浏览全部资源
扫码关注微信
华南理工大学高分子光电材料与器件研究所 发光材料与器件国家重点实验室 广州 510640
[ "钟文楷,男,1990年生. 2013年6月毕业于华南理工大学高分子材料与工程专业,获得学士学位. 2013~2020年在华南理工大学发光材料与器件国家重点实验室进行研究生学习,并于2016年6月获得硕士学位,2020年7月获得博士学位,2018~2020年在美国劳伦斯伯克利国家实验室先进光源分部进行联合培养,2020~2023年在上海交通大学从事博士后研究. 2023年6月至今,华南理工大学材料科学与工程学院副教授. 研究方向为有机光电材料薄膜结构与性能." ]
[ "黄飞,男,1979年生. 华南理工大学发光材料与器件国家重点实验室副主任,2011年获国家杰出青年基金资助,教育部长江学者特聘教授(2016年). 2000年7月毕业于北京大学化学与分子工程学院,获得学士学位,2005年7月于华南理工大学材料科学与工程学院获得博士学位,2005~2009年在美国华盛顿大学从事博士后研究. 2009年6月至今,华南理工大学材料科学与工程学院教授. 研究方向为有机光电材料与器件." ]
纸质出版日期:2024-09-20,
网络出版日期:2024-07-12,
收稿日期:2024-05-07,
录用日期:2024-05-23
移动端阅览
王思怡, 钟文楷, 黄飞. 可拉伸高分子光电器件的研究进展. 高分子学报, 2024, 55(9), 1091-1110
Wang, S. Y.; Zhong, W. K.; Huang, F. Recent advancements in stretchable polymer optoelectronics. Acta Polymerica Sinica, 2024, 55(9), 1091-1110
王思怡, 钟文楷, 黄飞. 可拉伸高分子光电器件的研究进展. 高分子学报, 2024, 55(9), 1091-1110 DOI: 10.11777/j.issn1000-3304.2024.24131.
Wang, S. Y.; Zhong, W. K.; Huang, F. Recent advancements in stretchable polymer optoelectronics. Acta Polymerica Sinica, 2024, 55(9), 1091-1110 DOI: 10.11777/j.issn1000-3304.2024.24131.
可拉伸高分子光电器件是一类基于共轭高分子的独特器件,具备在承受机械应变时仍能维持其光电性能的能力,在可穿戴电子、可拉伸显示、生物医学传感等领域展现出广阔的应用潜力. 近年来,国内外学者对器件与材料设计进行了大量的探索,为其性能提升和应用拓展奠定了坚实基础. 本文以外在弹性与本征弹性2个维度为切入点,深入探讨器件形态设计、材料结构调控以及薄膜组分优化等策略,总结并评述其重要成果. 最后,指出未来需要关注的重点研究方向,以克服商业化过程中面临的多重挑战,并展望可拉伸高分子器件的不断进步能为有机电子领域注入新的活力.
Stretchable polymer optoelectronic devices
as a unique class of devices based on conjugated polymers
are capable of maintaining their optoelectronic performance under mechanical deformations. Such unique feature gives them significant potential in applications such as wearable electronics
stretchable displays
biomedical sensing and beyond. In recent years
extensive research both domestically and internationally in device and material design has laid the groundwork for enhancing the performance and expanding the applications of these devices. Currently
stretchable optoelectronic devices are primarily constructed by two approaches: external elasticity and intrinsic elasticity. Devices using external elasticity achieve stretchability through specific device forms
such as wrinkle structures
"island-bridge" structures
fiber structures
and kirigami structures. In contrast
devices based on intrinsic elasticity achieve stretchability in each functional layer through thin film modifications
such as molecular design
blending with elastomers
and adding plasticizers. This review delves into these two construction methods
examining strategies for device design
chemical modification
and thin-film composition optimization. It reviews significant research achievements in organic field-effect transistors (OFETs)
organic light-emitting diodes (OLEDs)
organic photovoltaic cells (OPVs)
and organic photodetectors (OPDs). Finally
the paper points out key research directions
highlighting challenges and opportunities in material and film modification
device engineering
and studies on structure-performance relationship. It envisions that the ongoing development of stretchable polymer optoelectronic devices will bring new vitality and breakthroughs to the field of organic electronics.
共轭聚合物可拉伸有机场效应晶体管有机发光二极管有机光探测器
Conjugated polymersStretchableOrganic field-effect transistorsOrganic light-emitting diodesOrganic photodetectors
Zhu L.; Zhang M.; Xu J. Q.; Li C.; Yan J.; Zhou G. Q.; Zhong W. K.; Hao T. Y.; Song J. L.; Xue X. N.; Zhou Z. C.; Zeng R.; Zhu H. M.; Chen C. C.; MacKenzie R. C. I.; Zou Y. C.; Nelson J.; Zhang Y. M.; Sun Y. M.; Liu F. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater., 2022, 21(6), 656-663. doi:10.1038/s41563-022-01244-yhttp://dx.doi.org/10.1038/s41563-022-01244-y
Li C.; Zhou J. D.; Song J. L.; Xu J. Q.; Zhang H. T.; Zhang X. N.; Guo J.; Zhu L.; Wei D. H.; Han G. C.; Min J.; Zhang Y.; Xie Z. Q.; Yi Y. P.; Yan H.; Gao F.; Liu F.; Sun Y. M. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy, 2021, 6, 605-613. doi:10.1038/s41560-021-00820-xhttp://dx.doi.org/10.1038/s41560-021-00820-x
Rivnay J.; Inal S.; Salleo A.; Owens R. M.; Berggren M.; Malliaras G. G. Organic electrochemical transistors. Nat. Rev. Mater., 2018, 3(2), 17086. doi:10.1038/natrevmats.2017.86http://dx.doi.org/10.1038/natrevmats.2017.86
Kim M.; Ryu S. U.; Park S. A.; Choi K.; Kim T.; Chung D.; Park T. Donor-acceptor-conjugated polymer for high-performance organic field-effect transistors: a progress report. Adv. Funct. Mater., 2020, 30(20), 1904545. doi:10.1002/adfm.201904545http://dx.doi.org/10.1002/adfm.201904545
