive Joule heating. Carbon, 2019, 155, 462-468. doi:10.1016/j.carbon.2019.09.021http://dx.doi.org/10.1016/j.carbon.2019.09.021
Al-mashaal A. K.; Wood G. S.; Torin A.; Mastropaolo E.; Newton M. J.; Cheung R.Dynamic behavior of ultra large graphene-based membranes using electrothermal transduction. Appl. Phys. Lett., 2017, 111(24), 243503. doi:10.1063/1.5007327http://dx.doi.org/10.1063/1.5007327
Li Z. N.; Gadipelli S.; Li H. C.; Howard C. A.; Brett D. J. L.; Shearing P. R.; Guo Z. X.; Parkin I. P.; Li F.Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat. Energy, 2020, 5, 160-168. doi:10.1038/s41560-020-0560-6http://dx.doi.org/10.1038/s41560-020-0560-6
Wang D.; Li D. W.; Zhao M.; Xu Y.; Wei Q. F.Multifunctional wearable smart device based on conductive reduced graphene oxide/polyester fabric. Appl. Surf. Sci., 2018, 454, 218-226. doi:10.1016/j.apsusc.2018.05.127http://dx.doi.org/10.1016/j.apsusc.2018.05.127
谢丹, 滕超, 江雷. 绿色制备柔性导热石墨烯-碳化宣纸复合膜. 高分子学报, 2018, (11), 1460-1466. doi:10.11777/j.issn1000-3304.2018.18087http://dx.doi.org/10.11777/j.issn1000-3304.2018.18087
Zhu Y. Q.; Shi Z. F.; Zhao Y. X.; Bu S. Y.; Hu Z. N.; Liao J. H.; Lu Q.; Zhou C. F.; Guo B. B.; Shang M. P.; Li F. F.; Xu Z. Y.; Zhang J. L.; Xie Q.; Li C. H.; Sun P. Z.; Mao B. Y.; Zhang X. D.; Liu Z. F.; Lin L.Recent trends in the transfer of graphene films. Nanoscale, 2024, 16(16), 7862-7873. doi:10.1039/d3nr05626khttp://dx.doi.org/10.1039/d3nr05626k
Wang J.; Sun L. Y.; Zou M. H.; Gao W.; Liu C. H.; Shang L. R.; Gu Z. Z.; Zhao Y. J.Bioinspired shape-memory graphene film with tunable wettability. Sci. Adv., 2017, 3(6), e1700004. doi:10.1126/sciadv.1700004http://dx.doi.org/10.1126/sciadv.1700004
Chen Y.; Gong X. L.; Gai J. G.Progress and challenges in transfer of large-area graphene films. Adv. Sci., 2016, 3(8), 1500343. doi:10.1002/advs.201500343http://dx.doi.org/10.1002/advs.201500343
Wei Q. W.; Pei S. F.; Qian X. T.; Liu H. P.; Liu Z. B.; Zhang W. M.; Zhou T. Y.; Zhang Z. C.; Zhang X. F.; Cheng H. M.; Ren W. C.Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater., 2020, 32(14), 1907411. doi:10.1002/adma.201907411http://dx.doi.org/10.1002/adma.201907411
Chen Y.; Li J. Z.; Li T.; Zhang L. K.; Meng F. B.Recent advances in graphene-based films for electromagnetic interference shielding: review and future prospects. Carbon, 2021, 180, 163-184. doi:10.1016/j.carbon.2021.04.091http://dx.doi.org/10.1016/j.carbon.2021.04.091
Renteria J. D.; Ramirez S.; Malekpour H.; Alonso B.; Centeno A.; Zurutuza A.; Cocemasov A. I.; Nika D. L.; Balandin A. A.Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv. Funct. Mater., 2015, 25(29), 4664-4672. doi:10.1002/adfm.201501429http://dx.doi.org/10.1002/adfm.201501429
Huang J. Q.; Xu Z. L.; Abouali S.; Akbari Garakani M.; Kim J. K.Porous graphene oxide/carbon nanotube hybrid films as interlayer for lithium-sulfur batteries. Carbon, 2016, 99, 624-632. doi:10.1016/j.carbon.2015.12.081http://dx.doi.org/10.1016/j.carbon.2015.12.081
Li K. L.; Zhang Y.; Wang Z. Y.; Liu L.; Liu H. X.; Wang J.Electrothermally driven membrane distillation for low-energy consumption and wetting mitigation. Environ. Sci. Technol., 2019, 53(22), 13506-13513. doi:10.1021/acs.est.9b04861http://dx.doi.org/10.1021/acs.est.9b04861
