浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 生态高分子材料重点实验室 长春 130022
2.中国科学技术大学 应用化学与工程学院 合肥 230026
E-mail: xcbian@ciac.ac.cn;
E-mail: xschen@ciac.ac.cn
纸质出版日期:2025-02-20,
网络出版日期:2024-10-29,
收稿日期:2024-07-16,
录用日期:2024-08-09
移动端阅览
杜晔奇, 刘心妍, 胡锦博, 段然龙, 刘焱龙, 边新超, 陈学思. 含饱和烷烃和芳烃结构的聚非对称交酯的高效合成与性能研究[J]. 高分子学报, 2025,56(2):232-241.
YE-QI DU, XIN-YAN LIU, JIN-BO HU, RAN-LONG DUAN, YAN-LONG LIU, XIN-CHAO BIAN, XUE-SI CHEN. Efficient Synthesis and Performance Study of Poly(dissymmetric diester)s Containing Saturated Alkane and Aromatic Structures. [J]. Acta polymerica sinica, 2025, 56(2): 232-241.
杜晔奇, 刘心妍, 胡锦博, 段然龙, 刘焱龙, 边新超, 陈学思. 含饱和烷烃和芳烃结构的聚非对称交酯的高效合成与性能研究[J]. 高分子学报, 2025,56(2):232-241. DOI: 10.11777/j.issn1000-3304.2024.24165. CSTR: 32057.14.GFZXB.2024.7278.
YE-QI DU, XIN-YAN LIU, JIN-BO HU, RAN-LONG DUAN, YAN-LONG LIU, XIN-CHAO BIAN, XUE-SI CHEN. Efficient Synthesis and Performance Study of Poly(dissymmetric diester)s Containing Saturated Alkane and Aromatic Structures. [J]. Acta polymerica sinica, 2025, 56(2): 232-241. DOI: 10.11777/j.issn1000-3304.2024.24165. CSTR: 32057.14.GFZXB.2024.7278.
非对称交酯合成效率低,开环聚合(ROP)产物分子量小,因此很少有研究报道聚非对称交酯的流变行为与力学性能. 本研究采用
N
N
-二异丙基乙胺(DIPEA)作为缚酸剂,通过均相反应体系高效合成了多种非对称交酯,经ROP得到数均分子量70 kg/mol的聚非对称交酯;并对聚合物的化学结构、热学性能、流变行为和力学性能进行了表征. 热学测试和力学性能测试结果表明5种聚酯材料均为非晶聚合物,在单体结构中引入高支化度饱和烷烃取代基和芳香族取代基可以提高聚合物玻璃化转变温度,而聚合物侧链的低支化度饱和烷烃取代基会降低其玻璃化转变温度并提高断裂伸长率. 流变测试结果表明,不同取代基的聚非对称交酯的零切黏度均低于聚乳酸,并且聚合物的缠结分子量受取代基影响. 本研究为聚酯材料结构设计与性能调控提供了有益参考.
The synthesis efficiency of dissymmetric diesters is low
and the molecular weight of the ring-opening polymerization (ROP) products is small; hence
there are few studies reporting the rheological and mechanical properties of poly(dissymmetric diester)s. In this study
N
N
-diisopropylethylamine (DIPEA) was used as a base to efficiently synthesize various dissymmetric diesters through a homogeneous reaction system. The ROP yielded poly(dissymmetric diester)s with a number average molecular weight of 70 kg/mol. The chemical structure
thermal properties
rheological properties
and mechanical properties of the polymers were characterized. Thermal and mechanical testing results indicated that all the five polyester materials were amorphous. The introduction of highly branched saturated alkane substituents and aromatic substituents into the monomer structure increased the glass transition temperature of the polymers
while low-branched saturated alkane substituents in the polymer side chains decreased the glass transition temperature and increased the elongation at break. Rheological tests showed that the zero-shear viscosity of poly(dissymmetric diester)s with different substituents was lower than that of poly(lactic acid). In conclusion
this study provides a valuable reference for the structural design and performance regulation of polyester materials.
