浏览全部资源
扫码关注微信
1.辽宁科技大学化工学院 鞍山 114051
2.大连理工大学化工学院 精细化工国家重点实验室 碳素实验室 大连 116024
E-mail: luyunhua@ustl.edu.cn;
E-mail: xiaoguoyong@ustl.edu.cn
纸质出版日期:2025-02-20,
网络出版日期:2024-11-04,
收稿日期:2024-07-23,
录用日期:2024-09-25
移动端阅览
王显智, 鲁云华, 肖国勇, 侯蒙杰, 李琳, 王同华. 含螺旋双茚满结构的热重排膜材料的制备及其气体分离性能[J]. 高分子学报, 2025,56(2):350-360.
XIAN-ZHI WANG, YUN-HUA LU, GUO-YONG XIAO, MENG-JIE HOU, LIN LI, TONG-HUA WANG. Preparation and Gas Separation Properties of Thermally Rearranged Membranes Containing Spirobisindane Structures. [J]. Acta polymerica sinica, 2025, 56(2): 350-360.
王显智, 鲁云华, 肖国勇, 侯蒙杰, 李琳, 王同华. 含螺旋双茚满结构的热重排膜材料的制备及其气体分离性能[J]. 高分子学报, 2025,56(2):350-360. DOI: 10.11777/j.issn1000-3304.2024.24176. CSTR: 32057.14.GFZXB.2024.7300.
XIAN-ZHI WANG, YUN-HUA LU, GUO-YONG XIAO, MENG-JIE HOU, LIN LI, TONG-HUA WANG. Preparation and Gas Separation Properties of Thermally Rearranged Membranes Containing Spirobisindane Structures. [J]. Acta polymerica sinica, 2025, 56(2): 350-360. DOI: 10.11777/j.issn1000-3304.2024.24176. CSTR: 32057.14.GFZXB.2024.7300.
合成了一种新型二胺单体3
3
3'
3'-四甲基-6
6'-双(3-氨基-4-羟基苯氧基)-1
1'-螺旋双茚满(TBAHS),然后分别与等摩尔比的6种二酐单体聚合,涂膜后经300 ℃热酰亚胺化制备出一系列含羟基的聚醚酰亚胺(PEI)膜,再经450 ℃热处理得到相应的热重排(TR)膜. 测试结果表明:由于螺旋双茚满结构的引入,6种PEI膜均表现出优异的力学性能和热性能,玻璃化转变温度在317~352 ℃. 热重排后,TR膜的力学性能显著下降,但气体渗透性能大幅度提高,尤其是基于4
4'-(六氟异丙烯)二酞酸酐(6FDA)的TR(TBAHS-6FDA)膜对CO
2
、H
2
、O
2
和N
2
的气体渗透系数分别达到806.2、869.0、180.7和27.7 Barrer. 同时,O
2
/N
2
的选择性为6.52,分离性能接近2015年上限;CO
2
/N
2
的选择性为29.10,分离性能超越了2008年Robeson上限. 因此,将螺旋双茚满结构引入到聚合物分子链中将有效提高膜材料的气体分离性能.
Firstly
a new type of diamine monomer 3
3
3'
3'-tetramethyl-6
6'-bis(3-amino-4-hydroxyphenoxy)- 1
1'-spirobisindane (TBAHS) was synthesized
and then polymerized with six kinds of dianhydride monomers in equal molar ratios. After coating
a series of hydroxyl containing polyetherimide (PEI) membranes were prepared by thermal imidization at 300 ℃. Subsequently
the corresponding thermal rearrangement (TR) membranes were obtained by heat treatment at 450 ℃. The testing results show that due to the introduction of the spirobisindane structure
all the six PEI membranes exhibited excellent mechanical and thermal properties
with glass transition temperatures of 317-352 ℃. After thermal treatment
the mechanical properties of the TR membranes significantly decreased
but the gas permeabilities were greatly improved. In particular
the gas permeabilities of the TR(TBAHS-6FDA) membrane for CO
2
H
2
O
2
and N
2
reached 806.2
869.0
180.7
and 27.
