浏览全部资源
扫码关注微信
1.澳门大学应用物理及材料工程研究院 澳门特别行政区 999067
2.南方科技大学材料科学与工程系 深圳 518055
[ "曲松楠,男,1981年生. 获得首批国家自然基金委优秀青年基金(港澳)资助. 2004和2009年于吉林大学材料科学与工程学院获学士和博士学位. 2009年进入中国科学院长春光学精密机械与物理研究所,发光学及应用国家重点实验室工作,2015年破格晋升为研究员,博士生导师. 2019年入职澳门大学应用物理及材料工程研究所,教授. 主要从事“碳纳米点发光及应用”研究,目前主要研究兴趣:(1)碳纳米点带隙可控的高效发光;(2)碳纳米点固态发光器件;(3)碳纳米点在生物成像及癌症诊疗中的应用." ]
[ "田雷蕾,女,1980年生. 2003、2008年分获吉林大学学士、博士学位;2008~2010年在南卡莱罗纳大学和克莱姆森大学从事博士后研究;2011~2014年在芝加哥大学从事博士后;2015年入职南方科技大学材料科学与工程系,任长聘研究员、课题组长. 深圳市孔雀计划B类人才,深圳市孔雀团队核心成员,获深圳市自然科学奖二等奖. 致力于开发新型π共轭生物材料,根据分子间作用力的特点进行π共轭材料多功能诊疗应用设计,解决这类材料在分子修饰、功能复合和聚集态调控方面的问题,将π共轭材料的高效光转换性质更好地应用于生物成像和检测、光-基因联合治疗以及一体化光诊疗方向." ]
纸质出版日期:2024-12-20,
网络出版日期:2024-10-21,
收稿日期:2024-06-16,
录用日期:2024-07-12
移动端阅览
侯胜鑫, 曲松楠, 田雷蕾.亲疏水一体化策略构筑π共轭光诊疗纳米材料的研究进展.高分子学报, 2024, 55(12), 1622-1647
Hou, S. X.; Qu, S. N.; Tian, L. L. The research progress on one-component photodiagnostic nanomaterials based on π-conjugated amphiphilic polymers. Acta Polymerica Sinica, 2024, 55(12), 1622-1647
侯胜鑫, 曲松楠, 田雷蕾.亲疏水一体化策略构筑π共轭光诊疗纳米材料的研究进展.高分子学报, 2024, 55(12), 1622-1647 DOI: 10.11777/j.issn1000-3304.2024.24170. CSTR: 32057.14.GFZXB.2024.7280.
Hou, S. X.; Qu, S. N.; Tian, L. L. The research progress on one-component photodiagnostic nanomaterials based on π-conjugated amphiphilic polymers. Acta Polymerica Sinica, 2024, 55(12), 1622-1647 DOI: 10.11777/j.issn1000-3304.2024.24170. CSTR: 32057.14.GFZXB.2024.7280.
有机光诊疗
π
共轭分子由于明确的分子结构、丰富的激发态性质、大的摩尔吸光系数以及优异的生物安全性,在生物成像和肿瘤治疗方面展示出巨大的应用潜力. 然而,
π
共轭分子的强疏水性严重制约了它在生物体内的实际应用. 目前的研究致力于利用两亲性的聚合物载体包裹疏水分子以达到在水中分散的目的,这可能会导致不可控的分子泄露并造成严重的肝脾富集. 合成
π
共轭双亲聚合物构建一体化胶束是增强生物安全性,实现体内光诊疗应用的理想手段. 本文首先介绍了光诊疗
π
共轭分子的种类和分子结构设计,及其光物理化学性质. 其次,详细探讨了一体化胶束的构建方法,主要包括聚合物直接接枝(graft to)和
π
共轭分子参与聚合(graft from) 2种方式. 同时,对一体化胶束构建过程中使用亲水性高分子种类及功能进行了分类探讨,主要包括非生物大分子聚乙二醇和聚两性离子以及生物大分子核酸、多肽、多糖等. 最后,讨论了一体化胶束的独特性质及其在调控分子组装结构、调节生物体代谢性质、细胞和活体成像以及肿瘤治疗等方面的应用. 并对一体化的有机光诊疗纳米胶束在生物医学领域的研究进展进行了总结和展望.
Organic phototheranostic
π
-conjugated molecules exhibit great potential for bioimaging and tumor therapy applications due to their well-defined molecular structures
abundant excited state properties
large molar absorption coefficients
and excellent biosafety. However
the strong hydrophobicity of
π
-conjugated molecules severely restricts their practical applications in organisms. Current research is devoted to using amphiphilic polymer carriers to encapsulate hydrophobic
π
-conjugated molecules for water dispersion. This may lead to uncontrollable molecular leakage and cause severe liver and spleen enrichment. Synthesis of
π
-conjugated amphiphilic polymers and construction of one-component micelles have become an emerging strategy for developing phototheranostic materials. In this review
we summarized the recent research progress on one-component phototheranostic nanomaterials based on
π
-conjugated amphiphilic polymers. First
the category of phototheranostic
π
-conjugated molecules is introduced. Secondly
the constructions of one-component micelles are discussed in detail. The synthesis of
π
-conjugated amphiphilic polymers mainly includes the "graft to" and "graft from" methods. Also
the hydrophilic polymers for the synthesis of
π
-conjugated amphiphilic polymers are classified and discussed
mainly including synthetic polymers
such as polyethylene glycol and zwitterionic polymer
and biological macromolecules
like nucleic acids
peptides
polysaccharides and so on. Finally
the unique properties of these one-component
π
-conjugated nanomaterials and their applications in regulating molecular assembly
enhancing biocompatible properties
cellular a
nd clinical imaging
and tumor therapy are reviewed.