Zhong Z. Y.; Xu J. X.; Zhang K.; Dong M. H.; Huang Q. R.; Huang F. Unfused-ring acceptors with dithienobenzotriazole core for efficient organic solar cells. Chinese J. Polym. Sci., 2022, 40(12), 1586-1593. doi:10.1007/s10118-022-2825-yhttp://dx.doi.org/10.1007/s10118-022-2825-y
Tan X. X.; Li Y. L.; Yuan X. Y.; Kim S.; Zhang Y.; Yang C.; Huang F.; Cao Y.; Duan C. H. Polythiophene solar cells processed from non-halogenated solvent with 15.68% efficiency. Sci. China Chem., 2023, 66(8), 2347-2353. doi:10.1007/s11426-023-1695-xhttp://dx.doi.org/10.1007/s11426-023-1695-x
Tian L.; Liu C. C.; Huang F. Recent progress in side chain engineering of Y-series non-fullerene molecule and polymer acceptors. Sci. China Chem., 2024, 67(3), 788-805. doi:10.1007/s11426-023-1774-6http://dx.doi.org/10.1007/s11426-023-1774-6
Gunturkun D.; Isci R.; Faraji S.; Sütay B.; Majewski L. A.; Ozturk T. Synthesis and characterization of naphthalenediimide-thienothiophene-conjugated polymers for OFET and OPT applications. J. Mater. Chem. C, 2023, 11(38), 13129-13141. doi:10.1039/d3tc02109bhttp://dx.doi.org/10.1039/d3tc02109b
Zhong Z. M.; Peng F.; Ying L.; Huang Z. Q.; Zhong W. K.; Yu G.; Cao Y.; Huang F. Infrared photodetectors and image arrays made with organic semiconductors. Chinese J. Polym. Sci., 2023, 41(10), 1629-1637. doi:10.1007/s10118-023-2973-8http://dx.doi.org/10.1007/s10118-023-2973-8
解博名, 张凯, 李静雯, 李力, 宋煜, 崔楠, 白原青, 黄飞. 高分子学报, 2022, 53, 414-423. doi:10.11777/j.issn1000-3304.2021.21339http://dx.doi.org/10.11777/j.issn1000-3304.2021.21339
邱红, 钟知鸣, 李美静, 应磊, 俞钢, 黄飞, 曹镛. 高分子学报, 2022, 53, 433-439. doi:10.11777/j.issn1000-3304.2021.21350http://dx.doi.org/10.11777/j.issn1000-3304.2021.21350
Park J. S.; Kim G. U.; Lee S.; Lee J. W.; Li S.; Lee J. Y.; Kim B. J. Material design and device fabrication strategies for stretchable organic solar cells. Adv. Mater., 2022, 34(31), e2201623. doi:10.1002/adma.202270230http://dx.doi.org/10.1002/adma.202270230
Qin J. Q.; Lan L. K.; Chen S. S.; Huang F. N.; Shi H. R.; Chen W. J.; Xia H. B.; Sun K.; Yang C. Recent progress in flexible and stretchable organic solar cells. Adv. Funct. Mater., 2020, 30(36), 2002529. doi:10.1002/adfm.202002529http://dx.doi.org/10.1002/adfm.202002529
Dauzon E.; Sallenave X.; Plesse C.; Goubard F.; Amassian A.; Anthopoulos T. D. Pushing the limits of flexibility and stretchability of solar cells: a review. Adv. Mater., 2021, 33(36), e2101469. doi:10.1002/adma.202101469http://dx.doi.org/10.1002/adma.202101469
Park H.; Kim D. C. Structural and material-based approaches for the fabrication of stretchable light-emitting diodes. Micromachines, 2023, 15(1), 66. doi:10.3390/mi15010066http://dx.doi.org/10.3390/mi15010066
Wu F. M.; Liu Y. X.; Zhang J.; Duan S. M.; Ji D. Y.; Yang H. Recent advances in high-mobility and high-stretchability organic field-effect transistors: from materials, devices to applications. Small Methods, 2021, 5(12), e2100676. doi:10.1002/smtd.202100676http://dx.doi.org/10.1002/smtd.202100676
Chang S. H.; Koo J. H.; Yoo J.; Kim M. S.; Choi M. K.; Kim D. H.; Song Y. M. Flexible and stretchable light-emitting diodes and photodetectors for human-centric optoelectronics. Chem. Rev., 2024, 124(3), 768-859. doi:10.1021/acs.chemrev.3c00548http://dx.doi.org/10.1021/acs.chemrev.3c00548
Liu K.; Ouyang B.; Guo X. J.; Guo Y. L.; Liu Y. Q. Advances in flexible organic field-effect transistors and their applications for flexible electronics. NPJ Flex. Electron., 2022, 6, 1. doi:10.1038/s41528-022-00133-3http://dx.doi.org/10.1038/s41528-022-00133-3
Qian Y.; Zhang X. W.; Xie L. H.; Qi D. P.; Chandran B. K.; Chen X. D.; Huang W. Stretchable organic semiconductor devices. Adv. Mater., 2016, 28(42), 9243-9265. doi:10.1002/adma.201601278http://dx.doi.org/10.1002/adma.201601278
Zhang Z. T. Light-emitting materials for wearable electronics. Nat. Rev. Mater., 2022, 7, 839-840. doi:10.1038/s41578-022-00502-4http://dx.doi.org/10.1038/s41578-022-00502-4
Shi W.; Guo Y. L.; Liu Y. Q. When flexible organic field-effect transistors meet biomimetics: a prospective view of the internet of things. Adv. Mater., 2020, 32(15), e1901493. doi:10.1002/adma.201901493http://dx.doi.org/10.1002/adma.201901493
Rogers J. A.; Someya T.; Huang Y. G. Materials and mechanics for stretchable electronics. Science, 2010, 327(5973), 1603-1607. doi:10.1126/science.1182383http://dx.doi.org/10.1126/science.1182383
