浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 生态环境高分子材料重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
E-mail: sjliu@ciac.ac.cn;
E-mail: xhwang@ciac.ac.cn
纸质出版日期:2025-02-20,
网络出版日期:2024-11-14,
收稿日期:2024-06-26,
录用日期:2024-07-25
移动端阅览
刘克共, 刘顺杰, 范培鑫, 张若禹, 陈学思, 王献红. 双功能卟啉铝催化二氧化碳与长链末端环氧化物共聚[J]. 高分子学报, 2025,56(2):242-252.
KE-GONG LIU, SHUN-JIE LIU, PEI-XIN FAN, RUO-YU ZHANG, XUE-SI CHEN, XIAN-HONG WANG. Bifunctional Porphyrin Aluminum Catalyzed Copolymerization of Carbon Dioxide and Long Chain Terminal Epoxide. [J]. Acta polymerica sinica, 2025, 56(2): 242-252.
刘克共, 刘顺杰, 范培鑫, 张若禹, 陈学思, 王献红. 双功能卟啉铝催化二氧化碳与长链末端环氧化物共聚[J]. 高分子学报, 2025,56(2):242-252. DOI: 10.11777/j.issn1000-3304.2024.24185. CSTR: 32057.14.GFZXB.2024.7289.
KE-GONG LIU, SHUN-JIE LIU, PEI-XIN FAN, RUO-YU ZHANG, XUE-SI CHEN, XIAN-HONG WANG. Bifunctional Porphyrin Aluminum Catalyzed Copolymerization of Carbon Dioxide and Long Chain Terminal Epoxide. [J]. Acta polymerica sinica, 2025, 56(2): 242-252. DOI: 10.11777/j.issn1000-3304.2024.24185. CSTR: 32057.14.GFZXB.2024.7289.
长链末端环氧化物(LCTE)由于大位阻侧基的存在,难以高选择性地与二氧化碳(CO
2
)共聚并得到高碳酸酯单元含量的聚合物. 本研究通过在卟啉meso苯环不同位置引入大位阻有机碱1
5
7-三叠氮双环[4.4.0
]
癸-5-烯(TBD),设计了一系列双功能卟啉铝催化剂,旨在调控TBD
基团与铝中心的空间协同作用. 其中TBD连接在meso苯环间位上的催化剂
m
-4展现出最佳的催化效果,可高选择性(99%)催化1
2-环氧丁烷或1
2-环氧己烷与CO
2
完全交替共聚,制备得到分子量大于32 kg/mol的聚碳酸酯. 通过原位红外光谱对反应进行动力学研究证明该催化剂分子内协同的催化特征. 本文工作探究了双功能催化剂分子内催化位点的空间分布与所产生协同作用的关系,为LCTE/CO
2
高效交替共聚合成聚碳酸酯提供了一种新思路.
Long chain terminal epoxide (LCTE)
due to the existence of large steric hindrance side groups
is more difficult to achieve high selectivity in obtaining polymers with high carbonate unit content through copolymerization with carbon dioxide (CO
2
). This work reported bifunctional catalysts with large steric hindrance organic base 1
5
7-triazo bicyclic [4.4.0
]
decane-5-ene (TBD) introduced into the meso-benzene ring of porphyrin
aiming to regulate the spatial synergistic effect between the anchored TBD and aluminum centers. Among them
the catalyst
m
-4 with TBD anchored at the meso-benzene ring's
meso
-position exhibited the best catalytic activity
which could selectively (99%) catalyze the alternating copolymerization of 1
2-epoxybutane or 1
2-epoxyhexane with CO
2
. Catalyst
m
-4 could prepare polymers with molecular we
ight higher than 32 kg/mol. The obtained polymer's glass transition temperature was lower than room temperature.
In situ
FTIR kinetic studies demonstrated the intramolecular synergistic effect in the designed catalysts. In summary
this work probed differences in the spatial distribution of intramolecular catalytic sites in bifunctional catalysts and the resulting synergistic effect
providing a way of efficiently synthesizing polycarbonate for LCTE/CO
2
copolymerization.