光诊疗π共轭分子水溶性高分子一体化胶束
Phototheranosticsπ-Conjugated moleculesWater-soluble polymerOne-component micelles
He R.; Liu M. X.; Shen Y.; Long Z. R.; Zhou C. R.Large-area assembly of halloysite nanotubes for enhancing the capture of tumor cells. J. Mater. Chem. B, 2017, 5(9), 1712-1723. doi:10.1039/c6tb02538bhttp://dx.doi.org/10.1039/c6tb02538b
Liu X. Y.; Braun G. B.; Qin M. D.; Ruoslahti E.; Sugahara K. N.In vivo cation exchange in quantum dots for tumor-specific imaging. Nat. Commun., 2017, 8(1), 343. doi:10.1038/s41467-017-00153-yhttp://dx.doi.org/10.1038/s41467-017-00153-y
Zhang X.; He S. Q.; Ding B. B.; Qu C. R.; Zhang Q.; Chen H.; Sun Y.; Fang H. Y.; Long Y.; Zhang R. P.; Lan X. L.; Cheng Z.Cancer cell membrane-coated rare earth doped nanoparticles for tumor surgery navigation in NIR-II imaging window. Chem. Eng. J., 2020, 385, 123959. doi:10.1016/j.cej.2019.123959http://dx.doi.org/10.1016/j.cej.2019.123959
Wang F. F.; Zhong Y. T.; Bruns O.; Liang Y. Y.; Dai H. J.In vivo NIR-II fluorescence imaging for biology and medicine. Nat. Photonics, 2024, 18, 535-547. doi:10.1038/s41566-024-01391-5http://dx.doi.org/10.1038/s41566-024-01391-5
Wan H.; Yue J. Y.; Zhu S. J.; Uno T.; Zhang X. D.; Yang Q. L.; Yu K.; Hong G. S.; Wang J. Y.; Li L. L.; Ma Z. R.; Gao H. P.; Zhong Y. T.; Su J.; Antaris A. L.; Xia Y.; Luo J.; Liang Y. Y.; Dai H. J.A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat. Commun., 2018, 9(1), 1171. doi:10.1038/s41467-018-03505-4http://dx.doi.org/10.1038/s41467-018-03505-4
Hong G. S.; Antaris A. L.; Dai H. J.Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng., 2017, 1, 10. doi:10.1038/s41551-016-0010http://dx.doi.org/10.1038/s41551-016-0010
Feng G. X.; Zhang G. Q.; Ding D.Design of superior phototheranostic agents guided by Jablonski diagrams. Chem. Soc. Rev., 2020, 49(22), 8179-8234. doi:10.1039/d0cs00671hhttp://dx.doi.org/10.1039/d0cs00671h
Zhu Y. L.; Lai H. J.; Guo H.; Peng D. L.; Han L.; Gu Y.; Wei Z. X.; Zhao D. K.; Zheng N.; Hu D. H.; Xi L.; He F.; Tian L. L.Side-chain-tuned molecular packing allows concurrently boosted photoacoustic imaging and NIR-II fluorescence. Angew. Chem. Int. Ed., 2022, 61(15), e202117433. doi:10.1002/anie.202117433http://dx.doi.org/10.1002/anie.202117433
Li H.; Li Q.; Gu Y.; Wang M. Y.; Tan P.; Wang H. T.; Han L.; Zhu Y. L.; He F.; Tian L. L.Dimerization extends π-conjugation of electron donor-acceptor structures leading to phototheranostic properties beyond the sum of two monomers. Aggregate, 2024, 5(3), e528. doi:10.1002/agt2.528http://dx.doi.org/10.1002/agt2.528
Zhu Y. L.; Lai H. J.; Gu Y.; Wei Z. X.; Chen L.; Lai X.; Han L.; Tan P.; Pu M. R.; Xiao F.; He F.; Tian L. L.The balance effect of π-π electronic coupling on NIR-II emission and photodynamic properties of highly hydrophobic conjugated photosensitizers. Adv. Sci., 2024, 11(6), 2307569. doi:10.1002/advs.202307569http://dx.doi.org/10.1002/advs.202307569
Gu Y.; Lai H. J.; Chen Z. Y.; Zhu Y. L.; Sun Z. Z.; Lai X.; Wang H. T.; Wei Z. X.; Chen L.; Huang L. M.; Zhang Y. Z.; He F.; Tian L. L.Chlorination-mediated π-π stacking enhances the photodynamic properties of a NIR-II emitting photosensitizer with extended conjugation. Angew. Chem. Int. Ed., 2023, 62(25), e202303476. doi:10.1002/anie.202303476http://dx.doi.org/10.1002/anie.202303476
Li S. L.; Deng Q. Y.; Li X.; Huang Y. W.; Li X. Z.; Liu F.; Wang H. J.; Qing W. X.; Liu Z. H.; Lee C. S.Bis-diketopyrrolopyrrole conjugated polymer nanoparticles as photothermic nanoagonist for specific and synergistic glioblastoma therapy. Biomaterials, 2019, 216, 119252. doi:10.1016/j.biomaterials.2019.119252http://dx.doi.org/10.1016/j.biomaterials.2019.119252
Trofymchuk K.; Valanciunaite J.; Andreiuk B.; Reisch A.; Collot M.; Klymchenko A. S.BODIPY-loaded polymer nanoparticles: chemical structure of cargo defines leakage from nanocarrier in living cells. J. Mater. Chem. B, 2019, 7(34), 5199-5210. doi:10.1039/C8TB02781Ahttp://dx.doi.org/10.1039/C8TB02781A
Sun X. R.; Wang G. W.; Zhang H.; Hu S. Q.; Liu X.; Tang J. B.; Shen Y. Q.The blood clearance kinetics and pathway of polymeric micelles in cancer drug delivery. ACS Nano, 2018, 12(6), 6179-6192. doi:10.1021/acsnano.8b02830http://dx.doi.org/10.1021/acsnano.8b02830
Ren J.; Hu H. D.; Wang S. T.; He Y.; Ji Y. H.; Chen Y. R.; Wang K. N.; Zhang H. Y.; Zhao Y. P.; Dai F. Y.Prevent drug leakage via the boronic acid glucose-insensitive micelle for Alzheimer's disease combination treatment. ACS Appl. Mater. Interfaces, 2022, 14(20), 23182-23193. doi:10.1021/acsami.2c03684http://dx.doi.org/10.1021/acsami.2c03684
彭强. 聚烷基芴类共轭高分子材料的设计合成及发光性质研究. 四川大学博士学位论文, 2004.
