浏览全部资源
扫码关注微信
华东理工大学材料科学与工程学院 上海 200237
E-mail: caichunhua@ecust.edu.cn
jlin@ecust.edu.cn
纸质出版日期:2024-12-20,
网络出版日期:2024-10-12,
收稿日期:2024-06-07,
录用日期:2024-08-07
移动端阅览
任许乐, 蔡春华, 林嘉平. 聚肽三嵌段共聚物棒状胶束的超分子环化行为研究. 高分子学报, 2024, 55(12), 1668-1679
Ren, X. L.; Cai, C. H.; Lin, J. P. Supramolecular cyclization behavior of rodlike micelles assembled from polypeptide triblock copolymers. Acta Polymerica Sinica, 2024, 55(12), 1668-1679
任许乐, 蔡春华, 林嘉平. 聚肽三嵌段共聚物棒状胶束的超分子环化行为研究. 高分子学报, 2024, 55(12), 1668-1679 DOI: 10.11777/j.issn1000-3304.2024.24158. CSTR: 32057.14.GFZXB.2024.7276.
Ren, X. L.; Cai, C. H.; Lin, J. P. Supramolecular cyclization behavior of rodlike micelles assembled from polypeptide triblock copolymers. Acta Polymerica Sinica, 2024, 55(12), 1668-1679 DOI: 10.11777/j.issn1000-3304.2024.24158. CSTR: 32057.14.GFZXB.2024.7276.
以双端氨基聚乙二醇(NH
2
-PEG-NH
2
)作为大分子引发剂,以
γ
-苄基-
L
-谷氨酸酯五元环酸酐(BLG-NCA)为单体,通过开环聚合法合成了聚(
γ
-苄基-
L
-谷氨酸酯)-嵌段-聚乙二醇-嵌段-聚(
γ
-苄基-
L
-谷氨酸酯)(PBLG-
b
-PEG-
b
-PBLG)三嵌段共聚物. 运用核磁共振氢谱(
1
H-NMR)和凝胶渗透色谱(GPC)表征了聚合物的结构、分子量及其分布. 采用四氢呋喃/
N
N
-二甲基甲酰胺(THF/DMF)有机共溶剂溶解、滴加选择性溶剂(水)并透析的方法,制备了聚肽纳米棒水溶液;然后向纳米棒水溶液中加入THF诱导纳米棒发生弯曲成环. 通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、动态激光光散射(DLS)表征了组装体的形貌与结构,研究了聚合物分子量、成环时间、温度、THF加入量对组装体形貌的影响. 研究发现,PBLG链段聚合度显著影响棒状胶束的直径及长度,在THF的诱导下,具有较大长径比的棒状胶束可以发生超分子环化,而较短的纳米棒仅能发生弯曲,更短的纳米棒则保持形貌不变. 温度升高有利于THF诱导的超分子环化现象的发生. 采用圆二色光谱(CD)表征了PBLG主链结构及侧链的排列信息,发现THF的加入不影响主链的
α
-螺旋构象,但是侧链发生收缩,侧链苯环排列变得更为紧密. 这种侧链收缩产生内应力导致纳米棒塌缩,从而驱动纳米棒弯曲成环. 该研究模仿了生物体系中形成复杂结构的多级自组装策略,通过棒状胶束的逐步自组装制备了聚肽纳米环,丰富了纳米环的制备方法,拓展了超分子环化反应的研究范围,将为聚合物纳米环的可控制备及其功能应用提供指导.