双功能卟啉铝二氧化碳长链末端环氧化物有机碱开环共聚
Bifunctional porphyrin aluminumCarbon dioxideLong chain terminal epoxideOrganic baseRing-opening copolymerization
Zhu Y. Q.; Romain C.; Williams C. K.Sustainable polymers from renewable resources. Nature, 2016, 540(7633), 354-362. doi:10.1038/nature21001http://dx.doi.org/10.1038/nature21001
Wang X. H.Biodegradable polymers, history tells polymer science's fortune. Chinese J. Polym. Sci., 2022, 40(5), 431-432. doi:10.1007/s10118-022-2737-xhttp://dx.doi.org/10.1007/s10118-022-2737-x
Wang Z.; Zheng W. Y.; Yue S. C.; Chen K. H.; Ling J.; Ni X. F.Random terpolymer of carbon dioxide, butadiene and epoxides: synthesis, functionalization and degradability. Chin. J. Chem., 2024, 42(14), 1630-1636. doi:10.1002/cjoc.202400050http://dx.doi.org/10.1002/cjoc.202400050
Zhou Z. X.; Wang Y. C.; Bao Y. J.; Yang H. Y.; Li J.; Chang C. R.; Li S. G.; Gao P.Nickel-modified In2O3 with inherent oxygen vacancies for CO2 hydrogenation to methanol. Sci. China Chem., 2024, 67(5), 1715-1728. doi:10.1007/s11426-023-1929-1http://dx.doi.org/10.1007/s11426-023-1929-1
Liu Y.; Lu X. B.Current challenges and perspectives in CO2-based polymers. Macromolecules, 2023, 56(5), 1759-1777. doi:10.1021/acs.macromol.2c02483http://dx.doi.org/10.1021/acs.macromol.2c02483
Xu J. Y.; Zhong G. Q.; Li M. J.; Zhao D.; Sun Y.; Hu X. D.; Sun J. F.; Li X. Y.; Zhu W. J.; Li M.; Zhang Z. Q.; Zhang Y.; Zhao L. P.; Zheng C. M.; Sun X. H.Review on electrochemical carbon dioxide capture and transformation with bipolar membranes. Chin. Chem. Lett., 2023, 34(8), 108075. doi:10.1016/j.cclet.2022.108075http://dx.doi.org/10.1016/j.cclet.2022.108075
Wang J. L.; Cao J. P.; Zhu Y. H.; Wang Q.; Li N. F.; Fan X. R.; Mei H.; Xu Y.Four unprecedented V14 clusters as highly efficient heterogeneous catalyst for CO2 fixation with epoxides and oxidation of sulfides. Sci. China Chem., 2023, 66(1), 107-116. doi:10.1007/s11426-022-1424-9http://dx.doi.org/10.1007/s11426-022-1424-9
Inoue S.; Koinuma H.; Tsuruta T.Copolymerization of carbon dioxide and epoxide with organometallic compounds. Makromol. Chem., 1969, 130(1), 210-220. doi:10.1002/macp.1969.021300112http://dx.doi.org/10.1002/macp.1969.021300112
Qin Z. Q.; Thomas C. M.; Lee S.; Coates G. W.Cobalt-based complexes for the copolymerization of propylene oxide and CO2: active and selective catalysts for polycarbonate synthesis. Angew. Chem. Int. Ed, 2003, 42(44), 5484-5487. doi:10.1002/anie.200352605http://dx.doi.org/10.1002/anie.200352605
Sujith S.; Min J. K.; Seong J. E.; Na S. J.; Lee B. Y.A highly active and recyclable catalytic system for CO2/propylene oxide copolymerization. Angew. Chem. Int. Ed, 2008, 47(38), 7306-7309. doi:10.1002/anie.200801852http://dx.doi.org/10.1002/anie.200801852
Wu G. P.; Wei S. H.; Ren W. M.; Lu X. B.; Xu T. Q.; Darensbourg D. J.Perfectly alternating copolymerization of CO2 and epichlorohydrin using cobalt(III)-based catalyst systems. J. Am. Chem. Soc., 2011, 133(38), 15191-15199. doi:10.1021/ja206425jhttp://dx.doi.org/10.1021/ja206425j
Deng J. Y.; Ratanasak M.; Sako Y.; Tokuda H.; Maeda C.; Hasegawa J. Y.; Nozaki K.; Ema T.Aluminum porphyrins with quaternary ammonium halides as catalysts for copolymerization of cyclohexene oxide and CO2: metal-ligand cooperative catalysis. Chem. Sci., 2020, 11(22), 5669-5675. doi:10.1039/d0sc01609hhttp://dx.doi.org/10.1039/d0sc01609h