Sui D.; Huang Y.; Huang L.; Liang J. J.; Ma Y. F.; Chen Y. S.Flexible and transparent electrothermal film heaters based on graphene materials. Small, 2011, 7(22), 3186-3192. doi:10.1002/smll.201101305http://dx.doi.org/10.1002/smll.201101305
Zhang T. Y.; Zhao H. M.; Wang D. Y.; Wang Q.; Pang Y.; Deng N. Q.; Cao H. W.; Yang Y.; Ren T. L.A super flexible and custom-shaped graphene heater. Nanoscale, 2017, 9(38), 14357-14363. doi:10.1039/c7nr02219khttp://dx.doi.org/10.1039/c7nr02219k
Ge J.; Shi L. A.; Wang Y. C.; Zhao H. Y.; Yao H. B.; Zhu Y. B.; Zhang Y.; Zhu H. W.; Wu H. A.; Yu S. H.Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nat. Nanotechnol., 2017, 12(5), 434-440. doi:10.1038/nnano.2017.33http://dx.doi.org/10.1038/nnano.2017.33
Li Z. C.; Zhen Z.; Chai M. S.; Zhao X. L.; Zhong Y. J.; Zhu H. W.Transparent electrothermal film defoggers and antiicing coatings based on wrinkled graphene. Small, 2020, 16(4), 1905945. doi:10.1002/smll.201905945http://dx.doi.org/10.1002/smll.201905945
Kim H. Y.; Lee J. W.; Oh H. M.; Baeg K. J.; Jung S.; Yang H. S.; Lee W.; Hwang J. Y.; Kim K. S.; Jeong S. Y.; Han J. T.; Jeong M. S.; Lee G. W.; Jeong H. J.Ultrafast heating for intrinsic properties of atomically thin two-dimensional materials on plastic substrates. ACS Appl. Mater. Interfaces, 2016, 8(45), 31222-31230. doi:10.1021/acsami.6b09677http://dx.doi.org/10.1021/acsami.6b09677
Vu M. C.; Thi Thieu N. A.; Lim J. H.; Choi W. K.; Won J. C.; Islam M. A.; Kim S. R.Ultrathin thermally conductive yet electrically insulating exfoliated graphene fluoride film for high performance heat dissipation. Carbon, 2020, 157, 741-749. doi:10.1016/j.carbon.2019.10.079http://dx.doi.org/10.1016/j.carbon.2019.10.079
Zhang W. B.; Xu Y. J.; Ma J. J.; He J.; Ye H. J.; Song J. W.; Chen Y. L.; Xu L. X.Efficient, robust, and flame-retardant electrothermal coatings based on a polyhedral oligomeric silsesquioxane-functionalized graphene/multiwalled carbon nanotube hybrid with a dually cross-linking structure. ACS Appl. Mater. Interfaces, 2023, 15(3), 4430-4440. doi:10.1021/acsami.2c18040http://dx.doi.org/10.1021/acsami.2c18040
Johnson L. K.; Killian C. M.; Brookhart M.New Pd(Ⅱ)- and Ni(Ⅱ)-based catalysts for polymerization of ethylene and.alpha.-olefins. J. Am. Chem. Soc., 1995, 117(23), 6414-6415. doi:10.1021/ja00128a054http://dx.doi.org/10.1021/ja00128a054
Matyjaszewski K.; Gaynor S. G.; Kulfan A.; Podwika M.Preparation of hyperbranched polyacrylates by atom transfer radical polymerization. 1. Acrylic AB* monomers in "living" radical polymerizations. Macromolecules, 1997, 30(17), 5192-5194. doi:10.1021/ma970359ghttp://dx.doi.org/10.1021/ma970359g
Guan Z.; Cotts P. M.; McCord E. F.; McLain S. J.Chain walking: a new strategy to control polymer topology. Science, 1999, 283(5410), 2059-2062. doi:10.1126/science.283.5410.2059http://dx.doi.org/10.1126/science.283.5410.2059
Johnson L. K.; Mecking S.; Brookhart M.Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(Ⅱ) catalysts. J. Am. Chem. Soc., 1996, 118(1), 267-268. doi:10.1021/ja953247ihttp://dx.doi.org/10.1021/ja953247i
Dong Z. M.; Ye Z. B.Hyperbranched polyethylenes by chain walking polymerization: synthesis, properties, functionalization, and applications. Polym. Chem., 2012, 3(2), 286-301. doi:10.1039/c1py00368bhttp://dx.doi.org/10.1039/c1py00368b