Poly(
γ
-benzyl-
L
-glutamate)-b
lock-poly(ethylene glycol)-block-poly(
γ
-benzyl-
L
-glutamate) (PBLG-
b
-PEG-
b
-PBLG) triblock copolymers were synthesized using amine-PEG-amine (NH
2
-PEG-NH
2
) as macroinitiator
via
ring-opening polymerization of
γ
-benzyl-
L
-glutamate
N
-carboxyanhydride (BLG-NCA). The molecular weight and molecular weight distribution of the polymers were characterized by proton nuclear magnetic resonance spectroscopy (
1
H-NMR) and gel permeation chromatography (GPC). Rodlike micelles were assembled from the PBLG-
b
-PEG-
b
-PBLG triblock copolymers using a mixture of tetrahydrofuran and
N
N
-dimethylformamide (THF-DMF) as initial solvent. The PBLG segments are perpendicular to the long axis in the rodlike micelles. Under THF addition
the rodlike micelles bend to form curved rodlike micelles and then toroid micelles. The morphology and structure of the assemblies were characterized using scanning electron microscopy (SEM)
transmission electron microscopy (TEM)
and dynamic light scattering (DLS). The degree of bending of the nanorods can be adjusted by variation of the polymer molecular weight
toroid forming time
temperature
and THF adding content. The degree of polymerization of PBLG segments affects the diameter of rodlike micelles. The aspect ratio of the rodlike micelles determines whether supramolecular cyclization occurs. The addition of THF and the increase of temperature promote the occurrence of supramolecular cyclization behavior. The effect of temperature on supramolecular cyclization behavior exhibits a certain degree of reversibility. CD spectra were employed to characterize arrangement of the phenyl rings in the PBLG segments
revealing that the contraction of the phenyl rings induced by THF is the driving force for the bending of the nanorods. The research mimicking the hierarchical self-assembly strategy
in preparing complex structures by biosystems
reported a step-wise self-assembly of polypeptides into nanotoroids. The study enriches the preparation method for polymer nanotoroids
and will guide the controlled preparation of nanotoroids as well as their functional applications.
聚肽共聚物多级自组装棒状胶束超分子环化苯环排列
Polypeptide copolymersHierarchical self-assemblyRodlike micellesSupramolecular cyclizationPhenyl ring arrangement
Ganda S.; Stenzel M. H.Concepts fabrication methods and applications of living crystallization-driven self-assembly of block copolymers. Prog. Polym. Sci., 2020, 101, 101195. doi:10.1016/j.progpolymsci.2019.101195http://dx.doi.org/10.1016/j.progpolymsci.2019.101195
Gröschel A. H.; Müller A. H.Self-assembly concepts for multicompartment nanostructures. Nanoscale, 2015, 7(28), 11841-11876. doi:10.1039/c5nr02448jhttp://dx.doi.org/10.1039/c5nr02448j
Haataja J. S.; Houbenov N.; Aseyev V.; Fragouli P.; Iatrou H.; Sougrat R.; Hadjichristidis N.; Ikkala O.Polymersomes with asymmetric membranes and self-assembled superstructures using pentablock quintopolymers resolved by electron tomography. Chem. Commun., 2018, 54(9), 1085-1088. doi:10.1039/C7CC07306Bhttp://dx.doi.org/10.1039/C7CC07306B
Löbling T. I.; Borisov O.; Haataja J. S.; Ikkala O.; Gröschel A. H.; Müller A. H. E.Rational design of ABC triblock terpolymer solution nanostructures with controlled patch morphology. Nat. Commun., 2016, 7, 12097. doi:10.1038/ncomms12097http://dx.doi.org/10.1038/ncomms12097
Presa-Soto D.; Carriedo G. A.; de la Campa R.; Presa Soto A.Formation and reversible morphological transition of bicontinuous nanospheres and toroidal micelles by the self-assembly of a crystalline-b-coil diblock copolymer. Angew. Chem. Int. Ed, 2016, 55(34), 10102-10107. doi:10.1002/anie.201605317http://dx.doi.org/10.1002/anie.201605317
解鹏杰, 王倩佩, 刘美娇. 表面交替吸附的圆柱受限下两嵌段共聚物自组装的理论研究. 高分子学报, 2024, 55(9), 1251-1261.
牟桂芳, 杨翠琴, 闫强. 气体调控的高分子自组装. 高分子学报, 2024, 55(7), 781-801.
史柏扬, 王国伟. 聚合诱导自组装(PISA)技术的应用研究进展. 高分子学报, 2022, 53(1), 15-29.