MacFarlane L. R.; Shaikh H.; Garcia-Hernandez J. D.; Vespa M.; Fukui T.; Manners I.Functional nanoparticles through π-conjugated polymer self-assembly. Nat. Rev. Mater., 2021, 6, 7-26. doi:10.1038/s41578-020-00233-4http://dx.doi.org/10.1038/s41578-020-00233-4
Jacoutot P.; Scaccabarozzi A. D.; Zhang T. Y.; Qiao Z. R.; Aniés F.; Neophytou M.; Bristow H.; Kumar R.; Moser M.; Nega A. D.; Schiza A.; Dimitrakopoulou-Strauss A.; Gregoriou V. G.; Anthopoulos T. D.; Heeney M.; McCulloch I.; Bakulin A. A.; Chochos C. L.; Gasparini N.Infrared organic photodetectors employing ultralow bandgap polymer and non-fullerene acceptors for biometric monitoring. Small, 2022, 18(15), 2200580. doi:10.1002/smll.202200580http://dx.doi.org/10.1002/smll.202200580
Yin B. L.; Qin Q. Q.; Li Z.; Wang Y. J.; Liu X. L.; Liu Y. C.; Huan S. Y.; Zhang X. B.; Song G. S.Tongue cancer tailored photosensitizers for NIR-II fluorescence imaging guided precise treatment. Nano Today, 2022, 45, 101550. doi:10.1016/j.nantod.2022.101550http://dx.doi.org/10.1016/j.nantod.2022.101550
Meng L. X.; Zhang Y. M.; Wan X. J.; Li C. X.; Zhang X.; Wang Y. B.; Ke X.; Xiao Z.; Ding L. M.; Xia R. X.; Yip H. L.; Cao Y.; Chen Y. S.Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361(6407), 1094-1098. doi:10.1126/science.aat2612http://dx.doi.org/10.1126/science.aat2612
Li Y. Y.; Cai Z. C.; Liu S. J.; Zhang H. K.; Wong S. T. H.; Lam J. W. Y.; Kwok R. T. K.; Qian J.; Tang B. Z.Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels. Nat. Commun., 2020, 11(1), 1255. doi:10.1038/s41467-020-15095-1http://dx.doi.org/10.1038/s41467-020-15095-1
Wan Y. P.; Lu G. H.; Wei W. C.; Huang Y. H.; Li S. L.; Chen J. X.; Cui X.; Xiao Y. F.; Li X. Z.; Liu Y. H.; Meng X. M.; Wang P. F.; Xie H. Y.; Zhang J. F.; Wong K. T.; Lee C. S.Stable organic photosensitizer nanoparticles with absorption peak beyond 800 nanometers and high reactive oxygen species yield for multimodality phototheranostics. ACS Nano, 2020, 14(8), 9917-9928. doi:10.1021/acsnano.0c02767http://dx.doi.org/10.1021/acsnano.0c02767
Qu C. R.; Xiao Y. L.; Zhou H.; Ding B. B.; Li A. G.; Lin J. C.; Zeng X. D.; Chen H.; Qian K.; Zhang X.; Fang W.; Wu J. Z.; Deng Z. X.; Cheng Z.; Hong X. C.Quaternary ammonium salt based NIR-II probes for in vivo imaging. Adv. Opt. Mater., 2019, 7(15), 1900229. doi:10.1002/adom.201900229http://dx.doi.org/10.1002/adom.201900229
Chen Y.; Chen S. Y.; Yu H. L.; Wang Y. S.; Cui M. Y.; Wang P.; Sun P. F.; Ji M.D-a type NIR-II organic molecules: strategies for the enhancement fluorescence brightness and applications in NIR-II fluorescence imaging-navigated photothermal therapy. Adv. Healthc. Mater., 2022, 11(21), 2201158. doi:10.1002/adhm.202270127http://dx.doi.org/10.1002/adhm.202270127
Mu J.; Xiao M.; Shi Y.; Geng X. W.; Li H.; Yin Y. X.; Chen X. Y.The chemistry of organic contrast agents in the NIR-II window. Angew. Chem. Int. Ed., 2022, 61(14), e202114722. doi:10.1002/anie.202114722http://dx.doi.org/10.1002/anie.202114722
Shi Z. X.; Han X.; Hu W. B.; Bai H.; Peng B.; Ji L.; Fan Q. L.; Li L.; Huang W.Bioapplications of small molecule aza-BODIPY: from rational structural design to in vivo investigations. Chem. Soc. Rev., 2020, 49(21), 7533-7567. doi:10.1039/d0cs00234hhttp://dx.doi.org/10.1039/d0cs00234h
Boens N.; Verbelen B.; Ortiz M. J.; Jiao L. J.; Dehaen W.Synthesis of BODIPY dyes through postfunctionalization of the boron dipyrromethene core. Coord. Chem. Rev., 2019, 399, 213024. doi:10.1016/j.ccr.2019.213024http://dx.doi.org/10.1016/j.ccr.2019.213024
Chen D. P.; Zhong Z. H.; Ma Q. L.; Shao J. J.; Huang W.; Dong X. C.Aza-BODIPY-based nanomedicines in cancer phototheranostics. ACS Appl. Mater. Interfaces, 2020, 12(24), 26914-26925. doi:10.1021/acsami.0c05021http://dx.doi.org/10.1021/acsami.0c05021
Bai L.; Sun P. F.; Liu Y.; Zhang H.; Hu W. B.; Zhang W. S.; Liu Z. P.; Fan Q. L.; Li L.; Huang W.Novel aza-BODIPY based small molecular NIR-II fluorophores for in vivo imaging. Chem. Commun., 2019, 55(73), 10920-10923. doi:10.1039/c9cc03378ehttp://dx.doi.org/10.1039/c9cc03378e