Song J. W.; He J.; Hu J. W.; Ma J. J.; Jiang H. L.; Hu S. J.; Ye H. J.; Xu L. X.A universal strategy for producing fluorescent polymers based on designer hyperbranched polyethylene ternary copolymers. Macromolecules, 2022, 55(6), 2085-2095. doi:10.1021/acs.macromol.1c02614http://dx.doi.org/10.1021/acs.macromol.1c02614
He J.; Song J. W.; Xu Y. J.; Zhang X. H.; Zhou H. T.; Zhang W. B.; Li Y. F.; Yan W. L.; Ye H. J.; Xu L. X.In situ constructing high-performance, recyclable thermally conductive adhesives with a hyperbranched-star reversibly cross-linking structure. ACS Appl. Polym. Mater., 2023, 5(8), 6232-6243. doi:10.1021/acsapm.3c00907http://dx.doi.org/10.1021/acsapm.3c00907
Zhang K. J.; Ye Z. B.; Subramanian R.Synthesis of block copolymers of ethylene with styrene and n-butyl acrylate via a tandem strategy combining ethylene "living" polymerization catalyzed by a functionalized Pd-diimine catalyst with atom transfer radical polymerization. Macromolecules, 2008, 41(3), 640-649. doi:10.1021/ma071874+http://dx.doi.org/10.1021/ma071874+
Hernandez Y.; Nicolosi V.; Lotya M.; Blighe F. M.; Sun Z. Y.; De S.; McGovern I. T.; Holland B.; Byrne M.; Gun'Ko Y. K.; Boland J. J.; Niraj P.; Duesberg G.; Krishnamurthy S.; Goodhue R.; Hutchison J.; Scardaci V.; Ferrari A. C.; Coleman J. N.High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol., 2008, 3(9), 563-568. doi:10.1038/nnano.2008.215http://dx.doi.org/10.1038/nnano.2008.215
Cui J.; Song Z. X.; Xin L. X.; Zhao S.; Yan Y. H.; Liu G. Y.Exfoliation of graphite to few-layer graphene in aqueous media with vinylimidazole-based polymer as high-performance stabilizer. Carbon, 2016, 99, 249-260. doi:10.1016/j.carbon.2015.12.030http://dx.doi.org/10.1016/j.carbon.2015.12.030
Hao Y. F.; Wang Y. Y.; Wang L.; Ni Z. H.; Wang Z. Q.; Wang R.; Koo C. K.; Shen Z. X.; Thong J. T. L.Probing layer number and stacking order of few-layer graphene by Raman spectroscopy. Small, 2010, 6(2), 195-200. doi:10.1002/smll.200901173http://dx.doi.org/10.1002/smll.200901173
Lotya M.; Hernandez Y.; King P. J.; Smith R. J.; Nicolosi V.; Karlsson L. S.; Blighe F. M.; De S.; Wang Z. M.; McGovern I. T.; Duesberg G. S.; Coleman J. N.Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc., 2009, 131(10), 3611-3620. doi:10.1021/ja807449uhttp://dx.doi.org/10.1021/ja807449u
Duan D. H.; Ye H. J.; Meng N.; Xu C. F.; Han B.; Chen Y. F.; Zhong M. Q.; Xu L. X.Efficient exfoliation of graphite in chloroform with a pyrene-containing hyperbranched polyethylene as stabilizer to render pyrene-functionalized high-quality graphene. Carbon, 2018, 136, 417-429. doi:10.1016/j.carbon.2018.04.042http://dx.doi.org/10.1016/j.carbon.2018.04.042
程飞, 王海平, 叶誉贤, 梁静静, 徐立新. HBPE-b-PMMA嵌段共聚物的合成及其在甲苯中非共价剥离石墨制备石墨烯溶液的研究. 高分子学报, 2014, (7), 1002-1009. doi:10.11777/j.issn1000-3304.2014.13442http://dx.doi.org/10.11777/j.issn1000-3304.2014.13442
叶誉贤, 梁静静, 王海平, 孟竺, 张晓丹, 徐立新. 基于CH-π相互作用的多壁碳纳米管表面POSS粒子非共价修饰研究. 高分子学报, 2015, (4), 427-436. doi:10.11777/j.issn1000-3304.2015.14311http://dx.doi.org/10.11777/j.issn1000-3304.2015.14311
0
浏览量
173
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构