浏览全部资源
扫码关注微信
中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
E-mail: tangjian@ciac.ac.cn
纸质出版日期:2025-02-20,
网络出版日期:2024-11-01,
收稿日期:2024-06-25,
录用日期:2024-08-07
移动端阅览
汤健, 陈全. 四臂聚乙二醇物理凝胶的线性流变学研究[J]. 高分子学报, 2025,56(2):278-285.
JIAN TANG, QUAN CHEN. Linear Rheological Study of Tetra-poly(ethylene glycol) Transient Networks. [J]. Acta polymerica sinica, 2025, 56(2): 278-285.
汤健, 陈全. 四臂聚乙二醇物理凝胶的线性流变学研究[J]. 高分子学报, 2025,56(2):278-285. DOI: 10.11777/j.issn1000-3304.2024.24184. CSTR: 32057.14.GFZXB.2024.7288.
JIAN TANG, QUAN CHEN. Linear Rheological Study of Tetra-poly(ethylene glycol) Transient Networks. [J]. Acta polymerica sinica, 2025, 56(2): 278-285. DOI: 10.11777/j.issn1000-3304.2024.24184. CSTR: 32057.14.GFZXB.2024.7288.
传统缔合高分子体系中往往存在环状链和悬挂链等缺陷结构,这些非均匀性显著阻碍了缔合高分子内部结构参数与其物理性质之间构效关系的定量构筑,并影响了针对这些性质的材料设计开发. 为了解决模型体系缺失的问题,基于四臂聚乙二醇前驱体和锆离子构筑了物理凝胶模型体系,该体系的内部凝胶化程度可以通过调控锆离子与四臂聚乙二醇前驱体的摩尔配比精准调控. 线性流变学测试结果显示,凝胶内部的非均匀性被高度抑制.本文提出了通过凝胶平台模量和松弛时间分别计算前驱体末端连接率的方法,2种方法得到的结果定量吻合,进一步讨论了松弛模式分布变化与超桥结构含量之间的关系,明确了凝胶网络结构演化过程.
Transient networks are three-dimensional networks formed by reversible crosslinks. The reversibility is critical to realize functions of novel materials including self-healing
stimuli-responsive and shape memory materials. The design
development
and application of these materials are all dependent on a precise understanding of molecular mechanisms of viscoelasticity. However
defects such as loops and dangling chains are common in conventional associative polymer systems
which significantly impedes the quantitative establishment of relationship between structural parameters and physical properties of associative polymers
thereby hindering the target performance-oriented material design. To address the lack of model systems
this study designs and fabricates a model physical gel system utilizing tetra-poly(ethylene glycol) precursors and zirconium ions. The degree of gelation within this system can be precisely controlled by adjusting the molar ratio of zirconium ions to tetra-poly(ethylene glycol) precursors. By selecting a precursor concentration between the overlap concentration and the entanglement concentration
defects such as loop and entanglement structures are significantly suppressed. This suppression is verified by the correspondence between the experimental plateau modulus and the predictions from phantom network model. By analyzing the thermos-rheological behavior of the transient network
the evolution on the temperature-dependent structure is revealed. Specifically
examining the high-frequency moduli related to the ion dissociation process reveals that the failure of time temperature superposition is due to a decrease in the degree of gelation as the temperature increases. Agreement has been achieved in the degree of association calculated from the plateau modulus and that from the relaxation time. Further discussion is given on a relationship between a content of superbridges and the relaxation mode distribution.