Qiu Y.; Yuan B.; Cao Y.; He X. L.; Akakuru O. U.; Lu L. H.; Chen N. W.; Xu M. T.; Wu A. G.; Li J.Recent progress on near-infrared fluorescence heptamethine cyanine dye-based molecules and nanoparticles for tumor imaging and treatment. WIREs Nanomed. Nanobiotechnol., 2023, 15(5), e1910. doi:10.1002/wnan.1910http://dx.doi.org/10.1002/wnan.1910
Yang J. J.; Wang K. Q.; Zheng Y. H.; Piao Y.; Wang J. Q.; Tang J. B.; Shen Y. Q.; Zhou Z. X.Molecularly precise, bright, photostable, and biocompatible cyanine nanodots as alternatives to quantum dots for biomedical applications. Angew. Chem. Int. Ed., 2022, 61(36), e202202128. doi:10.1002/anie.202202128http://dx.doi.org/10.1002/anie.202202128
Cui H. D.; Hu D. H.; Zhang J. N.; Gao G. H.; Chen Z.; Li W. J.; Gong P.; Sheng Z. H.; Cai L. T.Gold nanoclusters-indocyanine green nanoprobes for synchronous cancer imaging, treatment, and real-time monitoring based on fluorescence resonance energy transfer. ACS Appl. Mater. Interfaces, 2017, 9(30), 25114-25127. doi:10.1021/acsami.7b06192http://dx.doi.org/10.1021/acsami.7b06192
田佳, 张伟安. 特定结构的卟啉聚合物的构建及应用. 高分子学报, 2019, 50(7), 653-670. doi:10.11777/j.issn1000-3304.2019.19018http://dx.doi.org/10.11777/j.issn1000-3304.2019.19018
Sun H.; Guo R. H.; Guo Y. H.; Song J. T.; Li Z. L.; Song F. L.Boosting type-I and type-II ROS production of water-soluble porphyrin for efficient hypoxic tumor therapy. Mol. Pharm., 2023, 20(1), 606-615. doi:10.1021/acs.molpharmaceut.2c00822http://dx.doi.org/10.1021/acs.molpharmaceut.2c00822
Wang K.; Chen J.; Lin L.; Yan N.; Yang W. H.; Cai K. Y.; Tian H. Y.; Chen X. S.Anion receptor-mediated multicomponent synergistic self-assembly of porphyrin for efficient phototherapy to elicit tumor immunotherapy. Nano Today, 2022, 46, 101579. doi:10.1016/j.nantod.2022.101579http://dx.doi.org/10.1016/j.nantod.2022.101579
Kang L.; Sun T. Z.; Liu S. Y.; Zhao H. Y.; Zhao Y. X.Porphyrin derivative with binary properties of photodynamic therapy and water-dependent reversible photoacidity therapy for treating hypoxic tumor. Adv. Healthc. Mater., 2024, 13(11), 2303856. doi:10.1002/adhm.202303856http://dx.doi.org/10.1002/adhm.202303856
Tian J.; Huang B. X.; Nawaz M. H.; Zhang W. A.Recent advances of multi-dimensional porphyrin-based functional materials in photodynamic therapy. Coord. Chem. Rev., 2020, 420, 213410. doi:10.1016/j.ccr.2020.213410http://dx.doi.org/10.1016/j.ccr.2020.213410
Tian J.; Zhang W. A.Synthesis, self-assembly and applications of functional polymers based on porphyrins. Prog. Polym. Sci., 2019, 95, 65-117. doi:10.1016/j.progpolymsci.2019.05.002http://dx.doi.org/10.1016/j.progpolymsci.2019.05.002
Hu H.; Wang H.; Yang Y. C.; Xu J. F.; Zhang X.A bacteria-responsive porphyrin for adaptable photodynamic/photothermal therapy. Angew. Chem. Int. Ed., 2022, 61(23), e202200799. doi:10.1002/anie.202200799http://dx.doi.org/10.1002/anie.202200799
Wang L. L.; Du W.; Hu Z. J.; Uvdal K.; Li L.; Huang W.Hybrid rhodamine fluorophores in the visible/NIR region for biological imaging. Angew. Chem. Int. Ed., 2019, 58(40), 14026-14043. doi:10.1002/anie.201901061http://dx.doi.org/10.1002/anie.201901061
Zeng S.; Wang Z. K.; Chen C.; Liu X. S.; Wang Y.; Chen Q. X.; Wang J. Y.; Li H. D.; Peng X. J.; Yoon J.Construction of rhodamine-based AIE photosensitizer hydrogel with clinical potential for selective ablation of drug-resistant gram-positive bacteria in vivo. Adv. Healthc. Mater., 2022, 11(17), e2200837. doi:10.1002/adhm.202200837http://dx.doi.org/10.1002/adhm.202200837
Mendoza G.; de Solorzano I. O.; Pintre I.; Garcia-Salinas S.; Sebastian V.; Andreu V.; Gimeno M.; Arruebo M.Near infrared dye-labelled polymeric micro- and nanomaterials: in vivo imaging and evaluation of their local persistence. Nanoscale, 2018, 10(6), 2970-2982. doi:10.1039/c7nr07345chttp://dx.doi.org/10.1039/c7nr07345c