Gao F. X.; Cai Y.; Liu S. J.; Wang X. H.High-performance biodegradable PBAT/PPC composite film through reactive compatibilizer. Chinese J. Polym. Sci., 2023, 41(7), 1051-1058. doi:10.1007/s10118-023-2900-zhttp://dx.doi.org/10.1007/s10118-023-2900-z
Zhang Y. Y.; Yang G. W.; Lu C. J.; Zhu X. F.; Wang Y. H.; Wu G. P.Organoboron-mediated polymerizations. Chem. Soc. Rev., 2024, 53(7), 3384-3456. doi:10.1039/d3cs00115fhttp://dx.doi.org/10.1039/d3cs00115f
Cao H.; Qin Y. S.; Zhuo C. W.; Wang X. H.; Wang F. S.Homogeneous metallic oligomer catalyst with multisite intramolecular cooperativity for the synthesis of CO2-based polymers. ACS Catal., 2019, 9(9), 8669-8676. doi:10.1021/acscatal.9b02741http://dx.doi.org/10.1021/acscatal.9b02741
Lu X. B.; Shi L.; Wang Y. M.; Zhang R.; Zhang Y. J.; Peng X. J.; Zhang Z. C.; Li B.Design of highly active binary catalyst systems for CO2copolymerization/epoxide: polymer selectivity, enantioselectivity, and stereochemistry control. J. Am. Chem. Soc., 2006, 128(5), 1664-1674. doi:10.1021/ja056383ohttp://dx.doi.org/10.1021/ja056383o
Nakano K.; Kamada T.; Nozaki K.Selective formation of polycarbonate over cyclic carbonate: copolymerization of epoxides with carbon dioxide catalyzed by a cobalt(III) complex with a piperidinium end-capping arm. Angew. Chem. Int. Ed, 2006, 45(43), 7274-7277. doi:10.1002/anie.200603132http://dx.doi.org/10.1002/anie.200603132
Qin Y. S.; Wang X. H.; Zhang S. B.; Zhao X. J.; Wang F. S.Fixation of carbon dioxide into aliphatic polycarbonate, cobalt porphyrin catalyzed regio-specific poly(propylene carbonate) with high molecular weight. J. Polym. Sci. A Polym. Chem., 2008, 46(17), 5959-5967. doi:10.1002/pola.22911http://dx.doi.org/10.1002/pola.22911
Ren W. M.; Liu Z. W.; Wen Y. Q.; Zhang R.; Lu X. B.Mechanistic aspects of the copolymerization of CO2 with epoxides using a thermally stable single-site cobalt(III) catalyst. J. Am. Chem. Soc., 2009, 131(32), 11509-11518. doi:10.1021/ja9033999http://dx.doi.org/10.1021/ja9033999
Xia Y. N.; Zhang C. J.; Wang Y.; Liu S. J.; Zhang X. H.From oxygenated monomers to well-defined low-carbon polymers. Chin. Chem. Lett., 2024, 35(1), 108860. doi:10.1016/j.cclet.2023.108860http://dx.doi.org/10.1016/j.cclet.2023.108860
周振震, 刘顺杰, 郎涛涛, 高凤翔, 王献红. 铝卟啉折叠催化剂催化二氧化碳/环氧化物共聚反应. 高分子学报, 2024, 55(4), 396-406.
陈学思, 陈国强, 陶友华, 王玉忠, 吕小兵, 张立群, 朱锦, 张军, 王献红. 生态环境高分子的研究进展. 高分子学报, 2019, 50(10), 1068-1082. doi:10.11777/j.issn1000-3304.2019.19124http://dx.doi.org/10.11777/j.issn1000-3304.2019.19124
Chen P.; Zhou H.; Cao H.; Zhuo C. W.; Liu S. J.; Wang X. H.Polymeric catalyst with polymerization-enhanced Lewis acidity for CO2-based copolymers. Chin. Chem. Lett., 2023, 34(12), 108630. doi:10.1016/j.cclet.2023.108630http://dx.doi.org/10.1016/j.cclet.2023.108630
Zhang R. Y.; Kuang Q. X.; Cao H.; Liu S. J.; Chen X. S.; Wang X. H.; Wang F. S.Unity makes strength: constructing polymeric catalyst for selective synthesis of CO2/epoxide copolymer. CCS Chem., 2023, 5(3), 750-760. doi:10.31635/ccschem.022.202201952http://dx.doi.org/10.31635/ccschem.022.202201952
Thorat S. D.; Phillips P. J.; Semenov V.; Gakh A.Physical properties of aliphatic polycarbonates made from CO2 and epoxides. J. Appl. Polym. Sci., 2003, 89(5), 1163-1176. doi:10.1002/app.12355http://dx.doi.org/10.1002/app.12355
