浏览全部资源
扫码关注微信
1.南昌大学化学化工学院 南昌 330031
2.中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
[ "简忠保,男,1984年生. 中国科学院长春应用化学研究所研究员,博士生导师. 2007年本科毕业于四川师范大学,2013年在中国科学院长春应用化学研究所获得高分子化学与物理博士学位,2013~2017年先后在德国康斯坦茨大学与明斯特大学从事洪堡/博士后研究. 2017年7月加入中国科学院长春应用化学研究所. 获得国家自然科学基金优秀青年科学基金项目、国家海外高层次引进人才资助;中国化学会高分子青年学者奖、中国材料研究学会高分子材料与工程青年科技奖、中国科学院优秀导师. 长期致力于高性能聚烯烃的基础与应用研究,近5年以通讯作者在Natl. Sci. Rev.、Nat. Commun.、Angew. Chem. Int. Ed.、CCS Chem.、ACS Macro Lett.、Macromolecules、《高分子学报》等期刊发表论文近70篇,授权专利18件." ]
[ "姚昌广,男,1984年生. 2009年于陕西师范大学获得学士学位;2015年于中国科学院长春应用化学研究所获得博士学位;2015~2019年在沙特阿拉伯阿卜杜拉国王科技大学(KAUST)从事博士后研究. 2020年加入南昌大学,任特聘教授. 2023年获江西省自然科学基金杰出青年基金项目资助. 主要从事废旧塑料回收利用,生物基/可降解/可循环高分子制备,过渡金属催化剂设计,聚合新方法开发等方面的研究." ]
收稿日期:2024-06-25,
录用日期:2024-08-07,
网络出版日期:2024-11-14,
纸质出版日期:2025-04-20
移动端阅览
陈丽, 李琳, 饶艺伟, 杨维冉, 简忠保, 姚昌广. 脱氢聚合制备极性高分子材料研究进展. 高分子学报, 2025, 56(4), 551-563
Chen, L.; Li, L.; Rao, Y. W.; Yang, W. R.; Jian, Z. B.; Yao, C. G. Progress in the preparation of polar polymer materials via dehydrogenative polymerization. Acta Polymerica Sinica, 2025, 56(4), 551-563
陈丽, 李琳, 饶艺伟, 杨维冉, 简忠保, 姚昌广. 脱氢聚合制备极性高分子材料研究进展. 高分子学报, 2025, 56(4), 551-563 DOI: 10.11777/j.issn1000-3304.2024.24183. CSTR: 32057.14.GFZXB.2024.7287.
Chen, L.; Li, L.; Rao, Y. W.; Yang, W. R.; Jian, Z. B.; Yao, C. G. Progress in the preparation of polar polymer materials via dehydrogenative polymerization. Acta Polymerica Sinica, 2025, 56(4), 551-563 DOI: 10.11777/j.issn1000-3304.2024.24183. CSTR: 32057.14.GFZXB.2024.7287.
随着环保意识的提高,人们越来越注重材料制备过程的原子经济性和步骤经济性. 聚酰胺、聚酯和聚脲作为合成高分子材料,具有优异的力学性能、化学稳定性和热稳定性,能满足不同领域的使用需求. 脱氢偶联能将伯醇转化为醛中间体,它进一步与胺和醇反应生成酰胺、酯和脲等化合物;该反应避免了繁琐的底物合成和羧酸及其衍生物的使用,具有反应条件温和、选择性高和原子经济性等优点,在有机合成方面已经取得显著进展. 然而,将醇的脱氢偶联应用到高分子制备方面的研究还相对较少. 本文系统介绍了近年来脱氢聚合在聚酰胺、聚酯和聚脲制备方面的研究进展. 首先简述了这三类聚合物的独特性能及其在工业生产和日常生活中的广泛应用,并指出了传统制备方法的局限性;通过对比分析,突显了脱氢聚合在制备极性高分子材料方面的显著优势. 其次,详细讨论了用于脱氢聚合的各种催化剂及其反应机理. 最后,对脱氢聚合技术在极性高分子材料制备领域的发展趋势进行了展望.