Chaney E. J.; Tang L.; Tong R.; Cheng J. J.; Boppart S. A.Lymphatic biodistribution of polylactide nanoparticles. Mol. Imaging, 2010, 9(3), 153-162. doi:10.2310/7290.2010.00012http://dx.doi.org/10.2310/7290.2010.00012
Mansfeld U.; Pietsch C.; Hoogenboom R.; Becer C. R.; Schubert U. S.Clickable initiators, monomers and polymers in controlled radical polymerizations-a prospective combination in polymer science. Polym. Chem., 2010, 1(10), 1560-1598. doi:10.1039/c0py00168fhttp://dx.doi.org/10.1039/c0py00168f
Khalin I.; Heimburger D.; Melnychuk N.; Collot M.; Groschup B.; Hellal F.; Reisch A.; Plesnila N.; Klymchenko A. S.Ultrabright fluorescent polymeric nanoparticles with a stealth pluronic shell for live tracking in the mouse brain. ACS Nano, 2020, 14(8), 9755-9770. doi:10.1021/acsnano.0c01505http://dx.doi.org/10.1021/acsnano.0c01505
Liu C. C.; Ma H. L.; Hu Z. B.; Tian R.; Ma R.; Xu Y. F.; Wang X. Y.; Zhu X. F.; Yu P. P.; Zhu S. J.; Sun H. T.; Liang Y. Y.Shielding unit engineering of NIR-II molecular fluorophores for improved fluorescence performance and renal excretion ability. Front. Chem., 2021, 9, 739802. doi:10.3389/fchem.2021.739802http://dx.doi.org/10.3389/fchem.2021.739802
Yang Q. L.; Hu Z. B.; Zhu S. J.; Ma R.; Ma H. L.; Ma Z. R.; Wan H.; Zhu T.; Jiang Z. Y.; Liu W. Q.; Jiao L. Y.; Sun H. T.; Liang Y. Y.; Dai H. J.Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J. Am. Chem. Soc., 2018, 140(5), 1715-1724. doi:10.1021/jacs.7b10334http://dx.doi.org/10.1021/jacs.7b10334
Antaris A. L.; Chen H.; Cheng K.; Sun Y.; Hong G. S.; Qu C. R.; Diao S.; Deng Z. X.; Hu X. M.; Zhang B.; Zhang X. D.; Yaghi O. K.; Alamparambil Z. R.; Hong X. C.; Cheng Z.; Dai H. J.A small-molecule dye for NIR-II imaging. Nat. Mater., 2016, 15(2), 235-242. doi:10.1038/nmat4476http://dx.doi.org/10.1038/nmat4476
Zhang L. E.; Zhang Z. K.; Liu C. R.; Zhang X. K.; Fan Q. L.; Wu W.; Jiang X. Q.NIR-II dye-labeled cylindrical polymer brushes for in vivo imaging. ACS Macro Lett., 2019, 8(12), 1623-1628. doi:10.1021/acsmacrolett.9b00815http://dx.doi.org/10.1021/acsmacrolett.9b00815
Zheng X. L.; Pan D. Y.; Chen M.; Dai X. H.; Cai H.; Zhang H.; Gong Q. Y.; Gu Z. W.; Luo K.Tunable hydrophile-lipophile balance for manipulating structural stability and tumor retention of amphiphilic nanoparticles. Adv. Mater., 2019, 31(35), 1901586. doi:10.1002/adma.201901586http://dx.doi.org/10.1002/adma.201901586
Cai H.; Tan P.; Chen X. T.; Kopytynski M.; Pan D. Y.; Zheng X. L.; Gu L.; Gong Q. Y.; Tian X. H.; Gu Z. W.; Zhang H.; Chen R. J.; Luo K.Stimuli-sensitive linear-dendritic block copolymer-drug prodrug as a nanoplatform for tumor combination therapy. Adv. Mater., 2022, 34(8), 2108049. doi:10.1002/adma.202108049http://dx.doi.org/10.1002/adma.202108049
Chen S. Q.; Zhong Y.; Fan W. F.; Xiang J. J.; Wang G. W.; Zhou Q.; Wang J. Q.; Geng Y.; Sun R.; Zhang Z.; Piao Y.; Wang J. G.; Zhuo J. Y.; Cong H. L.; Jiang H. P.; Ling J.; Li Z. C.; Yang D. D.; Yao X.; Xu X.; Zhou Z. X.; Tang J. B.; Shen Y. Q.Enhanced tumour penetration and prolonged circulation in blood of polyzwitterion-drug conjugates with cell-membrane affinity. Nat. Biomed. Eng., 2021, 5(9), 1019-1037. doi:10.1038/s41551-021-00701-4http://dx.doi.org/10.1038/s41551-021-00701-4
Sun R.; Zhang Y. F.; Lin X. W.; Piao Y.; Xie T.; He Y.; Xiang J. J.; Shao S. Q.; Zhou Q.; Zhou Z. X.; Tang J. B.; Shen Y. Q.Aminopeptidase N-responsive conjugates with tunable charge-reversal properties for highly efficient tumor accumulation and penetration. Angew. Chem. Int. Ed., 2023, 62(9), e202217408. doi:10.1002/anie.202217408http://dx.doi.org/10.1002/anie.202217408
Ma Z. Y.; An R.; Chen M.; Wang X.; Zhu M. F.Random versus block glycopolymers bearing betulin and porphyrin for enhanced photodynamic therapy. Biomacromolecules, 2022, 23(12), 5074-5083. doi:10.1021/acs.biomac.2c00922http://dx.doi.org/10.1021/acs.biomac.2c00922