聚乳酸非对称交酯改性
PolylactideDissymmetric diestersModification
Fukushima K.; Kimura Y.Stereo complexed polylactides(neo-PLA) as high-performance bio-based polymers: their formation, properties, and application. Polym. Int., 2006, 55(6), 626-642. doi:10.1002/pi.2010http://dx.doi.org/10.1002/pi.2010
Shao J.; Guo Y. M.; Xiang S.; Zhou D. D.; Bian X. C.; Sun J. R.; Li G.; Hou H. Q.The morphology and spherulite growth of PLA stereo complex in linear and branched PLLA/PDLA blends: effects of molecular weight and structure. CrystEngComm, 2016, 18(2), 274-282. doi:10.1039/c5ce02017dhttp://dx.doi.org/10.1039/c5ce02017d
郭明威, 黄黎明, 赵志锋. 基于非对称聚乳酸共混物调控多重立构复合晶: 定量研究. 高分子学报, 2024, 55(4), 473-484.
吴晗, 杨顺燚, 蒋妮, 甘志华. 聚苯乙烯嵌段对左旋聚乳酸/聚苯乙烯-b-右旋聚乳酸立构复合晶结晶行为的调控. 高分子学报, 2023, 54(5), 631-642.
李文泽, 刘港, 牛艳华, 黄亚江, 李光宪. 基于聚乙二醇结构调控高分子量聚乳酸立构复合体系的结晶行为. 高分子学报, 2022, 53(1), 67-78.
宋晓峰, 凌风光, 陈学思. 纳米羟基磷灰石表面接枝聚合左旋丙交酯. 高分子学报, 2013, 44(1), 95-101. doi:10.3724/SP.J.1105.2013.12149http://dx.doi.org/10.3724/SP.J.1105.2013.12149
Xiang S.; Zhou D. D.; Feng L. D.; Bian X. C.; Li G.; Chen X. S.; Wang T. C.Influence of chain architectures on crystallization behaviors of PLLA block in PEG/PLLA block copolymers. Chinese J. Polym. Sci., 2019, 37(3), 258-267. doi:10.1007/s10118-019-2202-7http://dx.doi.org/10.1007/s10118-019-2202-7
Zhou D. D.; Shao J.; Sun J. R.; Bian X. C.; Xiang S.; Li G.; Chen X. S.Effect of the different architectures and molecular weights on stereo complex in enantiomeric polylactides-b-MPEG block copolymers. Polymer, 2017, 123, 49-54. doi:10.1016/j.polymer.2017.07.005http://dx.doi.org/10.1016/j.polymer.2017.07.005
赵慧, 李利燕, 高俊, 刘瑞娜, 赵三平. 环糊精聚合物功能化聚乳酸/聚乙烯基吡咯烷酮共聚物膜的制备与性能. 高分子学报, 2016, 47(9), 1221-1228. doi:10.11777/j.issn1000-3304.2016.16006http://dx.doi.org/10.11777/j.issn1000-3304.2016.16006
王丽颖, 沈勇, 李志波. 生物基δ-己内酯与L-丙交酯顺序开环共聚制备热塑性弹性体及其性质研究. 高分子学报, 2024, 55(5), 582-593.
马钰琨, 沈勇, 李志波. 高热稳定Lewis酸碱对催化L-丙交酯均聚及与乙交酯共聚的本体开环聚合研究. 高分子学报, 2022, 53(8), 923-932. doi:10.11777/j.issn1000-3304.2022.22042http://dx.doi.org/10.11777/j.issn1000-3304.2022.22042
Kubo T.; Scheutz G. M.; Latty T. S.; Sumerlin B. S.Synthesis of functional and boronic acid-containing aliphatic polyesters via Suzuki coupling. Chem. Commun., 2019, 55(39), 5655-5658. doi:10.1039/c9cc01975hhttp://dx.doi.org/10.1039/c9cc01975h
Arıcan M. O.; Mert O.Synthesis and properties of novel diisopropyl-functionalized polyglycolide—PEG copolymers. RSC Adv., 2015, 5(87), 71519-71528. doi:10.1039/c5ra10972hhttp://dx.doi.org/10.1039/c5ra10972h
Liu T. Q.; Simmons T. L.; Bohnsack D. A.; MacKay M. E.; Smith M. R.; Baker G. L.Synthesis of polymandelide: a degradable polylactide derivative with polystyrene-like properties. Macromolecules, 2007, 40(17), 6040-6047. doi:10.1021/ma061839nhttp://dx.doi.org/10.1021/ma061839n
Trimaille T.; Gurny R.; Möller M.Polys(hexyl-substituted lactides): novel injectable hydrophobic drug delivery systems. J. Biomed. Mater. Res. Part A, 2007, 80A(1), 55-65. doi:10.1002/jbm.a.30888http://dx.doi.org/10.1002/jbm.a.30888