Zhang X. H.; Wei R. J.; Zhang Y. Y.; Du B. Y.; Fan Z. Q.Carbon dioxide/epoxide copolymerization via a nanosized zinc–cobalt(III) double metal cyanide complex: substituent effects of epoxides on polycarbonate selectivity, regioselectivity and glass transition temperatures. Macromolecules, 2015, 48(3), 536-544. doi:10.1021/ma5023742http://dx.doi.org/10.1021/ma5023742
Lu X. B.; Wang Y.Highly active, binary catalyst systems for the alternating copolymerization of CO2 and epoxides under mild conditions. Angew. Chem. Int. Ed, 2004, 43(27), 3574-3577. doi:10.1002/anie.200453998http://dx.doi.org/10.1002/anie.200453998
Chiarioni G.; van Duin M.; Pescarmona P. P.Novel elastic rubbers from CO2-based polycarbonates. Green Chem., 2023, 25(19), 7612-7626. doi:10.1039/d3gc02374ehttp://dx.doi.org/10.1039/d3gc02374e
Kim I.; Yi M. J.; Byun S. H.; Park D. W.; Kim B. U.; Ha C. S.Biodegradable polycarbonate synthesis by copolymerization of carbon dioxide with epoxides using a heterogeneous zinc complex. Macromol. Symp., 2005, 224(1), 181-192. doi:10.1002/masy.200550616http://dx.doi.org/10.1002/masy.200550616
Mo W. J.; Zhuo C. W.; Cao H.; Liu S. J.; Wang X. H.; Wang F. S.Facile aluminum porphyrin complexes enable flexible terminal epoxides to boost properties of CO2-polycarbonate. Macromol. Chem. Phys., 2022, 223(13), 2100403. doi:10.1002/macp.202100403http://dx.doi.org/10.1002/macp.202100403
Yang L. H.; Liu S. J.; Zhou Z. Z.; Zhang R. Y.; Zhou H.; Zhuo C. W.; Wang X. H.Aggregate catalysts: regulating multimetal cooperativity for CO2/epoxide copolymerization. Macromolecules, 2024, 57(1), 150-161. doi:10.1021/acs.macromol.3c02222http://dx.doi.org/10.1021/acs.macromol.3c02222
Villiers C.; Dognon J. P.; Pollet R.; Thuéry P.; Ephritikhine M.An isolated CO2 adduct of a nitrogen base: crystal and electronic structures. Angew. Chem. Int. Ed, 2010, 49(20), 3465-3468. doi:10.1002/anie.201001035http://dx.doi.org/10.1002/anie.201001035
D'Souza F.; Deviprasad G. R.; El-Khouly M. E.; Fujitsuka M.; Ito O.Probing the donor-acceptor proximity on the physicochemical properties of porphyrin-fullerene dyads: "tail-on" and "tail-off " binding approach. J. Am. Chem. Soc., 2001, 123(22), 5277-5284. doi:10.1021/ja010356qhttp://dx.doi.org/10.1021/ja010356q
Zhuo C. W.; Qin Y. S.; Wang X. H.; Wang F. S.Temperature-responsive catalyst for the coupling reaction of carbon dioxide and propylene oxide. Chin. J. Chem., 2018, 36(4), 299-305. doi:10.1002/cjoc.201800019http://dx.doi.org/10.1002/cjoc.201800019
Sheng X. F.; Wu W.; Qin Y. S.; Wang X. H.; Wang F. S.Efficient synthesis and stabilization of poly(propylene carbonate) from delicately designed bifunctional aluminum porphyrin complexes. Polym. Chem., 2015, 6(26), 4719-4724. doi:10.1039/c5py00335khttp://dx.doi.org/10.1039/c5py00335k
Wu W.; Sheng X. F.; Qin Y. S.; Qiao L. J.; Miao Y. Y.; Wang X. H.; Wang F. S.Bifunctional aluminum porphyrin complex: soil tolerant catalyst for copolymerization of 2 and propylene oxide. J. Polym. Sci. Part A Polym. Chem., 2014, 52(16), 2346-2355. doi:10.1002/pola.27247http://dx.doi.org/10.1002/pola.27247
吴伟, 秦玉升, 王献红, 王佛松. 双官能卟啉铝配合物催化二氧化碳与环氧化合物的共聚合. 高分子学报, 2014, (7), 1017-1022. doi:10.11777/j.issn1000-3304.2014.14080http://dx.doi.org/10.11777/j.issn1000-3304.2014.14080