缔合高分子线性黏弹性松弛时间平台模量超桥
Associative polymerLinear viscoelasticityRelaxation timePlateau modulusSuperbridge
Liu S.; Zhang Z. J.; Chen Q.; Matsumiya Y.; Watanabe H.Nonlinear rheology of telechelic ionomers based on sodium sulfonate and carboxylate. Macromolecules, 2021, 54(20), 9724-9738. doi:10.1021/acs.macromol.1c01350http://dx.doi.org/10.1021/acs.macromol.1c01350
Chen Q.; Liang S. W.; Shiau H. S.; Colby R. H.Linear viscoelastic and dielectric properties of phosphonium siloxane ionomers. ACS Macro Lett., 2013, 2(11), 970-974. doi:10.1021/mz400476whttp://dx.doi.org/10.1021/mz400476w
Colby R. H.; Zheng X.; Rafailovich M. H.; Sokolov J.; Peiffer D. G.; Schwarz S. A.; Strzhemechny Y.; Nguyen D.Dynamics of lightly sulfonated polystyrene ionomers. Phys. Rev. Lett., 1998, 81(18), 3876-3879. doi:10.1103/physrevlett.81.3876http://dx.doi.org/10.1103/physrevlett.81.3876
Zhang Z. J.; Liu C.; Cao X.; Gao L. C.; Chen Q.Linear viscoelastic and dielectric properties of strongly hydrogen-bonded polymers near the sol-gel transition. Macromolecules, 2016, 49(23), 9192-9202. doi:10.1021/acs.macromol.6b02017http://dx.doi.org/10.1021/acs.macromol.6b02017
Hu X. B.; Vatankhah-Varnoosfaderani M.; Zhou J.; Li Q. X.; Sheiko S. S.Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels. Adv. Mater., 2015, 27(43), 6899-6905. doi:10.1002/adma.201503724http://dx.doi.org/10.1002/adma.201503724
Parisi D.; Ditillo C. D.; Han A. J.; Lindberg S.; Hamersky M. W.; Colby R. H.Rheological investigation on the associative properties of poly(vinyl alcohol) solutions. J. Rheol., 2022, 66(6), 1141-1150. doi:10.1122/8.0000435http://dx.doi.org/10.1122/8.0000435
Cui K. P.; Gong J. P.How double dynamics affects the large deformation and fracture behaviors of soft materials. J. Rheol., 2022, 66(6), 1093-1111. doi:10.1122/8.0000438http://dx.doi.org/10.1122/8.0000438
Webber M. J.; Appel E. A.; Meijer E. W.; Langer R.Supramolecular biomaterials. Nat. Mater., 2016, 15, 13-26. doi:10.1038/nmat4474http://dx.doi.org/10.1038/nmat4474
Zhao Q.; Qi H. J.; Xie T.Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci., 2015, 49, 79-120. doi:10.1016/j.progpolymsci.2015.04.001http://dx.doi.org/10.1016/j.progpolymsci.2015.04.001
Cordier P.; Tournilhac F.; Soulié-Ziakovic C.; Leibler L.Self-healing and thermoreversible rubber from supramolecular assembly. Nature, 2008, 451(7181), 977-980. doi:10.1038/nature06669http://dx.doi.org/10.1038/nature06669
Yu X. Y.; Cao X.; Chen Q.Rheological propertiesof sulfonated polystyrene ionomers at high-ion contents. Rheol. Acta, 2021, 60(5), 241-249. doi:10.1007/s00397-021-01265-5http://dx.doi.org/10.1007/s00397-021-01265-5
Liu S.; Wu S. L.; Chen Q.Using coupling motion of connecting ions in designing telechelic ionomers. ACS Macro Lett., 2020, 9(7), 917-923. doi:10.1021/acsmacrolett.0c00256http://dx.doi.org/10.1021/acsmacrolett.0c00256
Rubinstein M.;Semenov A. N.Thermoreversible gelation in solutions of associating polymers. 2. Linear dynamics. Macromolecules, 1998, 31, 1386-1397. doi:10.1021/ma970617+http://dx.doi.org/10.1021/ma970617+
Chen Q.; Huang C. W.; Weiss R. A.; Colby R. H.Viscoelasticity of reversible gelation for ionomers. Macromolecules, 2015, 48(4), 1221-1230. doi:10.1021/ma502280ghttp://dx.doi.org/10.1021/ma502280g
Chen Q.; Tudryn G. J.; Colby R. H.Ionomer dynamics and the sticky Rouse model. J. Rheol., 2013, 57(5), 1441-1462. doi:10.1122/1.4818868http://dx.doi.org/10.1122/1.4818868