Trimaille T.; Möller M.; Gurny R.Synthesis and ring-opening polymerization of new monoalkyl-substituted lactides. J. Polym. Sci. Part A Polym. Chem., 2004, 42(17), 4379-4391. doi:10.1002/pola.20251http://dx.doi.org/10.1002/pola.20251
Çetin D.; Arıcan M. O.; Kenar H.; Mert S.; Mert O.Poly(asymmetrical glycolide)s: the mechanisms and thermosensitive properties. Macromolecules, 2021, 54(1), 272-290. doi:10.1021/acs.macromol.0c01893http://dx.doi.org/10.1021/acs.macromol.0c01893
Baker G.; Vogel E.; Smith M.III. Glass transitions in polylactides. Polym. Revs., 2008, 48(1), 64-84. doi:10.1080/15583720701834208http://dx.doi.org/10.1080/15583720701834208
Coumes F.; Darcos V.; Domurado D.; Li S. M.; Coudane J.Synthesis and ring-opening polymerisation of a new alkyne-functionalised glycolide towards biocompatible amphiphilic graft copolymers. Polym. Chem., 2013, 4(13), 3705-3713. doi:10.1039/c3py00375bhttp://dx.doi.org/10.1039/c3py00375b
Pounder R. J.; Dove A. P.Synthesis and organocatalytic ring-opening polymerization of cyclic esters derived from l-malic acid. Biomacromolecules, 2010, 11(8), 1930-1939. doi:10.1021/bm1004355http://dx.doi.org/10.1021/bm1004355
Olejniczak J.; Chan M. N.; Almutairi A.Light-triggered intramolecular cyclization in poly(lactic-co-glycolic acid)-based polymers for controlled degradation. Macromolecules, 2015, 48(10), 3166-3172. doi:10.1021/acs.macromol.5b00455http://dx.doi.org/10.1021/acs.macromol.5b00455
Leemhuis M.; Akeroyd N.; Kruijtzer J. A. W.; van Nostrum C. F.; Hennink W. E.Synthesis and characterization of allyl functionalized poly(α-hydroxy)acids and their further dihydroxylation and epoxidation. Eur. Polym. J., 2008, 44(2), 308-317. doi:10.1016/j.eurpolymj.2007.12.004http://dx.doi.org/10.1016/j.eurpolymj.2007.12.004
Delle Chiaie K. R.; Yablon L. M.; Biernesser A. B.; Michalowski G. R.; Sudyn A. W.; Byers J. A.Redox-triggered crosslinking of a degradable polymer. Polym. Chem., 2016, 7(28), 4675-4681. doi:10.1039/c6py00975ahttp://dx.doi.org/10.1039/c6py00975a
Lozhkin B. A.; Shlyakhtin A. V.; Bagrov V. V.; Ivchenko P. V.; Nifant’ev I. E.Effective stereoselective approach to substituted1,4-dioxane-2,5-diones as prospective substrates for ring-opening polymerization. Mendeleev Commun., 2018, 28(1), 61-63. doi:10.1016/j.mencom.2018.01.020http://dx.doi.org/10.1016/j.mencom.2018.01.020
Baker G. L.; Smith IIIM. R.Process for the preparation of polymers of dimeric cyclic esters. Google patent, US6469133B2, 2002-10-22.
Pedna A.; Rosi L.; Frediani M.; Frediani P.High glass transition temperature polyester coatings for the protection of stones. J. Appl. Polym. Sci., 2015, 132(30), 42323. doi:10.1002/app.42323http://dx.doi.org/10.1002/app.42323
Zhang B.; Sun B.; Bian X. C.; Li G.; Chen X. S.High melt strength and high toughness PLLA/PBS blends by copolymerization and in situ reactive compatibilization. Ind. Eng. Chem. Res., 2017, 56(1), 52-62. doi:10.1021/acs.iecr.6b03151http://dx.doi.org/10.1021/acs.iecr.6b03151
0
浏览量
241
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构