Lo L. W.; Zhao J. Y.; Wan H. C.; Wang Y.; Chakrabartty S.; Wang C. An inkjet-printed PEDOT:PSS-based stretchable conductor for wearable health monitoring device applications. ACS Appl. Mater. Interfaces, 2021, 13(18), 21693-21702. doi:10.1021/acsami.1c00537http://dx.doi.org/10.1021/acsami.1c00537
Root S. E.; Savagatrup S.; Printz A. D.; Rodriquez D.; Lipomi D. J. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem. Rev., 2017, 117(9), 6467-6499. doi:10.1021/acs.chemrev.7b00003http://dx.doi.org/10.1021/acs.chemrev.7b00003
Yin H. X.; Zhu Y.; Youssef K.; Yu Z. B.; Pei Q. B. Structures and materials in stretchable electroluminescent devices. Adv. Mater., 2022, 34(22), 2106184. doi:10.1002/adma.202106184http://dx.doi.org/10.1002/adma.202106184
Zhao Z. Y.; Liu K.; Liu Y. W.; Guo Y. L.; Liu Y. Q. Intrinsically flexible displays: key materials and devices. Natl. Sci. Rev., 2022, 9(6), nwac090. doi:10.1093/nsr/nwac090http://dx.doi.org/10.1093/nsr/nwac090
Sun F. Q.; Jiang H.; Wang H. Y.; Zhong Y. H.; Xu Y. M.; Xing Y.; Yu M. H.; Feng L. W.; Tang Z.; Liu J.; Sun H. D.; Wang H. Z.; Wang G.; Zhu M. F. Soft fiber electronics based on semiconducting polymer. Chem. Rev., 2023, 123(8), 4693-4763. doi:10.1021/acs.chemrev.2c00720http://dx.doi.org/10.1021/acs.chemrev.2c00720
Yoo J.; Li S.; Kim D. H.; Yang J.; Choi M. K. Materials and design strategies for stretchable electroluminescent devices. Nanoscale Horiz., 2022, 7(8), 801-821. doi:10.1039/d2nh00158fhttp://dx.doi.org/10.1039/d2nh00158f
Xu X. Z.; Zhao Y.; Liu Y. Q. Wearable electronics based on stretchable organic semiconductors. Small, 2023, 19(20), 2206309. doi:10.1002/smll.202206309http://dx.doi.org/10.1002/smll.202206309
Lee H.; Jiang Z.; Yokota T.; Fukuda K.; Park S.; Someya T. Stretchable organic optoelectronic devices: design of materials, structures, and applications. Mater. Sci. Eng. R Rep., 2021, 146, 100631. doi:10.1016/j.mser.2021.100631http://dx.doi.org/10.1016/j.mser.2021.100631
Jiang Z.; Yu K.; Wang H. Y.; Rich S.; Yokota T.; Fukuda K.; Someya T. Ultraflexible integrated organic electronics for ultrasensitive photodetection. Adv. Mater. Technol., 2021, 6(1), 2000956. doi:10.1002/admt.202000956http://dx.doi.org/10.1002/admt.202000956
Lee J. W.; Phan T. N. L.; Oh E. S.; Lee H. G.; Kim T. S.; Kim B. J. Carboxylate-containing poly(thiophene vinylene) derivative with controlled molecular weights for high-performance intrinsically-stretchable organic solar cells. Adv. Funct. Mater., 2023, 33(50), 2305851. doi:10.1002/adfm.202305851http://dx.doi.org/10.1002/adfm.202305851
Lo L. W.; Zhao J. Y.; Wan H. C.; Wang Y.; Chakrabartty S.; Wang C. An inkjet-printed PEDOT:PSS-based stretchable conductor for wearable health monitoring device applications. ACS Appl. Mater. Interfaces, 2021, 13(18), 21693-21702. doi:10.1021/acsami.1c00537http://dx.doi.org/10.1021/acsami.1c00537
Trung T. Q.; Dang V. Q.; Lee H. B.; Kim D. I.; Moon S.; Lee N. E.; Lee H. An omnidirectionally stretchable photodetector based on organic-inorganic heterojunctions. ACS Appl. Mater. Interfaces, 2017, 9(41), 35958-35967. doi:10.1021/acsami.7b09411http://dx.doi.org/10.1021/acsami.7b09411
Khodagholy D.; Doublet T.; Quilichini P.; Gurfinkel M.; Leleux P.; Ghestem A.; Ismailova E.; Hervé T.; Sanaur S.; Bernard C.; Malliaras G. G. In vivo recordings of brain activity using organic transistors. Nat. Commun., 2013, 4, 1575. doi:10.1038/ncomms2573http://dx.doi.org/10.1038/ncomms2573
Zhang Z. T.; Guo K. P.; Li Y. M.; Li X. Y.; Guan G. Z.; Li H. P.; Luo Y. F.; Zhao F. Y.; Zhang Q.; Wei B.; Pei Q. B.; Peng H. S. A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell. Nat. Photonics, 2015, 9, 233-238. doi:10.1038/nphoton.2015.37http://dx.doi.org/10.1038/nphoton.2015.37
Hong J. H.; Shin J. M.; Kim G. M.; Joo H.; Park G. S.; Hwang I. B.; Kim M. W.; Park W. S.; Chu H. Y.; Kim S. 9.1-inch stretchable AMOLED display based on LTPS technology. J. Soc. Inf. Disp., 2017, 25(3), 194-199. doi:10.1002/jsid.547http://dx.doi.org/10.1002/jsid.547
Hu X. Y.; Dou Y. Y.; Li J. J.; Liu Z. F. Buckled structures: fabrication and applications in wearable electronics. Small, 2019, 15(32), e1804805. doi:10.1002/smll.201970169http://dx.doi.org/10.1002/smll.201970169
Lipomi D. J.; Tee B. C. K.; Vosgueritchian M.; Bao Z. N. Stretchable organic solar cells. Adv. Mater., 2011, 23(15), 1771-1775. doi:10.1002/adma.201004426http://dx.doi.org/10.1002/adma.201004426