With the improvement of environmental awareness
people pay more and more attention to the atomic economy and step economy of the material preparation process. Synthetic polymeric materials such as polyamide
polyester
and polyurea with excellent mechanical properties
chemical resistance
and thermal stability
can meet the needs of materials in different fields. Dehydrogenative coupling reactions can convert primary alcohols into aldehyde intermediates
which react
in situ
with amines and alcohols to form amides
esters
and ureas. This kind of reaction avoids the cumbersome substrate synthesis and the utilization of carboxylic acids and their derivatives. It has the advantages of mild reaction conditions
high selectivity and atomic economy
and has made significant progress in organic synthesis. However
relatively few studies exist on applying this distinctive coupling reaction for polymer preparation. In this review
we focus on recent advances in using dehydrogenative polymerization to prepare polyamides
polyesters
and polyureas. Initially
we introduced the unique properties of these three types of polymers and the
ir widespread applications in industrial production and daily life
while also pointing out the limitations of traditional synthetic methods. Through comparison
we highlighted the significant advantages of dehydrogenative polymerization in the preparation of polar polymer materials. Subsequently
we summarized various transition-metal catalysts used in dehydrogenative polymerization and their catalytic mechanisms. Finally
we discussed the prospective development directions of dehydrogenative polymerization technology in the field of preparing polar polymer materials.
Zheng L. ; Wang M. J. ; Li Y. Q. ; Xiong Y. ; Wu C. G. Recycling and degradation of polyamides . Molecules , 2024 , 29 ( 8 ), 1742 . doi: 10.3390/molecules29081742 http://dx.doi.org/10.3390/molecules29081742
Larrañaga A. ; Lizundia E. A review on the thermomechanical properties and biodegradation behaviour of polyesters . Eur. Polym. J. , 2019 , 121 , 109296 . doi: 10.1016/j.eurpolymj.2019.109296 http://dx.doi.org/10.1016/j.eurpolymj.2019.109296
张文毓 . 聚脲涂料的研究与应用 . 上海涂料 , 2020 , 58 ( 1 ), 34 - 39 .
Malineni J. ; Keul H. ; Möller M. An efficient N-heterocyclic carbene-ruthenium complex: application towards the synthesis of polyesters and polyamides . Macromol. Rapid Commun. , 2015 , 36 ( 6 ), 547 - 552 . doi: 10.1002/marc.201400699 http://dx.doi.org/10.1002/marc.201400699
石茹慧 , 吴佩炫 , 姜山 , 程海洋 , 赵凤玉 . 聚脲的绿色合成、性能及应用 . 功能高分子学报 , 2019 , 32 ( 5 ), 593 - 600 . doi: 10.14133/j.cnki.1008-9357.20190425002 http://dx.doi.org/10.14133/j.cnki.1008-9357.20190425002
Wu C. Y. ; Wang J. Y. ; Chang P. J. ; Cheng H. Y. ; Yu Y. C. ; Wu Z. J. ; Dong D. W. ; Zhao F. Y. Polyureas from diamines and carbon dioxide: synthesis, structures and properties . Phys. Chem. Chem. Phys. , 2012 , 14 ( 2 ), 464 - 468 . doi: 10.1039/c1cp23332g http://dx.doi.org/10.1039/c1cp23332g
Wang P. X. ; Ma X. Y. ; Li Q. H. ; Yang B. Q. ; Shang J. P. ; Deng Y. Q. Green synthesis of polyureas from CO 2 and diamines with a functional ionic liquid as the catalyst . RSC Adv. , 2016 , 6 ( 59 ), 54013 - 54019 . doi: 10.1039/c6ra07452a http://dx.doi.org/10.1039/c6ra07452a