Boylan N. J.; Suk J. S.; Lai S. K.; Jelinek R.; Boyle M. P.; Cooper M. J.; Hanes J.Highly compacted DNA nanoparticles with low MW PEG coatings: in vitro, ex vivo and in vivo evaluation. J. Control. Release, 2012, 157(1), 72-79. doi:10.1016/j.jconrel.2011.08.031http://dx.doi.org/10.1016/j.jconrel.2011.08.031
Cai J. D.; Mineart K. P.; Li X. Y.; Spontak R. J.; Manners I.; Qiu H. B.Hierarchical self-assembly of toroidal micelles into multidimensional nanoporous superstructures. ACS Macro Lett., 2018, 7(8), 1040-1045. doi:10.1021/acsmacrolett.8b00445http://dx.doi.org/10.1021/acsmacrolett.8b00445
Li Y. M.; Osada K.; Chen Q. X.; Tockary T. A.; Dirisala A.; Takeda K. M.; Uchida S.; Nagata K.; Itaka K.; Kataoka K.Toroidal packaging of pDNA into block ionomer micelles exerting promoted in vivo gene expression. Biomacromolecules, 2015, 16(9), 2664-2671. doi:10.1021/acs.biomac.5b00491http://dx.doi.org/10.1021/acs.biomac.5b00491
Liu Y. J.; Wang Z. T.; Liu Y.; Zhu G. Z.; Jacobson O.; Fu X.; Bai R. L.; Lin X. Y.; Lu N.; Yang X. Y.; Fan W. P.; Song J. B.; Wang Z.; Yu G. C.; Zhang F. W.; Kalish H.; Niu G.; Nie Z. H.; Chen X. Y.Suppressing nanoparticle-mononuclear phagocyte system interactions of two-dimensional gold nanorings for improved tumor accumulation and photothermal ablation of tumors. ACS Nano, 2017, 11(10), 10539-10548. doi:10.1021/acsnano.7b05908http://dx.doi.org/10.1021/acsnano.7b05908
Osada K.Versatile DNA folding structures organized by cationic block copolymers. Polym. J., 2019, 51, 381-387. doi:10.1038/s41428-018-0157-0http://dx.doi.org/10.1038/s41428-018-0157-0
Osada K.Structural polymorphism of single pDNA condensates elicited by cationic block polyelectrolytes. Polymers, 2020, 12(7), 1603. doi:10.3390/polym12071603http://dx.doi.org/10.3390/polym12071603
Wu F. S.; Jin X.; Guan Z.; Lin J. P.; Cai C. H.; Wang L. Q.; Li Y. S.; Lin S. L.; Xu P. F.; Gao L.Membrane nanopores induced by nanotoroids via an insertion and pore-forming pathway. Nano Lett., 2021, 21(20), 8545-8553. doi:10.1021/acs.nanolett.1c01331http://dx.doi.org/10.1021/acs.nanolett.1c01331
Hu Y.; Yang Y. M.; Wang H. J.; Du H.Synergistic integration of layer-by-layer assembly of photosensitizer and gold nanorings for enhanced photodynamic therapy in the near infrared. ACS Nano, 2015, 9(9), 8744-8754. doi:10.1021/acsnano.5b03063http://dx.doi.org/10.1021/acsnano.5b03063
Song J. B.; Wang F.; Yang X. Y.; Ning B.; Harp M. G.; Culp S. H.; Hu S.; Huang P.; Nie L. M.; Chen J. Y.; Chen X. Y.Gold nanoparticle coated carbon nanotube ring with enhanced Raman scattering and photothermal conversion property for theranostic applications. J. Am. Chem. Soc., 2016, 138(22), 7005-7015. doi:10.1021/jacs.5b13475http://dx.doi.org/10.1021/jacs.5b13475
Hayward R. C.; Pochan D. J.Tailored assemblies of block copolymers in solution: It is all about the process. Macromolecules, 2010, 43(8), 3577-3584. doi:10.1021/ma9026806http://dx.doi.org/10.1021/ma9026806