7 Barrers
respectively. Meanwhile
the ideal selectivity of O
2
/N
2
was 6.52
and the separation performance was close to the upper limit of 2015. The selectivity of CO
2
/N
2
was 29.10
exceeding the 2008 Robeson upper limit. Therefore
the introduction of the spirobisindane structure into polymer chains can effectively improve the gas separation performance of membrane materials.
螺旋双茚满结构聚醚酰亚胺热重排气体分离膜材料
Spirobisindane structurePolyetherimideThermal rearrangementGas separationMembrane materials
Zhang C. L.; Cao B.; Li P.Thermal oxidative crosslinking of phenolphthalein-based cardo polyimides with enhanced gas permeability and selectivity. J. Membr. Sci., 2018, 546, 90-99. doi:10.1016/j.memsci.2017.10.015http://dx.doi.org/10.1016/j.memsci.2017.10.015
Park C. Y.; Kim E. H.; Kim J. H.; Lee Y. M.; Kim J. H.Novel semi-alicyclic polyimide membranes: synthesis, characterization, and gas separation properties. Polymer, 2018, 151, 325-333. doi:10.1016/j.polymer.2018.07.052http://dx.doi.org/10.1016/j.polymer.2018.07.052
肖娴, 徐小尘, 李琇廷, 董杰, 赵昕, 张清华. 含聚醚链段聚酰亚胺膜的制备及气体分离性能. 高分子学报, 2022, 53(5), 505-513.
Wang Z. G.; Wang D.; Zhang F.; Jin J.Tröger's base-based microporous polyimide membranes for high-performance gas separation. ACS Macro Lett., 2014, 3(7), 597-601. doi:10.1021/mz500184zhttp://dx.doi.org/10.1021/mz500184z
Wang S. L.; Ma S. Q.; He H. R.; Ai W. M.; Wang D. M.; Zhao X. G.; Chen C. H.Aromatic polyimides containing pyridine and spirocyclic units: preparation, thermal and gas separation properties. Polymer, 2019, 168, 199-208. doi:10.1016/j.polymer.2019.02.046http://dx.doi.org/10.1016/j.polymer.2019.02.046
Rogan Y.; Malpass-Evans R.; Carta M.; Lee M.; Jansen J. C.; Bernardo P.; Clarizia G.; Tocci E.; Friess K.; Lanč M.; McKeown N. B.A highly permeable polyimide with enhanced selectivity for membrane gas separations. J. Mater. Chem. A, 2014, 2(14), 4874-4877. doi:10.1039/c4ta00564chttp://dx.doi.org/10.1039/c4ta00564c
Xu Z.; Croft Z. L.; Guo D.; Cao K.; Liu G. L.Recent development of polyimides: synthesis, processing, and application in gas separation. J. Polym. Sci., 2021, 59(11), 943-962. doi:10.1002/pol.20210001http://dx.doi.org/10.1002/pol.20210001
Sanaeepur H.; Ebadi Amooghin A.; Bandehali S.; Moghadassi A.; Matsuura T.; van der Bruggen B.Polyimides in membrane gas separation: monomer's molecular design and structural engineering. Prog. Polym. Sci., 2019, 91, 80-125. doi:10.1016/j.progpolymsci.2019.02.001http://dx.doi.org/10.1016/j.progpolymsci.2019.02.001
Liu Z. Y.; Liu Y.; Qiu W. L.; Koros W. J.Molecularly engineered 6FDA-based polyimide membranes for sour natural gas separation. Angew. Chem. Int. Ed, 2020, 59(35), 14877-14883. doi:10.1002/anie.202003910http://dx.doi.org/10.1002/anie.202003910