Flanders M.; Gramlich W. M.Water-soluble and degradation-resistant curcumin copolymers from reversible addition-fragmentation chain (RAFT) copolymerization. Macromolecules, 2022, 55(10), 4064-4075. doi:10.1021/acs.macromol.2c00123http://dx.doi.org/10.1021/acs.macromol.2c00123
Boyer C.; Corrigan N. A.; Jung K.; Nguyen D.; Nguyen T. K.; Adnan N. N. M.; Oliver S.; Shanmugam S.; Yeow J.Copper-mediated living radical polymerization (atom transfer radical polymerization and copper(0) mediated polymerization): from fundamentals to bioapplications. Chem. Rev., 2016, 116(4), 1803-1949. doi:10.1021/acs.chemrev.5b00396http://dx.doi.org/10.1021/acs.chemrev.5b00396
Yang C. J.; Huang S.; Jia T.; Peng Y. F.; Wei X.; Wang M. F.Sub-10 nm theranostic unimolecular micelles with high tumor-specific accumulation, retention, and inhibitory effect. ACS Appl. Bio Mater., 2019, 2(10), 4142-4153. doi:10.1021/acsabm.9b00324http://dx.doi.org/10.1021/acsabm.9b00324
Yao C. Z.; Chen Y.; Zhao M. Y.; Wang S. F.; Wu B.; Yang Y. W.; Yin D. R.; Yu P.; Zhang H. X.; Zhang F.A bright, renal-clearable NIR-II brush macromolecular probe with long blood circulation time for kidney disease bioimaging. Angew. Chem. Int. Ed., 2022, 61(5), e202114273. doi:10.1002/anie.202114273http://dx.doi.org/10.1002/anie.202114273
Huang Z. F.; Zhou C. Y.; Yu Y.; Wang S. Y.; Fu R.; Liu X. B.; Mao L. C.; Yuan J. Y.; Tao L.; Wei Y.Synthesis of a polymerizable aggregation-induced emission (AIE) dye with A-D structure based on benzothiadiazole for fluorescent nanoparticles and its application in bioimaging. Eur. Polym. J., 2022, 181, 111705. doi:10.1016/j.eurpolymj.2022.111705http://dx.doi.org/10.1016/j.eurpolymj.2022.111705
Christopherson C. J.; Paisley N. R.; Xiao Z. J.; Algar W. R.; Hudson Z. M.Red-emissive cell-penetrating polymer dots exhibiting thermally activated delayed fluorescence for cellular imaging. J. Am. Chem. Soc., 2021, 143(33), 13342-13349. doi:10.1021/jacs.1c06290http://dx.doi.org/10.1021/jacs.1c06290
Otsuka H.; Nagasaki Y.; Kataoka K.PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Deliv. Rev., 2012, 64, 246-255. doi:10.1016/j.addr.2012.09.022http://dx.doi.org/10.1016/j.addr.2012.09.022
Suk J. S.; Xu Q. G.; Kim N.; Hanes J.; Ensign L. M.PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev., 2016, 99, 28-51. doi:10.1016/j.addr.2015.09.012http://dx.doi.org/10.1016/j.addr.2015.09.012
Pelegri-O'Day E. M.; Lin E. W.; Maynard H. D.Therapeutic protein-polymer conjugates: advancing beyond PEGylation. J. Am. Chem. Soc., 2014, 136(41), 14323-14332. doi:10.1021/ja504390xhttp://dx.doi.org/10.1021/ja504390x
Chen W. Z.; Zhou S. S.; Ge L.; Wu W.; Jiang X. Q.Translatable high drug loading drug delivery systems based on biocompatible polymer nanocarriers. Biomacromolecules, 2018, 19(6), 1732-1745. doi:10.1021/acs.biomac.8b00218http://dx.doi.org/10.1021/acs.biomac.8b00218
Lutz J. F.Thermo-switchable materials prepared using the OEGMA-platform. Adv. Mater., 2011, 23(19), 2237-2243. doi:10.1002/adma.201100597http://dx.doi.org/10.1002/adma.201100597
Li Q.; Wang R. Q.; Lee J.; Correia J. S.; Constantinou A. P.; Krell J.; Georgiou T. K.Thermogels based on biocompatible OEGMA-MEGMA diblock copolymers. Eur. Polym. J., 2023, 194, 112144. doi:10.1016/j.eurpolymj.2023.112144http://dx.doi.org/10.1016/j.eurpolymj.2023.112144
Xie C.; Lyu Y.; Zhen X.; Miao Q. Q.; Pu K. Y.Activatable semiconducting oligomer amphiphile for near-infrared luminescence imaging of biothiols. ACS Appl. Bio Mater., 2018, 1(4), 1147-1153. doi:10.1021/acsabm.8b00353http://dx.doi.org/10.1021/acsabm.8b00353
Zhang Z.; Chao T.; Chen S. F.; Jiang S. Y.Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir, 2006, 22(24), 10072-10077. doi:10.1021/la062175dhttp://dx.doi.org/10.1021/la062175d
Li Q.; Wen C.; Yang J.; Zhou X.; Zhu Y.; Zheng J.; Cheng G.; Bai J.; Xu T.; Ji J.; Jiang S.; Zhang L.; Zhang P.Zwitterionic biomaterials. Chem. Rev., 2022, 122(23), 17073-17154. doi:10.1021/acs.chemrev.2c00344http://dx.doi.org/10.1021/acs.chemrev.2c00344