Huang H. Y.; Chung B.; Jung J.; Park H. W.; Chang T.Toroidal micelles of uniform size from diblock copolymers. Angew. Chem. Int. Ed, 2009, 48(25), 4594-4597. doi:10.1002/anie.200900533http://dx.doi.org/10.1002/anie.200900533
Yu H. Z.; Jiang W.Effect of shear flow on the formation of ring-shaped ABA amphiphilic triblock copolymer micelles. Macromolecules, 2009, 42(9), 3399-3404. doi:10.1021/ma900107rhttp://dx.doi.org/10.1021/ma900107r
Qiu H. B.; Oliver A. M.; Gwyther J.; Cai J. D.; Harniman R. L.; Hayward D. W.; Manners I.Uniform toroidal micelles via the solution self-assembly of block copolymer-homopolymer blends using a "frustrated crystallization" approach. Macromolecules, 2019, 52(1), 113-120. doi:10.1021/ACS.MACROMOL.8B02227http://dx.doi.org/10.1021/ACS.MACROMOL.8B02227
Qiu H. B.; Oliver A. M.; Gwyther J.; Cai J. D.; Harniman R. L.; Hayward D. W.; Manners I.Uniform toroidal micelles via the solution self-assembly of block copolymer-homopolymer blends using a "frustrated crystallization" approach. Macromolecules, 2019, 52(1), 113-120. doi:10.1021/ACS.MACROMOL.8B02227http://dx.doi.org/10.1021/ACS.MACROMOL.8B02227
He P. T.; Li X. J.; Deng M. G.; Chen T.; Liang H. J.Complex micelles from the self-assembly of coil-rod-coil amphiphilic triblock copolymers in selective solvents. Soft Matter, 2010, 6(7), 1539-1546. doi:10.1039/b926370ehttp://dx.doi.org/10.1039/b926370e
He X. H.; Schmid F.Spontaneous formation of complex micelles from a homogeneous solution. Phys. Rev. Lett., 2008, 100(13), 137802. doi:10.1103/physrevlett.100.137802http://dx.doi.org/10.1103/physrevlett.100.137802
Jiang Y.; Zhu J. T.; Jiang W.; Liang H. J.Cornucopian cylindrical aggregate morphologies from self-assembly of amphiphilic triblock copolymer in selective media. J. Phys. Chem. B, 2005, 109(46), 21549-21555. doi:10.1021/jp052420mhttp://dx.doi.org/10.1021/jp052420m
王寅超, 郑家豪, 张伟安, 蔡春华, 林嘉平. 含卟啉聚肽的合成及其自组装行为研究. 高分子学报, 2024, 55(2), 172-181.
Cui H. G.; Chen Z. Y.; Wooley K. L.; Pochan D. J.Origins of toroidal micelle formation through charged triblock copolymer self-assembly. Soft Matter, 2009, 5(6), 1269-1278. doi:10.1039/b811619ahttp://dx.doi.org/10.1039/b811619a
Xu B. B.; Qian H. Y.; Lin S. L.Self-assembly and photoinduced spindle-toroid morphology transition of macromolecular double-brushes with azobenzene pendants. ACS Macro Lett., 2020, 9(3), 404-409. doi:10.1021/acsmacrolett.0c00079http://dx.doi.org/10.1021/acsmacrolett.0c00079
Yang C. Y.; Gao L.; Lin J. P.; Wang L. Q.; Cai C. H.; Wei Y. H.; Li Z. B.Toroid formation through a supramolecular "cyclization reaction" of rodlike micelles. Angew. Chem. Int. Ed., 2017, 56(20), 5546-5550. doi:10.1002/anie.201701978http://dx.doi.org/10.1002/anie.201701978
Pochan D. J.; Chen Z. Y.; Cui H. G.; Hales K.; Qi K.; Wooley K. L.Toroidal triblock copolymer assemblies. Science, 2004, 306(5693), 94-97. doi:10.1126/science.1102866http://dx.doi.org/10.1126/science.1102866