Aguilar-Lugo C.; Álvarez C.; Lee Y. M.; de la Campa J. G.; Lozano Á. E.Thermally rearranged polybenzoxazoles containing bulky adamantyl groups from ortho-substituted precursor copolyimides. Macromolecules, 2018, 51(5), 1605-1619. doi:10.1021/acs.macromol.7b02460http://dx.doi.org/10.1021/acs.macromol.7b02460
Park H. B.; Jung C. H.; Lee Y. M.; Hill A. J.; Pas S. J.; Mudie S. T.; van Wagner E.; Freeman B. D.; Cookson D. J.Polymers with cavities tuned for fast selective transport of small molecules and ions. Science, 2007, 318(5848), 254-258. doi:10.1126/science.1146744http://dx.doi.org/10.1126/science.1146744
Du P. Y.; Wang Z. Y.; Zhang T.; Lau C. H.; Liu S. M.; Li P.Crosslinked thermally rearranged polybenzoxazole derived from phenolphthalein-based polyimide for gas separation. J. Membr. Sci., 2022, 662, 120934. doi:10.1016/j.memsci.2022.120934http://dx.doi.org/10.1016/j.memsci.2022.120934
Bandehali S.; Ebadi Amooghin A.; Sanaeepur H.; Ahmadi R.; Fuoco A.; Jansen J. C.; Shirazian S.Polymers of intrinsic microporosity and thermally rearranged polymer membranes for highly efficient gas separation. Sep. Purif. Technol., 2021, 278, 119513. doi:10.1016/j.seppur.2021.119513http://dx.doi.org/10.1016/j.seppur.2021.119513
Yerzhankyzy A.; Ghanem B. S.; Wang Y. G.; Alaslai N.; Pinnau I.Gas separation performance and mechanical properties of thermally-rearranged polybenzoxazoles derived from an intrinsically microporous dihydroxyl-functionalized triptycene diamine-based polyimide. J. Membr. Sci., 2020, 595, 117512. doi:10.1016/j.memsci.2019.117512http://dx.doi.org/10.1016/j.memsci.2019.117512
Guzman W.; Johnson I.; Wiggins J. S.Thermal rearrangement conversion of cross-linked ortho-hydroxy polyimide networks. ACS Appl. Polym. Mater., 2022, 4(10), 7135-7143. doi:10.1021/acsapm.2c01031http://dx.doi.org/10.1021/acsapm.2c01031
Yerzhankyzy A.; Wang Y. G.; Xu F.; Hu X. F.; Ghanem B.; Ma X. H.; Balcik M.; Wehbe N.; Han Y.; Pinnau I.Structural evolution and gas separation properties of thermally rearranged polybenzoxazole (TR-PBO), polymer-carbon transition (PCT) and early-stage carbon (ESC) membranes derived from a 6FDA-hydroxyl-functionalized Tröger's base polyimide. J. Membr. Sci., 2023, 683, 121764. doi:10.1016/j.memsci.2023.121764http://dx.doi.org/10.1016/j.memsci.2023.121764
Lee W. H.; Seong J. G.; Hu X. F.; Lee Y. M.Recent progress in microporous polymers from thermally rearranged polymers and polymers of intrinsic microporosity for membrane gas separation: pushing performance limits and revisiting trade-off lines. J. Polym. Sci., 2020, 58(18), 2450-2466. doi:10.1002/pol.20200110http://dx.doi.org/10.1002/pol.20200110
鲁云华, 郝继璨, 李琳, 宋晶, 费明月, 肖国勇, 赵洪斌, 胡知之, 王同华. 热致刚性膜材料的合成与气体分离性能研究. 高分子学报, 2016, (8), 1145-1150.