Shi Q.; Su Y. L.; Chen W. J.; Peng J. M.; Nie L. Y.; Zhang L.; Jiang Z. Y.Grafting short-chain amino acids onto membrane surfaces to resist protein fouling. J. Membr. Sci., 2011, 366(1-2), 398-404. doi:10.1016/j.memsci.2010.10.032http://dx.doi.org/10.1016/j.memsci.2010.10.032
Blackman L. D.; Gunatillake P. A.; Cass P.; Locock K. E. S.An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chem. Soc. Rev., 2019, 48(3), 757-770. doi:10.1039/c8cs00508ghttp://dx.doi.org/10.1039/c8cs00508g
Keefe A. J.; Jiang S. Y.Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nat. Chem., 2011, 4(1), 59-63. doi:10.1038/nchem.1213http://dx.doi.org/10.1038/nchem.1213
Li L.; Zhang X. Y.; Ren Y. X.; Yuan Q.; Wang Y. Z.; Bao B. K.; Li M. Q.; Tang Y. L.Chemiluminescent conjugated polymer nanoparticles for deep-tissue inflammation imaging and photodynamic therapy of cancer. J. Am. Chem. Soc., 2024, 146(9), 5927-5939. doi:10.1021/jacs.3c12132http://dx.doi.org/10.1021/jacs.3c12132
Samanta D.; Ebrahimi S. B.; Mirkin C. A.Nucleic-acid structures as intracellular probes for live cells. Adv. Mater., 2020, 32(13), e1901743. doi:10.1002/adma.201901743http://dx.doi.org/10.1002/adma.201901743
Ji M.; Ma N. N.; Tian Y.3D lattice engineering of nanoparticles by DNA shells. Small, 2019, 15(26), e1805401. doi:10.1002/smll.201805401http://dx.doi.org/10.1002/smll.201805401
Cao Y. W.; Gao S.; Yan Y. T.; Bruist M. F.; Wang B.; Guo X. H.Assembly of supramolecular DNA complexes containing both G-quadruplexes and i-motifs by enhancing the G-repeat-bearing capacity of i-motifs. Nucleic Acids Res., 2017, 45(1), 26-38. doi:10.1093/nar/gkw1049http://dx.doi.org/10.1093/nar/gkw1049
Xiao F.; Fang X. F.; Li H. Y.; Xue H. B.; Wei Z. X.; Zhang W. K.; Zhu Y. L.; Lin L.; Zhao Y.; Wu C. F.; Tian L. L.Light-harvesting fluorescent spherical nucleic acids self-assembled from a DNA-grafted conjugated polymer for amplified detection of nucleic acids. Angew. Chem. Int. Ed., 2022, 61(12), e202115812. doi:10.1002/anie.202115812http://dx.doi.org/10.1002/anie.202115812
Shi L. L.; Wu W. B.; Duan Y. K.; Xu L.; Xu Y. Y.; Hou L. D.; Meng X. J.; Zhu X. Y.; Liu B.Light-induced self-escape of spherical nucleic acid from endo/lysosome for efficient non-cationic gene delivery. Angew. Chem. Int. Ed., 2020, 59(43), 19168-19174. doi:10.1002/anie.202006890http://dx.doi.org/10.1002/anie.202006890
Qi G. B.; Gao Y. J.; Wang L.; Wang H.Self-assembled peptide-based nanomaterials for biomedical imaging and therapy. Adv. Mater., 2018, 30(22), 1703444. doi:10.1002/adma.201703444http://dx.doi.org/10.1002/adma.201703444
Eskandari S.; Guerin T.; Toth I.; Stephenson R. J.Recent advances in self-assembled peptides: implications for targeted drug delivery and vaccine engineering. Adv. Drug Deliv. Rev., 2017, 110, 169-187. doi:10.1016/j.addr.2016.06.013http://dx.doi.org/10.1016/j.addr.2016.06.013
Luan X.; Kong H.; He P.; Yang G. Z.; Zhu D. Z.; Guo L.; Wei G.Self-assembled peptide-based nanodrugs: molecular design, synthesis, functionalization, and targeted tumor bioimaging and biotherapy. Small, 2023, 19(3), 2205787. doi:10.1002/smll.202205787http://dx.doi.org/10.1002/smll.202205787
Shi Z. Q.; Luo M. M.; Huang Q. L.; Ding C. D.; Wang W. Y.; Wu Y. L.; Luo J. J.; Lin C. C.; Chen T.; Zeng X. W.; Mei L.; Zhao Y. L.; Chen H. Z.NIR-dye bridged human serum albumin reassemblies for effective photothermal therapy of tumor. Nat. Commun., 2023, 14(1), 6567. doi:10.1038/s41467-023-42399-9http://dx.doi.org/10.1038/s41467-023-42399-9
Zhu S. J.; Yang Q. L.; Antaris A. L.; Yue J. Y.; Ma Z. R.; Wang H. S.; Huang W.; Wan H.; Wang J.; Diao S.; Zhang B.; Li X. Y.; Zhong Y. T.; Yu K.; Hong G. S.; Luo J.; Liang Y. Y.; Dai H. J.Molecular imaging of biological systems with a clickable dye in the broad800- to 1700-nm near-infrared window. Proc. Natl. Acad. Sci. USA, 2017, 114(5), 962-967.