Jeong M. G.; van Hest J. C. M.; Kim K. T.Self-assembly of dendritic-linear block copolymers with fixed molecular weight and block ratio. Chem. Commun., 2012, 48(30), 3590-3592. doi:10.1039/c2cc17231chttp://dx.doi.org/10.1039/c2cc17231c
Li X. J.; Deng M. G.; Liu Y.; Liang H. J.Dissipative particle dynamics simulations of toroidal structure formations of amphiphilic triblock copolymers. J. Phys. Chem. B, 2008, 112(47), 14762-14765. doi:10.1021/jp803948jhttp://dx.doi.org/10.1021/jp803948j
Geng Z.; Xiong B. J.; Wang L. Q.; Wang K.; Ren M.; Zhang L. B.; Zhu J. T.; Yang Z. Z.Moebius strips of chiral block copolymers. Nat. Commun., 2019, 10, 4090. doi:10.1038/s41467-019-11991-3http://dx.doi.org/10.1038/s41467-019-11991-3
Hu R.; Gao L.; Cai C. H.; Lin J. P.; Chen Z. W.; Wang L. Q.Intermicellar polymerization and intramicellar cyclization: A supramolecular ring-chain competition reaction. Macromolecules, 2021, 54(11), 5196-5203. doi:10.1021/acs.macromol.1c01020http://dx.doi.org/10.1021/acs.macromol.1c01020
Gao L.; Hu R.; Xu P. F.; Lin J. P.; Zhang L. S.; Wang L. Q.Supramolecular cyclization of semiflexible cylindrical micelles assembled from rod-coil graft copolymers. Nanoscale, 2020, 12(1), 296-305. doi:10.1039/c9nr07930khttp://dx.doi.org/10.1039/c9nr07930k
Chen L. L.; Jiang T.; Lin J. P.; Cai C. H.Toroid formation through self-assembly of graft copolymer and homopolymer mixtures: Experimental studies and dissipative particle dynamics simulations. Langmuir, 2013, 29(26), 8417-8426. doi:10.1021/la401553ahttp://dx.doi.org/10.1021/la401553a
Fan L. J.; Jiang J. H.; Sun Q. M.; Hong K.; Cornel E. J.; Zhu Y. Q.; Du J. Z.Fluorescent homopolypeptide toroids. Polym. Chem., 2022, 13(11), 1495-1501. doi:10.1039/d1py01691ahttp://dx.doi.org/10.1039/d1py01691a
Lu Y. Q.; Gao L.; Lin J. P.; Wang L. Q.; Zhang L. S.; Cai C. H.Supramolecular step-growth polymerization kinetics of pre-assembled triblock copolymer micelles. Polym. Chem., 2019, 10(25), 3461-3468. doi:10.1039/c9py00539khttp://dx.doi.org/10.1039/c9py00539k
Cai C. H.; Li Y. L.; Lin P. J.; Wang L. Q.; Lin S. L.; Wang D. X. S.; Jiang T.Simulation-assisted self-assembly of multicomponent polymers into hierarchical assemblies with varied morphologies. Angew. Chem. Int. Ed, 2013, 52(30), 7732-7736. doi:10.1002/anie.201210024http://dx.doi.org/10.1002/anie.201210024
Zhang S.; Cai C. H.; Guan Z.; Lin J. P.; Zhu X. Y.Fabrication of virus-like particles with strip-pattern surface: a two-step self-assembly approach. Chin. Chem. Lett., 2017, 28(4), 839-844. doi:10.1016/j.cclet.2016.12.040http://dx.doi.org/10.1016/j.cclet.2016.12.040
Cai C. H.; Lin J. P.; Zhu X. Y.; Gong S. T.; Wang X. S.; Wang L. Q.Superhelices with designed helical structures and temperature-stimulated chirality transitions. Macromolecules, 2016, 49(1), 15-22. doi:10.1021/acs.macromol.5b02254http://dx.doi.org/10.1021/acs.macromol.5b02254
0
浏览量
162
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构