Kong J. J.; Liu J. J.; Jia P. Y.; Qi N.; Chen Z. Q.; Xu S.; Li N. W.Synergistic effect of thermal crosslinking and thermal rearrangement on free volume and gas separation properties of 6FDA based polyimide membranes studied by positron annihilation. J. Membr. Sci., 2022, 645, 120163. doi:10.1016/j.memsci.2021.120163http://dx.doi.org/10.1016/j.memsci.2021.120163
Hu X. F.; Lee W. H.; Bae J. Y.; Kim J. S.; Jung J. T.; Wang H. H.; Park H. J.; Lee Y. M.Thermally rearranged polybenzoxazole copolymers incorporating Tröger's base for high flux gas separation membranes. J. Membr. Sci., 2020, 612, 118437. doi:10.1016/j.memsci.2020.118437http://dx.doi.org/10.1016/j.memsci.2020.118437
Zhang S. Y.; Xu Z. L.; Weng Y. T.; Cai M. W.; Wang Y. L.; Zhu W. J.; Min Y. G.; Ma X. H.Remarkable gas separation performance of a thermally rearranged membrane derived from an alkynyl self-crosslinkable precursor. J. Membr. Sci., 2023, 672, 121464. doi:10.1016/j.memsci.2023.121464http://dx.doi.org/10.1016/j.memsci.2023.121464
Zhang J. H.; Lu Y. H.; Xiao G. Y.; Hou M. J.; Li L.; Wang T. H.Enhanced gas separation and mechanical properties of fluorene-based thermal rearrangement copolymers. RSC Adv., 2021, 11(22), 13164-13174. doi:10.1039/d0ra10775ahttp://dx.doi.org/10.1039/d0ra10775a
He L.; Lu Y. H.; Xiao G. Y.; Hou M. J.; Chi H. J.; Wang T. H.Phthalide-containing poly(ether-imide)s based thermal rearrangement membranes for gas separation application. RSC Adv., 2022, 12(2), 728-742. doi:10.1039/d1ra07013dhttp://dx.doi.org/10.1039/d1ra07013d
李品儒, 肖国勇, 陈元林, 鲁云华, 李琳, 王同华. 含四芳基咪唑结构的热重排气体分离膜的制备与性能研究. 高分子学报, 2024, 55(2), 212-221.
Sun L. X.; Xu Z. L.; Huang L. J.; Wang H.; Zhang H.; Li J. X.; Wang Y. L.; Ma X. H.Significantly enhanced gas separation properties of membranes by debromination and thermal rearrangement simultaneously. J. Membr. Sci., 2024, 698, 122619. doi:10.1016/j.memsci.2024.122619http://dx.doi.org/10.1016/j.memsci.2024.122619
Zhang J. F.; Sun Y. C.; Fan F. X.; Zhao Q. Z.; He G. H.; Ma C. H.Enhanced mechanical robustness and separation performance in triptycene modulated thermally rearranged copolyimide membranes. J. Membr. Sci., 2023, 688, 122115. doi:10.1016/j.memsci.2023.122115http://dx.doi.org/10.1016/j.memsci.2023.122115
Wang F. W.; Zhao G. K.; Liu Y. Q.; Tang G. Q.; Qin P. Y.; Li P.Development of phenolphthalein-based copolyimides and their derivative cross-linked and thermally rearranged polymers for gas separation. Macromolecules, 2024, 57(3), 1370-1382. doi:10.1021/acs.macromol.3c02228http://dx.doi.org/10.1021/acs.macromol.3c02228
Chen H. Q.; Dai F. N.; Wang M. X.; Yan X. Y.; Ke Z.; Chen C. H.; Qian G. T.; Yu Y. H.Preparation and gas separation properties of spirobisbenzoxazole-based polyimides. Eur. Polym. J., 2022, 173, 111231. doi:10.1016/j.eurpolymj.2022.111231http://dx.doi.org/10.1016/j.eurpolymj.2022.111231
Park J. Y.; Paul D. R.Correlation and prediction of gas permeability in glassy polymer membrane materials via a modified free volume based group contribution method. J. Membr. Sci., 1997, 125(1), 23-39. doi:10.1016/s0376-7388(96)00061-0http://dx.doi.org/10.1016/s0376-7388(96)00061-0
Hou M. J.; Li L.; He Z. L.; Xu R. S.; Lu Y. H.; Wang T. H.High hydrogen permselective carbon molecular sieve membrane and its structural formation mechanism. Carbon, 2023, 205, 194-206. doi:10.1016/j.carbon.2023.01.035http://dx.doi.org/10.1016/j.carbon.2023.01.035
0
浏览量
148
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构