White M. S.; Kaltenbrunner M.; Głowacki E. D.; Gutnichenko K.; Kettlgruber G.; Graz I.; Aazou S.; Ulbricht C.; Egbe D. A. M.; Miron M. C.; Major Z.; Scharber M. C.; Sekitani T.; Someya T.; Bauer S.; Sariciftci N. S. Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics, 2013, 7, 811-816. doi:10.1038/nphoton.2013.188http://dx.doi.org/10.1038/nphoton.2013.188
Kaltenbrunner M.; White M. S.; Głowacki E. D.; Sekitani T.; Someya T.; Sariciftci N. S.; Bauer S. Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun., 2012, 3, 770. doi:10.1038/ncomms1772http://dx.doi.org/10.1038/ncomms1772
Huang W. C.; Jiang Z.; Fukuda K.; Jiao X. C.; McNeill C. R.; Yokota T.; Someya T. Efficient and mechanically robust ultraflexible organic solar cells based on mixed acceptors. Joule, 2020, 4(1), 128-141. doi:10.1016/j.joule.2019.10.007http://dx.doi.org/10.1016/j.joule.2019.10.007
Park S.; Fukuda K.; Wang M.; Lee C.; Yokota T.; Jin H.; Jinno H.; Kimura H.; Zalar P.; Matsuhisa N.; Umezu S.; Bazan G. C.; Someya T. Ultraflexible near-infrared organic photodetectors for conformal photoplethysmogram sensors. Adv. Mater., 2018, 30, 1802359. doi:10.1002/adma.201870252http://dx.doi.org/10.1002/adma.201870252
Yin D.; Feng J.; Ma R.; Liu Y. F.; Zhang Y. L.; Zhang X. L.; Bi Y. G.; Chen Q. D.; Sun H. B. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process. Nat. Commun., 2016, 7, 11573. doi:10.1038/ncomms11573http://dx.doi.org/10.1038/ncomms11573
Jeong S.; Yoon H.; Lee B.; Lee S.; Hong Y. Distortion-free stretchable light-emitting diodes via imperceptible microwrinkles. Adv. Mater. Technol., 2020, 5(9), 2000231. doi:10.1002/admt.202070057http://dx.doi.org/10.1002/admt.202070057
Park T. H.; Ren W. Q.; Lee H. J.; Kim N.; Son K. R.; Rani A.; Kim T. G. Efficient TADF-based blue OLEDs with 100% stretchability using titanium particle-embedded indium zinc oxide mesh electrodes. NPG Asia Mater., 2022, 14, 66. doi:10.1038/s41427-022-00411-6http://dx.doi.org/10.1038/s41427-022-00411-6
Yao L. Q.; Qin Y.; Li X. C.; Xue Q.; Liu F.; Cheng T.; Li G. J.; Zhang X. W.; Lai W. Y. High-efficiency stretchable organic light-emitting diodes based on ultra-flexible printed embedded metal composite electrodes. InfoMat, 2023, 5(5), e12410. doi:10.1002/inf2.12410http://dx.doi.org/10.1002/inf2.12410
Sekitani T.; Noguchi Y.; Hata K. J.; Fukushima T.; Aida T.; Someya T. A rubberlike stretchable active matrix using elastic conductors. Science, 2008, 321(5895), 1468-1472. doi:10.1126/science.1160309http://dx.doi.org/10.1126/science.1160309
Cho H.; Lee B.; Jang D.; Yoon J.; Chung S.; Hong Y. Recent progress in strain-engineered elastic platforms for stretchable thin-film devices. Mater. Horiz., 2022, 9(8), 2053-2075. doi:10.1039/d2mh00470dhttp://dx.doi.org/10.1039/d2mh00470d
Lim M. S.; Nam M.; Choi S.; Jeon Y.; Son Y. H.; Lee S. M.; Choi K. C. Two-dimensionally stretchable organic light-emitting diode with elastic pillar arrays for stress relief. Nano Lett., 2020, 20(3), 1526-1535. doi:10.1021/acs.nanolett.9b03657http://dx.doi.org/10.1021/acs.nanolett.9b03657
Kim T.; Lee H.; Jo W.; Kim T. S.; Yoo S. Realizing stretchable OLEDs: a hybrid platform based on rigid island arrays on a stress-relieving bilayer structure. Adv. Mater. Technol., 2020, 5(11), 2000494. doi:10.1002/admt.202070068http://dx.doi.org/10.1002/admt.202070068
Kang I.; Yun H. J.; Chung D. S.; Kwon S. K.; Kim Y. H. Record high hole mobility in polymer semiconductors via side-chain engineering. J. Am. Chem. Soc., 2013, 135(40), 14896-14899. doi:10.1021/ja405112shttp://dx.doi.org/10.1021/ja405112s
Wang W. C.; Wang S. H.; Rastak R.; Ochiai Y.; Niu S. M.; Jiang Y. W.; Arunachala P. K.; Zheng Y.; Xu J.; Matsuhisa N.; Yan X. Z.; Kwon S. K.; Miyakawa M.; Zhang Z. T.; Ning R.; Foudeh A. M.; Yun Y.; Linder C.; Tok J. B. H.; Bao Z. N. Strain-insensitive intrinsically stretchable transistors and circuits. Nat. Electron., 2021, 4, 143-150. doi:10.1038/s41928-020-00525-1http://dx.doi.org/10.1038/s41928-020-00525-1
Su R. T.; Park S. H.; Ouyang X.; Ahn S. I.; McAlpine M. C. 3D-printed flexible organic light-emitting diode displays. Sci. Adv., 2022, 8(1), eabl8798. doi:10.1126/sciadv.abl8798http://dx.doi.org/10.1126/sciadv.abl8798
Fakharuddin A.; Li H. Z.; Di Giacomo F.; Zhang T. Y.; Gasparini N.; Elezzabi A. Y.; Mohanty A.; Ramadoss A.; Ling J.; Soultati A.; Tountas M.; Schmidt-Mende L.; Argitis P.; Jose R.; Nazeeruddin M. K.; Bin Mohd Yusoff A. R.; Vasilopoulou M. Fiber-shaped electronic devices. Adv. Energy Mater., 2021, 11(34), 2101443. doi:10.1002/aenm.202101443http://dx.doi.org/10.1002/aenm.202101443