Sheng X. F.; Wang Y.; Qin Y. S.; Wang X. H.; Wang F. S.Aluminum porphyrin complexes via delicate ligand design: emerging efficient catalysts for high molecular weight poly(propylene carbonate). RSC Adv., 2014, 4(96), 54043-54050. doi:10.1039/c4ra10643ahttp://dx.doi.org/10.1039/c4ra10643a
Yang G. W.; Zhang Y. Y.; Xie R.; Wu G. P.Scalable bifunctional organoboron catalysts for copolymerization of CO2 and epoxides with unprecedented efficiency. J. Am. Chem. Soc., 2020, 142(28), 12245-12255. doi:10.1021/jacs.0c03651http://dx.doi.org/10.1021/jacs.0c03651
Darensbourg D. J.Copolymerization of epoxides and CO2: polymer chemistry for incorporation in undergraduate inorganic chemistry. J. Chem. Educ., 2017, 94(11), 1691-1695. doi:10.1021/acs.jchemed.6b00505http://dx.doi.org/10.1021/acs.jchemed.6b00505
Lehenmeier M. W.; Kissling S.; Altenbuchner P. T.; Bruckmeier C.; Deglmann P.; Brym A. K.; Rieger B.Flexibly tethered dinuclear zinc complexes: a solution to the entropy problem in CO2/epoxide copolymerization catalysis?Angew. Chem. Int. Ed, 2013, 52(37), 9821-9826. doi:10.1002/anie.201302157http://dx.doi.org/10.1002/anie.201302157
Darensbourg D. J.; Yarbrough J. C.; Ortiz C.; Fang C. C.Comparative kinetic studies of the copolymerization of cyclohexene oxide and propylene oxide with carbon dioxide in the presence of chromium salen derivatives. In situ FTIR measurements of copolymer vs cyclic carbonate production. J. Am. Chem. Soc., 2003, 125(25), 7586-7591. doi:10.1021/ja034863ehttp://dx.doi.org/10.1021/ja034863e
Nakano K.; Hashimoto S.; Nozaki K.Bimetallic mechanism operating in the copolymerization of propylene oxide with carbon dioxide catalyzed by cobalt-salen complexes. Chem. Sci., 2010, 1(3), 369-373. doi:10.1039/c0sc00220hhttp://dx.doi.org/10.1039/c0sc00220h
Cao H.; Zhang R. Y.; Zhou Z. Z.; Liu S. J.; Tao Y. H.; Wang F. S.; Wang X. H.On-demand transformation of carbon dioxide into polymers enabled by a comb-shaped metallic oligomer catalyst. ACS Catal., 2022, 12(1), 481-490. doi:10.1021/acscatal.1c04431http://dx.doi.org/10.1021/acscatal.1c04431
Yang G. W.; Xu C. K.; Xie R.; Zhang Y. Y.; Zhu X. F.; Wu G. P.Pinwheel-shaped tetranuclear organoboron catalysts for perfectly alternating copolymerization of CO2 and epichlorohydrin. J. Am. Chem. Soc., 2021, 143(9), 3455-3465. doi:10.1021/jacs.0c12425http://dx.doi.org/10.1021/jacs.0c12425
Ghosh A.; Reddy G. N.; Siddhique P KM.; Chatterjee S.; Bhattacharjee S.; Maitra R.; Lyubimov S. E.; Arzumanyan A. V.; Naumkin A.; Bhaumik A.; Chowdhury B.Fabrication of a hollow sphere N, S Co-doped bifunctional carbon catalyst for sustainable fixation of CO2 to cyclic carbonates. Green Chem., 2022, 24(4), 1673-1692. doi:10.1039/d1gc04153chttp://dx.doi.org/10.1039/d1gc04153c
Huang R.; Rintjema J.; González-Fabra J.; Martín E.; Escudero-Adán E. C.; Bo C.; Urakawa A.; Kleij A. W.Deciphering key intermediates in the transformation of carbon dioxide into heterocyclic products. Nat. Catal., 2019, 2, 62-70. doi:10.1038/s41929-018-0189-zhttp://dx.doi.org/10.1038/s41929-018-0189-z
Jutz F.; Buchard A.; Kember M. R.; Fredriksen S. B.; Williams C. K.Mechanistic investigation and reaction kinetics of the low-pressure copolymerization of cyclohexene oxide and carbon dioxide catalyzed by a dizinc complex. J. Am. Chem. Soc., 2011, 133(43), 17395-17405. doi:10.1021/ja206352xhttp://dx.doi.org/10.1021/ja206352x
0
浏览量
114
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构