Chen M.; Pérez R. L.; Du P.; Bhattarai N.; McDonough K. C.; Ravula S.; Kumar R.; Mathis J. M.; Warner I. M.Tumor-targeting NIRF NanoGUMBOS with cyclodextrin-enhanced chemo/photothermal antitumor activities. ACS Appl. Mater. Interfaces, 2019, 11(31), 27548-27557. doi:10.1021/acsami.9b08047http://dx.doi.org/10.1021/acsami.9b08047
Luo Z. J.; Dai Y.; Gao H. L.Development and application of hyaluronic acid in tumor targeting drug delivery. Acta Pharm. Sin. B, 2019, 9(6), 1099-1112. doi:10.1016/j.apsb.2019.06.004http://dx.doi.org/10.1016/j.apsb.2019.06.004
Yang X. Q.; Lian K. K.; Tan Y. N.; Zhu Y.; Liu X.; Zeng Y. P.; Yu T.; Meng T. T.; Yuan H.; Hu F. Q.Selective uptake of chitosan polymeric micelles by circulating monocytes for enhanced tumor targeting. Carbohydr. Polym., 2020, 229, 115435. doi:10.1016/j.carbpol.2019.115435http://dx.doi.org/10.1016/j.carbpol.2019.115435
Cheng Y.; Zhou J. L.; Li Q.; Liu Y.; Wang K. P.; Zhang Y.The effects of polysaccharides from the root of Angelica sinensis on tumor growth and iron metabolism in H22-bearing mice. Food Funct., 2016, 7(2), 1033-1039. doi:10.1039/c5fo00855ghttp://dx.doi.org/10.1039/c5fo00855g
Kang H.; Gravier J.; Bao K.; Wada H.; Lee J. H.; Baek Y.; El Fakhri G.; Gioux S.; Rubin B. P.; Coll J. L.; Choi H. S.Renal clearable organic nanocarriers for bioimaging and drug delivery. Adv. Mater., 2016, 28(37), 8162-8168. doi:10.1002/adma.201601101http://dx.doi.org/10.1002/adma.201601101
Huang J. G.; Xie C.; Zhang X. D.; Jiang Y. Y.; Li J. C.; Fan Q. L.; Pu K. Y.Renal-clearable molecular semiconductor for second near-infrared fluorescence imaging of kidney dysfunction. Angew. Chem., 2019, 131(42), 15264-15271. doi:10.1002/ange.201909560http://dx.doi.org/10.1002/ange.201909560
Han L.; Liu J. H.; Wei Z. X.; Gu Y.; Zhu Y. L.; Chen L.; Zhang X. D.; Wu W. T.; He F.; Tian L. L.Structural morphology changes the fate of semiconducting polymers in afterglow luminescence imaging. Chem. Mater., 2023, 35(17), 6920-6931. doi:10.1021/acs.chemmater.3c01181http://dx.doi.org/10.1021/acs.chemmater.3c01181
Luo Y. T.; Wu H. L.; Zhou X.; Wang J. H.; Er S.; Li Y. D.; Welzen P. L. W.; Oerlemans R. A. J. F.; Abdelmohsen L. K. E. A.; Shao J. X.; van Hest J. C. M.Polymer vesicles with integrated photothermal responsiveness. J. Am. Chem. Soc., 2023, 145(36), 20073-20080. doi:10.1021/jacs.3c07134http://dx.doi.org/10.1021/jacs.3c07134
Xu M. Z.; Qi Y. M.; Liu G. S.; Song Y. Q.; Jiang X. Y.; Du B. J.Size-dependent in vivo transport of nanoparticles: implications for delivery, targeting, and clearance. ACS Nano, 2023, 17(21), 20825-20849. doi:10.1021/acsnano.3c05853http://dx.doi.org/10.1021/acsnano.3c05853
Zhang X. D.; Wang H. S.; Antaris A. L.; Li L. L.; Diao S.; Ma R.; Nguyen A.; Hong G. S.; Ma Z. R.; Wang J.; Zhu S. J.; Castellano J. M.; Wyss-Coray T.; Liang Y. Y.; Luo J.; Dai H. J.Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv. Mater., 2016, 28(32), 6872-6879. doi:10.1002/adma.201600706http://dx.doi.org/10.1002/adma.201600706
Bordat A.; Boissenot T.; Ibrahim N.; Ferrere M.; Levêque M.; Potiron L.; Denis S.; Garcia-Argote S.; Carvalho O.; Abadie J.; Cailleau C.; Pieters G.; Tsapis N.; Nicolas J.A polymer prodrug strategy to switch from intravenous to subcutaneous cancer therapy for irritant/vesicant drugs. J. Am. Chem. Soc., 2022, 144(41), 18844-18860. doi:10.1021/jacs.2c04944http://dx.doi.org/10.1021/jacs.2c04944
Reisch A.; Heimburger D.; Ernst P.; Runser A.; Didier P.; Dujardin D.; Klymchenko A. S.Protein-sized dye-loaded polymer nanoparticles for free particle diffusion in cytosol. Adv. Funct. Mater., 2018, 28(48), 1805157. doi:10.1002/adfm.201805157http://dx.doi.org/10.1002/adfm.201805157
Collot M.; Schild J.; Fam K. T.; Bouchaala R.; Klymchenko A. S.Stealth and bright monomolecular fluorescent organic nanoparticles based on folded amphiphilic polymer. ACS Nano, 2020, 14(10), 13924-13937. doi:10.1021/acsnano.0c06348http://dx.doi.org/10.1021/acsnano.0c06348
Xie C.; Zhen X.; Lei Q. L.; Ni R.; Pu K. Y.Self-assembly of semiconducting polymer amphiphiles for in vivo photoacoustic imaging. Adv. Funct. Mater., 2017, 27(8), 1605397. doi:10.1002/adfm.201770049http://dx.doi.org/10.1002/adfm.201770049
Cheng Q.; Tian Y. L.; Dang H. P.; Teng C. C.; Xie K.; Yin D. L.; Yan L. F.Antiquenching macromolecular NIR-II probes with high-contrast brightness for imaging-guided photothermal therapy under 1064 nm irradiation. Adv. Healthc. Mater., 2022, 11(1), 2101697. doi:10.1002/adhm.202101697http://dx.doi.org/10.1002/adhm.202101697
Zhang D. S.; Teng K. X.; Zhao L. Y.; Niu L. Y.; Yang Q. Z.Ultra-small nano-assemblies as tumor-targeted and renal clearable theranostic agent for photodynamic therapy. Adv. Mater., 2023, 35(19), 2209789. doi:10.1002/adma.202209789http://dx.doi.org/10.1002/adma.202209789
0
浏览量
85
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构