Hamedi M.; Forchheimer R.; Inganäs O. Towards woven logic from organic electronic fibres. Nat. Mater., 2007, 6, 357-362. doi:10.1038/nmat1884http://dx.doi.org/10.1038/nmat1884
Liu J. W.; Namboothiry M. A. G.; Carroll D. L. Fiber-based architectures for organic photovoltaics. Appl. Phys. Lett., 2007, 90(6), 063501. doi:10.1063/1.2435988http://dx.doi.org/10.1063/1.2435988
Teng W. L.; Zhou Q. Q.; Wang X. K.; Che H. B.; Hu P.; Li H. Y.; Wang J. S. Hierarchically interconnected conducting polymer hybrid fiber with high specific capacitance for flexible fiber-shaped supercapacitor. Chem. Eng. J., 2020, 390, 124569. doi:10.1016/j.cej.2020.124569http://dx.doi.org/10.1016/j.cej.2020.124569
Liu P.; Gao Z.; Xu L. M.; Shi X.; Fu X. M.; Li K.; Zhang B.; Sun X. M.; Peng H. S. Polymer solar cell textiles with interlaced cathode and anode fibers. J. Mater. Chem. A, 2018, 6(41), 19947-19953. doi:10.1039/c8ta06510ahttp://dx.doi.org/10.1039/c8ta06510a
Lv D.; Jiang Q. Q.; Shang Y. Y.; Liu D. Y. Highly efficient fiber-shaped organic solar cells toward wearable flexible electronics. NPJ Flex. Electron., 2022, 6, 38. doi:10.1038/s41528-022-00172-whttp://dx.doi.org/10.1038/s41528-022-00172-w
Li H. J.; Wang W. Y.; Yang Y.; Wang Y.; Li P. F.; Huang J. H.; Li J.; Lu Y. H.; Li Z. J.; Wang Z. Z.; Fan B.; Fang J. F.; Song W. J. Kirigami-based highly stretchable thin film solar cells that are mechanically stable for more than 1000 cycles. ACS Nano, 2020, 14(2), 1560-1568. doi:10.1021/acsnano.9b06562http://dx.doi.org/10.1021/acsnano.9b06562
Zheng Y.; Zhang S.; Tok J. B. H.; Bao Z. N. Molecular design of stretchable polymer semiconductors: current progress and future directions. J. Am. Chem. Soc., 2022, 144(11), 4699-4715. doi:10.1021/jacs.2c00072http://dx.doi.org/10.1021/jacs.2c00072
Müller C.; Goffri S.; Breiby D. W.; Andreasen J. W.; Chanzy H. D.; Janssen R. A. J.; Nielsen M. M.; Radano C. P.; Sirringhaus H.; Smith P.; Stingelin‐Stutzmann N. Tough, semiconducting polyethylene-poly(3-hexylthiophene) diblock copolymers. Adv. Funct. Mater., 2007, 17(15), 2674-2679. doi:10.1002/adfm.200601248http://dx.doi.org/10.1002/adfm.200601248
Mun J.; Wang G., J N.; Oh J. Y.; Katsumata T.; Lee F. L.; Kang J.; Wu H. C.; Lissel F.; Rondeau-Gagné S.; Tok J. B. H.; Bao Z. N. Effect of nonconjugated spacers on mechanical properties of semiconducting polymers for stretchable transistors. Adv. Funct. Mater., 2018, 28(43), 1804222. doi:10.1002/adfm.201804222http://dx.doi.org/10.1002/adfm.201804222
Liu W.; Zhang C.; Alessandri R.; Diroll B. T.; Li Y.; Liang H. Y.; Fan X. C.; Wang K.; Cho H.; Liu Y. D.; Dai Y. H.; Su Q.; Li N.; Li S. S.; Wai S.; Li Q.; Shao S. Y.; Wang L. X.; Xu J.; Zhang X. H.; Talapin D. V.; de Pablo J. J.; Wang S. H. High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence. Nat. Mater., 2023, 22(6), 737-745. doi:10.1038/s41563-023-01529-whttp://dx.doi.org/10.1038/s41563-023-01529-w
Luo X. A.; Freychet G.; Gan Z. Q.; An K.; Du H. J.; Wang C.; Li N.; Zhong W. K.; Ying L. Intrinsically stretchable organic photovoltaic thin films enabled by optimized donor-acceptor pairing. Macromolecules, 2023, 56(21), 8928-8938. doi:10.1021/acs.macromol.3c01349http://dx.doi.org/10.1021/acs.macromol.3c01349
Koch F. P. V.; Rivnay J.; Foster S.; Müller C.; Downing J. M.; Buchaca-Domingo E.; Westacott P.; Yu L. Y.; Yuan M. J.; Baklar M.; Fei Z. P.; Luscombe C.; McLachlan M. A.; Heeney M.; Rumbles G.; Silva C.; Salleo A.; Nelson J.; Smith P.; Stingelin N. The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors-poly(3-hexylthiophene), studyamodel. Prog. Polym. Sci., 2013, 38(12), 1978-1989. doi:10.1016/j.progpolymsci.2013.07.009http://dx.doi.org/10.1016/j.progpolymsci.2013.07.009
Lee J. W.; Phan T. N. L.; Oh E. S.; Lee H. G.; Kim T. S.; Kim B. J. Carboxylate-containing poly(thiophene vinylene) derivative with controlled molecular weights for high-performance intrinsically-stretchable organic solar cells. Adv. Funct. Mater., 2023, 33(50), 2305851. doi:10.1002/adfm.202305851http://dx.doi.org/10.1002/adfm.202305851
Lee J. W.; Kim G. U.; Kim D. J.; Jeon Y.; Li S.; Kim T. S.; Lee J. Y.; Kim B. J. Intrinsically-stretchable, efficient organic solar cells achieved by high-molecular-weight, electro-active polymer acceptor additives. Adv. Energy Mater., 2022, 12(28), 2200887. doi:10.1002/aenm.202200887http://dx.doi.org/10.1002/aenm.202200887