Jiang S. ; Cheng H. Y. ; Shi R. H. ; Wu P. X. ; Lin W. W. ; Zhang C. ; Arai M. ; Zhao F. Y. Direct synthesis of polyurea thermoplastics from CO 2 and diamines . ACS Appl. Mater. Interfaces , 2019 , 11 ( 50 ), 47413 - 47421 . doi: 10.1021/acsami.9b17677 http://dx.doi.org/10.1021/acsami.9b17677
Shi R. H. ; Jiang S. ; Cheng H. Y. ; Wu P. X. ; Zhang C. ; Arai M. ; Zhao F. Y. Synthesis of polyurea thermoplastics through a nonisocyanate route using CO 2 and aliphatic diamines . ACS Sustainable Chem. Eng. , 2020 , 8 ( 50 ), 18626 - 18635 . doi: 10.1021/acssuschemeng.0c06911 http://dx.doi.org/10.1021/acssuschemeng.0c06911
Murahashi S. ; Naota T. ; Ito K. ; Maeda Y. ; Taki H. Ruthenium-catalyzed oxidative transformation of alcohols and aldehydes to esters and lactones . J. Org. Chem. , 1987 , 52 ( 19 ), 4319 - 4327 . doi: 10.1021/jo00228a032 http://dx.doi.org/10.1021/jo00228a032
Blum, Y.; Shvo, Y. Catalytically reactive ( η 4 -tetracyclone) (CO) 2 (H) 2 Ru and related complexes in dehydrogenation of alcohols to esters . J. Organomet. Chem. , 1985 , 282 ( 1 ), C7 - C10 . doi: 10.1016/0022-328X(85)87154-0 http://dx.doi.org/10.1016/0022-328X(85)87154-0
Zhang J. ; Leitus G. ; Ben-David Y. ; Milstein D. Facile conversion of alcohols into esters and dihydrogen catalyzed by new ruthenium complexes . J. Am. Chem. Soc. , 2005 , 127 ( 31 ), 10840 - 10841 . doi: 10.1021/ja052862b http://dx.doi.org/10.1021/ja052862b
张正 , 李方全 , 李杰 , 李长金 , 郭敏 , 王颖 . 聚酰胺在医用卫生材料中的应用及研究进展 . 中国塑料 , 2024 , 38 ( 5 ), 113 - 119 . doi: 10.19491/j.issn.1001-9278.2024.05.020 http://dx.doi.org/10.19491/j.issn.1001-9278.2024.05.020
余波 , 郭一飞 . 聚赖氨酸的生物医学领域应用现状 . 现代药物与临床 , 2022 , 37 ( 10 ), 2377 - 2385 .
董博 , 闫熙博 , 牛玉洁 , 王欣 , 王连永 , 王燕铭 . 聚酰胺-胺型树枝状大分子及其衍生物在基因传递中的应用 . 化学进展 , 2012 , 24 ( 12 ), 2352 - 2358 .
Zeng H. X. ; Guan Z. B. Direct synthesis of polyamides via catalytic dehydrogenation of diols and diamines . J. Am. Chem. Soc. , 2011 , 133 ( 5 ), 1159 - 1161 . doi: 10.1021/ja106958s http://dx.doi.org/10.1021/ja106958s
Gunanathan C. ; Ben-David Y. ; Milstein D. Direct synthesis of amides from alcohols and amines with liberation of H 2 . Science , 2007 , 317 ( 5839 ), 790 - 792 . doi: 10.1126/science.1145295 http://dx.doi.org/10.1126/science.1145295
Gnanaprakasam B. ; Balaraman E. ; Gunanathan C. ; Milstein D. Synthesis of polyamides from diols and diamines with liberation of H 2 . J. Polym. Sci. Part A Polym. Chem. , 2012 , 50 ( 9 ), 1755 - 1765 . doi: 10.1002/pola.25943 http://dx.doi.org/10.1002/pola.25943
Kumar A. ; von Wolff N. ; Rauch M. ; Zou Y. Q. ; Shmul G. ; Ben-David Y. ; Leitus G. ; Avram L. ; Milstein D. Hydrogenative depolymerization of nylons . J. Am. Chem. Soc. , 2020 , 142 ( 33 ), 14267 - 14275 . doi: 10.1021/jacs.0c05675 http://dx.doi.org/10.1021/jacs.0c05675
Hunsicker D. M. ; Dauphinais B. C. ; Mc Ilrath S. P. ; Robertson N. J. Synthesis of high molecular weight polyesters via in vacuo dehydrogenation polymerization of diols . Macromol. Rapid Commun. , 2012 , 33 ( 3 ), 232 - 236 . doi: 10.1002/marc.201100653 http://dx.doi.org/10.1002/marc.201100653
Xu W. M. ; Yu Y. D. ; Ma M. X. ; Xu H. D. ; Wang R. Q. ; Pan Y. P. ; Wu K. Q. ; Yang W. R. ; Yao C. G. Green synthesis of chemically recyclable polyesters via dehydrogenative copolymerization of diols . Chinese J. Polym. Sci. , 2023 , 41 ( 8 ), 1206 - 1214 . doi: 10.1007/s10118-023-2903-9 http://dx.doi.org/10.1007/s10118-023-2903-9