Cao X.; Yu X. Y.; Qin J.; Chen Q.Reversible gelation of entangled ionomers. Macromolecules, 2019, 52(22), 8771-8780. doi:10.1021/acs.macromol.9b01116http://dx.doi.org/10.1021/acs.macromol.9b01116
Suzuki S.; Uneyama T.; Inoue T.; Watanabe H.Nonlinear rheology of telechelic associative polymer networks: shear thickening and thinning behavior of hydrophobically modified ethoxylated urethane (HEUR) in aqueous solution. Macromolecules, 2012, 45(2), 888-898. doi:10.1021/ma202050xhttp://dx.doi.org/10.1021/ma202050x
Koga T.; Tanaka F.Theoretical predictions on normal stresses under shear flow in transient networks of telechelic associating polymers. Macromolecules, 2010, 43(6), 3052-3060. doi:10.1021/ma902191ehttp://dx.doi.org/10.1021/ma902191e
Uneyama T.; Suzuki S.; Watanabe H.Concentration dependence of rheological properties of telechelic associative polymer solutions. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2012, 86(3 Pt 1), 031802. doi:10.1103/physreve.86.031802http://dx.doi.org/10.1103/physreve.86.031802
Annable T.; Buscall R.; Ettelaie R.; Whittlestone D.The rheology of solutions of associating polymers: comparison of experimental behavior with transient network theory. J. Rheol., 1993, 37(4), 695-726. doi:10.1122/1.550391http://dx.doi.org/10.1122/1.550391
Annable T.; Buscall R.; Ettelaie R.Network formation and its consequences for the physical behaviour of associating polymers in solution. Colloids Surf. A Physicochem. Eng. Aspects, 1996, 112(2-3), 97-116. doi:10.1016/0927-7757(96)03621-7http://dx.doi.org/10.1016/0927-7757(96)03621-7
Sakai T.; Matsunaga T.; Yamamoto Y.; Ito C.; Yoshida R.; Suzuki S.; Sasaki N.; Shibayama M.; Chung U. I.Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules, 2008, 41(14), 5379-5384. doi:10.1021/ma800476xhttp://dx.doi.org/10.1021/ma800476x
Akagi Y.; Gong J. P.; Chung U. I.; Sakai T.Transition between phantom and affine network model observed in polymer gels with controlled network structure. Macromolecules, 2013, 46(3), 1035-1040. doi:10.1021/ma302270ahttp://dx.doi.org/10.1021/ma302270a
Ferry J. D.Viscoelastic Properties of Polymers. Wiley, 1980.
Fetters L. J.; Lohse D. J.; Richter D.; Witten T. A.; Zirkel A.Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules, 1994, 27(17), 4639-4647. doi:10.1021/ma00095a001http://dx.doi.org/10.1021/ma00095a001
James H. M.; Guth E.Statistical thermodynamics of rubber elasticity. J. Chem. Phys., 1953, 21(6), 1039-1049. doi:10.1063/1.1699106http://dx.doi.org/10.1063/1.1699106
Macosko C. W.; Miller D. R.A new derivation of average molecular weights of nonlinear polymers. Macromolecules, 1976, 9(2), 199-206. doi:10.1021/ma60050a003http://dx.doi.org/10.1021/ma60050a003
Miller D. R.; Macosko C. W.A new derivation of post gel properties of network polymers. Macromolecules, 1976, 9(2), 206-211. doi:10.1021/ma60050a004http://dx.doi.org/10.1021/ma60050a004
Akagi Y.; Matsunaga T.; Shibayama M.; Chung U. I.; Sakai T.Evaluation of topological defects in tetra-PEG gels. Macromolecules, 2010, 43(1), 488-493. doi:10.1021/ma9019009http://dx.doi.org/10.1021/ma9019009
Li J. J.; Cao X.; Liu Y. G.; Chen Q.Thermorheological complexity of poly(vinyl alcohol)/borax aqueous solutions. J. Rheol., 2020, 64(4), 991-1002. doi:10.1122/8.0000043http://dx.doi.org/10.1122/8.0000043
0
浏览量
261
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构