Zhu Q. L.; Xue J. W.; Zhang L.; Wen J. L.; Lin B. J.; Naveed H. B.; Bi Z. Z.; Xin J. M.; Zhao H.; Zhao C.; Zhou K.; Liu S. F.; Ma W. Intermolecular interaction control enables co-optimization of efficiency, deformability, mechanical and thermal stability of stretchable organic solar cells. Small, 2021, 17(21), e2007011. doi:10.1002/smll.202170100http://dx.doi.org/10.1002/smll.202170100
Song W.; Yu K. B.; Ge J. F.; Xie L.; Zhou R.; Peng R. X.; Zhang X. L.; Yang M. J.; Wei Z. X.; Ge Z. Y. Entangled structure morphology by polymer guest enabling mechanically robust organic solar cells with efficiencies of over 16.5%. Matter, 2022, 5(6), 1877-1889. doi:10.1016/j.matt.2022.03.012http://dx.doi.org/10.1016/j.matt.2022.03.012
Wang Z. Y.; Zhang D.; Xu M. C.; Liu J. F.; He J. Y.; Yang L. P.; Li Z. L.; Gao Y. R.; Shao M. Intrinsically stretchable organic solar cells with simultaneously improved mechanical robustness and morphological stability enabled by a universal crosslinking strategy. Small, 2022, 18(26), e2201589. doi:10.1002/smll.202201589http://dx.doi.org/10.1002/smll.202201589
Zheng Y.; Zhang S.; Tok J. B. H.; Bao Z. N. Molecular design of stretchable polymer semiconductors: current progress and future directions. J. Am. Chem. Soc., 2022, 144(11), 4699-4715. doi:10.1021/jacs.2c00072http://dx.doi.org/10.1021/jacs.2c00072
Oh J. Y.; Rondeau-Gagné S.; Chiu Y. C.; Chortos A.; Lissel F.; Wang G.J N.; Schroeder B. C.; Kurosawa T.; Lopez J.; Katsumata T.; Xu J.; Zhu C. X.; Gu X. D.; Bae W. G.; Kim Y.; Jin L. H.; Chung J. W.; Tok J. B. H.; Bao Z. N.Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature, 2016, 539(7629), 411-415. doi:10.1038/nature20102http://dx.doi.org/10.1038/nature20102
Lee J. W.; Seo S.; Lee S. W.; Kim G. U.; Han S.; Phan T. N. L.; Lee S.; Li S.; Kim T. S.; Lee J. Y.; Kim B. J. Intrinsically stretchable, highly efficient organic solar cells enabled by polymer donors featuring hydrogen-bonding spacers. Adv. Mater., 2022, 34(50), e2207544. doi:10.1002/adma.202270344http://dx.doi.org/10.1002/adma.202270344
Noh J.; Kim G. U.; Han S.; Oh S. J.; Jeon Y.; Jeong D.; Kim S. W.; Kim T. S.; Kim B. J.; Lee J. Y. Intrinsically stretchable organic solar cells with efficiencies of over 11%. ACS Energy Lett., 2021, 6(7), 2512-2518. doi:10.1021/acsenergylett.1c00829http://dx.doi.org/10.1021/acsenergylett.1c00829
Son S. Y.; Kim J. H.; Song E.; Choi K.; Lee J.; Cho K.; Kim T. S.; Park T. Exploiting π-π stacking for stretchable semiconducting polymers. Macromolecules, 2018, 51(7), 2572-2579. doi:10.1021/acs.macromol.8b00093http://dx.doi.org/10.1021/acs.macromol.8b00093
Li M. F.; Xian K. H.; Zhao W. C.; Sheng D.; Liu C. H.; Li X.; Li W. W.; Ye L. Optimizing mechanical stretchability and photovoltaic performance in all-polymer solar cells from a two-donor polymer blend. Chem. Eng. J., 2023, 476, 146723. doi:10.1016/j.cej.2023.146723http://dx.doi.org/10.1016/j.cej.2023.146723
Wan Q. P.; Seo S.; Lee S. W.; Lee J.; Jeon H.; Kim T. S.; Kim B. J.; Thompson B. C. High-performance intrinsically stretchable polymer solar cell with record efficiency and stretchability enabled by thymine-functionalized terpolymer. J. Am. Chem. Soc., 2023, 145(22), 11914-11920. doi:10.1021/jacs.3c02764http://dx.doi.org/10.1021/jacs.3c02764
Choi D.; Kim H.; Persson N.; Chu P. H.; Chang M.; Kang J. H.; Graham S.; Reichmanis E. Elastomer-polymer semiconductor blends for high-performance stretchable charge transport networks. Chem. Mater., 2016, 28(4), 1196-1204. doi:10.1021/acs.chemmater.5b04804http://dx.doi.org/10.1021/acs.chemmater.5b04804
Jeon K. H.; Park J. W. Light-emitting polymer blended with elastomers for stretchable polymer light-emitting diodes. Macromolecules, 2022, 55(18), 8311-8320. doi:10.1021/acs.macromol.2c01095http://dx.doi.org/10.1021/acs.macromol.2c01095
Park Y.; Fuentes-Hernandez C.; Kim K.; Chou W. F.; Larrain F. A.; Graham S.; Pierron O. N.; Kippelen B. Skin-like low-noise elastomeric organic photodiodes. Sci. Adv., 2021, 7(51), eabj6565. doi:10.1126/sciadv.abj6565http://dx.doi.org/10.1126/sciadv.abj6565
Peng Z. X.; Xian K. H.; Cui Y.; Qi Q. C.; Liu J. W.; Xu Y.; Chai Y. B.; Yang C. M.; Hou J. H.; Geng Y. H.; Ye L. Thermoplastic elastomer tunes phase structure and promotes stretchability of high-efficiency organic solar cells. Adv. Mater., 2021, 33(49), e2106732. doi:10.1002/adma.202106732http://dx.doi.org/10.1002/adma.202106732
Yu Z. B.; Niu X. F.; Liu Z. T.; Pei Q. B. Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes. Adv. Mater., 2011, 23(34), 3989-3994. doi:10.1002/adma.201101986http://dx.doi.org/10.1002/adma.201101986