Xu H. D. ; Deng H. J. ; Zeng H. M. ; Yang W. R. ; Yao C. G. Direct coupling of biobased bifunctional hydroxy-aldehyde monomers to chemically recyclable alipharomatic polyesters via dehydrogenative polycondensation . Macromolecules , 2024 , 57 ( 4 ), 1546 - 1555 . doi: 10.1021/acs.macromol.3c02504 http://dx.doi.org/10.1021/acs.macromol.3c02504
Alberti C. ; Enthaler S. Ruthenium-catalyzed chemical recycling of poly(ε-caprolactone) via hydrogenative depolymerization and dehydrogenative polymerization . ChemistrySelect , 2021 , 6 ( 41 ), 11244 - 11248 . doi: 10.1002/slct.202103366 http://dx.doi.org/10.1002/slct.202103366
Zhao Y. C. ; Rettner E. M. ; Harry K. L. ; Hu Z. T. ; Miscall J. ; Rorrer N. A. ; Miyake G. M. Chemically recyclable polyolefin-like multiblock polymers . Science , 2023 , 382 ( 6668 ), 310 - 314 . doi: 10.1126/science.adh3353 http://dx.doi.org/10.1126/science.adh3353
Zou Y. Q. ; von Wolff N. ; Anaby A. ; Xie Y. J. ; Milstein D. Ethylene glycol as an efficient and reversible liquid organic hydrogen carrier . Nat. Catal. , 2019 , 2 ( 5 ), 415 - 422 . doi: 10.1038/s41929-019-0265-z http://dx.doi.org/10.1038/s41929-019-0265-z
Toader G. ; Diacon A. ; Axinte S. M. ; Mocanu A. ; Rusen E. State-of-the-art polyurea coatings: synthesis aspects, structure-properties relationship, and nanocomposites for ballistic protection applications . Polymers , 2024 , 16 ( 4 ), 454 . doi: 10.3390/polym16040454 http://dx.doi.org/10.3390/polym16040454
Kumar A. ; Armstrong D. ; Peters G. ; Nagala M. ; Shirran S. Direct synthesis of polyureas from the dehydrogenative coupling of diamines and methanol . Chem. Commun. , 2021 , 57 ( 50 ), 6153 - 6156 . doi: 10.1039/d1cc01121a http://dx.doi.org/10.1039/d1cc01121a
Langsted C. R. ; Paulson S. W. ; Bomann B. H. ; Suhail S. ; Aguirre J. A. ; Saumer E. J. ; Baclasky A. R. ; Salmon K. H. ; Law A. C. ; Farmer R. J. ; Furchtenicht C. J. ; Stankowski D. S. ; Johnson M. L. ; Corcoran L. G. ; Dolan C. C. ; Carney M. J. ; Robertson N. J. Isocyanate-free synthesis of ureas and polyureas via ruthenium catalyzed dehydrogenation of amines and formamides . J. Appl. Polym. Sci. , 2022 , 139 ( 18 ), 52088 . doi: 10.1002/app.52088 http://dx.doi.org/10.1002/app.52088
Owen A. E. ; Preiss A. ; McLuskie A. ; Gao C. ; Peters G. ; Bühl M. ; Kumar A. Manganese-catalyzed dehydrogenative synthesis of urea derivatives and polyureas . ACS Catal. , 2022 , 12 ( 12 ), 6923 - 6933 . doi: 10.1021/acscatal.2c00850 http://dx.doi.org/10.1021/acscatal.2c00850
Guo J. X. ; Tang J. ; Xi H. ; Zhao S. Y. ; Liu W. P. Manganese catalyzed urea and polyurea synthesis using methanol as C1 source . Chin. Chem. Lett. , 2023 , 34 ( 4 ), 107731 . doi: 10.1016/j.cclet.2022.08.011 http://dx.doi.org/10.1016/j.cclet.2022.08.011
McLuskie A. ; Brodie C. N. ; Tricarico M. ; Gao C. ; Peters G. ; Naden A. B. ; MacKay C. L. ; Tan J. C. ; Kumar A. Manganese catalysed dehydrogenative synthesis of polyureas from diformamide and diamines . Catal. Sci. Technol. , 2023 , 13 ( 12 ), 3551 - 3557 . doi: 10.1039/d3cy00284e http://dx.doi.org/10.1039/d3cy00284e
0
浏览量
512
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构