Xu J.; Wang S. H.; Wang G.J N.; Zhu C. X.; Luo S. C.; Jin L. H.; Gu X. D.; Chen S. C.; Feig V. R.; To J. W. F.; Rondeau-Gagné S.; Park J.; Schroeder B. C.; Lu C. E.; Oh J. Y.; Wang Y. M.; Kim Y. H.; Yan H.; Sinclair R.; Zhou D. S.; Xue G.; Murmann B.; Linder C.; Cai W.; Tok J. B. H.; Chung J. W.; Bao Z. N.Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science, 2017, 355(6320), 59-64. doi:10.1126/science.aah4496http://dx.doi.org/10.1126/science.aah4496
Xu J.; Wu H. C.; Zhu C. X.; Ehrlich A.; Shaw L.; Nikolka M.; Wang S. H.; Molina-Lopez F.; Gu X. D.; Luo S. C.; Zhou D. S.; Kim Y. H.; Wang G.J N.; Gu K.; Feig V. R.; Chen S. C.; Kim Y.; Katsumata T.; Zheng Y. Q.; Yan H.; Chung J. W.; Lopez J.; Murmann B.; Bao Z. N. Multi-scale ordering in highly stretchable polymer semiconducting films. Nat. Mater., 2019, 18(6), 594-601. doi:10.1038/s41563-019-0340-5http://dx.doi.org/10.1038/s41563-019-0340-5
Zhang Z.; Wang W.; Jiang Y.; Wang Y. X.; Wu Y.; Lai J. C.; Niu S.; Xu C.; Shih C. C.; Wang C.; Yan H.; Galuska L.; Prine N.; Wu H. C.; Zhong D.; Chen G.; Matsuhisa N.; Zheng Y.; Yu Z.; Wang Y.; Dauskardt R.; Gu X.; Tok J. B.; Bao Z. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature, 2022, 603(7902), 624-630. doi:10.1038/s41586-022-04400-1http://dx.doi.org/10.1038/s41586-022-04400-1
Jeong M. W.; Ma J. H.; Shin J. S.; Kim J. S.; Ma G. R.; Nam T. U.; Gu X. D.; Kang S. J.; Oh J. Y. Intrinsically stretchable three primary light-emitting films enabled by elastomer blend for polymer light-emitting diodes. Sci. Adv., 2023, 9(25), eadh1504. doi:10.1126/sciadv.adh1504http://dx.doi.org/10.1126/sciadv.adh1504
Li S. M.; Gao M. Y.; Zhou K. K.; Li X.; Xian K. H.; Zhao W. C.; Chen Y.; He C. Y.; Ye L. Achieving record-high stretchability and mechanical stability in organic photovoltaic blends with a dilute-absorber strategy. Adv. Mater., 2024, 36(8), 2307278. doi:10.1002/adma.202307278http://dx.doi.org/10.1002/adma.202307278
Zheng X. J.; Wu X. L.; Wu Q.; Han Y. F.; Ding G. Y.; Wang Y. M.; Kong Y. B.; Chen T. Y.; Wang M. T.; Zhang Y. Q.; Xue J. W.; Fu W. F.; Luo Q.; Ma C. Q.; Ma W.; Zuo L. J.; Shi M. M.; Chen H. Z. Thorough optimization for intrinsically stretchable organic photovoltaics. Adv. Mater., 2024, 36(11), e2307280. doi:10.1002/adma.202307280http://dx.doi.org/10.1002/adma.202307280
Han J. H.; Bao F.; Huang D.; Wang X. C.; Yang C. M.; Yang R. Q.; Jian X. G.; Wang J. Y.; Bao X. C.; Chu J. H. A universal method to enhance flexibility and stability of organic solar cells by constructing insulating matrices in active layers. Adv. Funct. Mater., 2020, 30(38), 2003654. doi:10.1002/adfm.202003654http://dx.doi.org/10.1002/adfm.202003654
Liu Y. W.; Zhu M. L.; Sun J. Z.; Shi W. K.; Zhao Z. Y.; Wei X. F.; Huang X.; Guo Y. L.; Liu Y. Q. A self-assembled 3D penetrating nanonetwork for high-performance intrinsically stretchable polymer light-emitting diodes. Adv. Mater., 2022, 34(27), e2201844. doi:10.1002/adma.202201844http://dx.doi.org/10.1002/adma.202201844
Paleti S. H. K.; Kim Y.; Kimpel J.; Craighero M.; Haraguchi S.; Müller C. Impact of doping on the mechanical properties of conjugated polymers. Chem. Soc. Rev., 2024, 53(4), 1702-1729. doi:10.1039/d3cs00833ahttp://dx.doi.org/10.1039/d3cs00833a
Kim J. H.; Park J. W. Intrinsically stretchable organic light-emitting diodes. Sci. Adv., 2021, 7(9), eabd9715. doi:10.1126/sciadv.abd9715http://dx.doi.org/10.1126/sciadv.abd9715
Zhuo Z. Q.; Ni M. J.; An X.; Bai L. B.; Liang X. Y.; Yang J.; Zheng Y. Y.; Liu B.; Sun N.; Sun L. L.; Wei C. X.; Yu N. N.; Chen W. Y.; Li M. Y.; Xu M.; Lin J. Y.; Huang W. Intrinsically stretchable and efficient fully π-conjugated polymer via internal plasticization for flexible deep-blue polymer light-emitting diodes with CIEy = 0.08. Adv. Mater., 2023, 35(40), 2303923. doi:10.1002/adma.202303923http://dx.doi.org/10.1002/adma.202303923
Wang Z. Y.; Xu M. C.; Li Z. L.; Gao Y. R.; Yang L. P.; Zhang D.; Shao M. Intrinsically stretchable organic solar cells beyond 10% power conversion efficiency enabled by transfer printing method. Adv. Funct. Mater., 2021, 31(35), 2103534. doi:10.1002/adfm.202103534http://dx.doi.org/10.1002/adfm.202103534
Fan X.; Nie W. Y.; Tsai H.; Wang N. X.; Huang H. H.; Cheng Y. J.; Wen R. J.; Ma L. J.; Yan F.; Xia Y. G. PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv. Sci., 2019, 6(19), 1900813. doi:10.1002/advs.201900813http://dx.doi.org/10.1002/advs.201900813
Kayser L. V.; Lipomi D. J. Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv. Mater., 2019, 31(10), e1806133. doi:10.1002/adma.201806133http://dx.doi.org/10.1002/adma.201806133
Vosgueritchian M.; Lipomi D. J.; Bao Z. N. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater., 2012, 22(2), 421-428. doi:10.1002/adfm.201101775http://dx.doi.org/10.1002/adfm.201101775
Kim J. Y.; Jung J. H.; Lee D. E.; Joo J. Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synth. Met., 2002, 126(2-3), 311-316. doi:10.1016/s0379-6779(01)00576-8http://dx.doi.org/10.1016/s0379-6779(01)00576-8
Wang Y.; Zhu C. X.; Pfattner R.; Yan H. P.; Jin L. H.; Chen S. C.; Molina-Lopez F.; Lissel F.; Liu J.; Rabiah N. I.; Chen Z.; Chung J. W.; Linder C.; Toney M. F.; Murmann B.; Bao Z. N. A highly stretchable, transparent, and conductive polymer. Sci. Adv., 2017, 3(3), e1602076. doi:10.1126/sciadv.1602076http://dx.doi.org/10.1126/sciadv.1602076
Shin E. Y.; Park S. H.; Jeon Y.; Kim K.; Lee G.; Lee J. Y.; Son H. J. Important role of additive in morphology of stretchable electrode for highly intrinsically stable organic photovoltaics. ACS Appl. Energy Mater., 2023, 6(17), 8729-8737. doi:10.1021/acsaem.3c01204http://dx.doi.org/10.1021/acsaem.3c01204
Wang X. M.; Liu Y. Q.; Chen Q. Z.; Yan Y. J.; Rao Z. C.; Lin Z. X.; Chen H. P.; Guo T. L. Recent advances in stretchable field-effect transistors. J. Mater. Chem. C, 2021, 9(25), 7796-7828. doi:10.1039/d1tc01082dhttp://dx.doi.org/10.1039/d1tc01082d
Cui N.; Song Y.; Tan C. H.; Zhang K.; Yang X. Y.; Dong S.; Xie B. M.; Huang F. Stretchable transparent electrodes for conformable wearable organic photovoltaic devices. NPJ Flex. Electron., 2021, 5, 31. doi:10.1038/s41528-021-00127-7http://dx.doi.org/10.1038/s41528-021-00127-7
Chen Z. H.; Fang R.; Li W.; Guan J. G. Stretchable transparent conductors: from micro/macromechanics to applications. Adv. Mater., 2019, 31(35), e1900756. doi:10.1002/adma.201900756http://dx.doi.org/10.1002/adma.201900756
Oyewole O.; Oyewole D.; Oyelade O.; Adeniji S.; Koech R.; Asare J.; Agyei-Tuffour B.; Soboyejo W. Failure of stretchable organic solar cells under monotonic and cyclic loading. Macromol. Mater. Eng., 2020, 305(11), 2000369. doi:10.1002/mame.202000369http://dx.doi.org/10.1002/mame.202000369
Steinmann V.; Moro L. Encapsulation requirements to enable stable organic ultra-thin and stretchable devices. J. Mater. Res., 2018, 33(13), 1925-1936. doi:10.1557/jmr.2018.194http://dx.doi.org/10.1557/jmr.2018.194
Liang J. J.; Li L.; Chen D.; Hajagos T.; Ren Z.; Chou S. Y.; Hu W.; Pei Q. B. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric. Nat. Commun., 2015, 6, 7647. doi:10.1038/ncomms8647http://dx.doi.org/10.1038/ncomms8647
Liu J.; Wang J. C.; Zhang Z. T.; Molina-Lopez F.; Wang G.J N.; Schroeder B. C.; Yan X. Z.; Zeng Y. T.; Zhao O.; Tran H.; Lei T.; Lu Y.; Wang Y. X.; Tok J. B. H.; Dauskardt R.; Chung J. W.; Yun Y.; Bao Z. N.Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat. Commun., 2020, 11(1), 3362. doi:10.1038/s41467-020-17084-whttp://dx.doi.org/10.1038/s41467-020-17084-w
Yin D.; Jiang N. R.; Chen Z. Y.; Liu Y. F.; Bi Y. G.; Zhang X. L.; Feng J.; Sun H. B. Roller-assisted adhesion imprinting for high-throughput manufacturing of wearable and stretchable organic light-emitting devices. Adv. Opt. Mater., 2020, 8(4), 1901525. doi:10.1002/adom.201901525http://dx.doi.org/10.1002/adom.201901525
Zhang S.; Alesadi A.; Mason G. T.; Chen K. L.; Freychet G.; Galuska L.; Cheng Y. H.; St Onge P. B. J.; Ocheje M. U.; Ma G. R.; Qian Z. Y.; Dhakal S.; Ahmad Z.; Wang C.; Chiu Y. C.; Rondeau-Gagné S.; Xia W. J.; Gu X. D. Molecular origin of strain-induced chain alignment in PDPP-based semiconducting polymeric thin films. Adv. Funct. Mater., 2021, 31(21), 2100161. doi:10.1002/adfm.202100161http://dx.doi.org/10.1002/adfm.202100161
Gao Y. R.; Liao J. W.; Chen H. Y.; Ning H. J.; Wu Q. H.; Li Z. L.; Wang Z. Y.; Zhang X. L.; Shao M.; Yu Y. High performance polarization-resolved photodetectors based on intrinsically stretchable organic semiconductors. Adv. Sci., 2023, 10(2), e2204727. doi:10.1002/advs.202204727http://dx.doi.org/10.1002/advs.202204727
Sen P.; Yang R. N.; Rech J. J.; Feng Y. X.; Ho C. H. Y.; Huang J. S.; So F.; Kline R. J.; You W.; Kudenov M. W.; O'Connor B. T. Panchromatic all-polymer photodetector with tunable polarization sensitivity. Adv. Opt. Mater., 2019, 7(4), 1801346. doi:10.1002/adom.201801346http://dx.doi.org/10.1002/adom.201801346
0
浏览量
395
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构